Наука изучающая гены. Эволюционная теория и генетика

Рождение ребенка – это процесс явления настоящего чуда. Способность давать жизнь является великим даром. И, конечно же, первые разговоры и обсуждения, которые ведутся вокруг новорожденного, преследуют одну цель – выяснение сходства малыша с родителями.

На кого похож новорожденный? На папу или маму, бабушку или дедушку? Вот основная тема для разговоров на ближайший промежуток времени. Но с ростом малыша, помимо внешних признаков, обнаруживаются и удивительные моменты в его поведении и поступках. Реакция на происходящие события, походка, любимые позы и даже манера речи – во всем этом можно увидеть, как в зеркальном отражении, себя. Как приобретаются данные факторы? Что влияет на внешность и характер маленького человечка?

Генетика, как наука

Генетика – наука, изучающая наследственность и изменчивость живых организмов. Правы были те, кто считал человека уникальным творением природы. Благодаря генетике мы узнали, что понятие кожаного мешка, наполненного мясом и костями, не имеет под собой никаких оснований. Вместилище информации, сосуд, наполненный тайнами и загадками, – вот как воспринимает человека данная наука.

Каким образом информация передается из поколения в поколение? Что способствует такому понятию, как наследственность? Вот основные вопросы, на которые ищет ответ наука, называющаяся генетика.

Генетика как наука прошла много этапов. Путь развития данной дисциплины был извилист и тернист. Основоположниками науки были европейские монахи, которые обратили внимание на передачу наследственных признаков у растений и насекомых.

Цвет фасоли, окрас мух – вот основные признаки, которые вызвали у монахов неподдельный интерес и над которыми экспериментировали первые генетики. 1865 год признания науки. Причиной внимания грантов от науки в сторону этого течения послужил труд австрийского монаха Иоганна Менделя «Опыты над растительными гибридами». Наука получила свое нынешнее название в 1906 г., а в 1909 г. появилось понятие ген, которое известно сегодня каждому школьнику.

Генетика в современности

Давно канули в Лету времена, когда генетика ограничивалась наблюдением и изучением простейших организмов. Сейчас данное направление имеет широкий спектр задач и огромное значение в жизни современного человечества.

Медицина, спорт высоких достижений, сельское хозяйство и пищевая промышленность, военно-промышленный комплекс – все это лишь небольшой фронт применения генетики в современном мире.

Увеличение сбора урожая, морозостойкие и жаростойкие культуры, неприхотливые в обработке и имеющие высокое сопротивление к вредителям. Спортсмены, которые в состояние побить любые рекорды. Солдаты, имеющие сверхспособности. Отсутствие таких чувств, как голод, сон, усталость – качества, о которых могут мечтать военачальники любой из стран.

Медицинские препараты, способные избавить человечество от всех существующих болезней и недугов. Вот лишь малая часть вопросов из сфер человеческой деятельности, которые решает генетика. Даже пресловутая чума 20-го и 21-го века СПИД, возможно, является результатом процесса разработки биологического оружия, направленного на уничтожение населения неугодных стран.

ДНК

Основное направление, которое изучает наука, является человеческий геном и в частности ДНК. ДНК – это молекулы нуклеиновых кислот в виде генетического кода. Данный термин является основным предметом изучения генетики. В этом коде зашифровано огромное количество информации, благодаря наследованию которой и происходит развитие всех популяций нашего мира.

Память – основное значение молекул ДНК. Благодаря этой сложной функции происходит непрерывное развитие всех живых организмов нашей планеты. «Выживает сильнейший» - выражение, существование которого не было бы возможным без генетического кода, передающегося потомкам. Все признаки, которыми наделены все формы жизни нашей планеты и которые позволяют успешно выживать им в условиях суровой окружающей среды, сохранены и развиты благодаря ДНК.

Все жизненные процессы, происходящие в любых организмах, подвластны изучению данной науки.

Генетика имеет ряд направлений и дисциплин, которые охватывают многие процессы и детально разбирают их, открывая с каждым днем огромное количество информации, которая раньше казалась сказкой.

Наука генетика позволяет открыть чудесный и таинственный мир жизни. Все тайны, над которыми не одно столетие задумывалось человечество, сейчас намного ближе к раскрытию и пониманию. С каждым годом, с каждым витком развития генетики завеса тайны рождения всего живого на планете приподымается все больше.

Несмотря на внешнее сходство с родителями и родственниками, каждый человек - личность и индивидуальность.

Генетика (от греч. гензфщт -- происходящий от кого-то) -- наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин -- молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии.

Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных. Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин.

Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др.

Законы Г. Менделя

Закон единообразия: гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготы -- Аа), а значит, и по фенотипу.

Закон расщепления , или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодоминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% -- фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расщепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков , или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два -- новые. Этот закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом (рис. 2). Например, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот -- закономерному расщеплению по генотипу и соответственно по фенотипу.


Генетика – это биологическая наука о наследственности и изменчивости организмов и методах управления ими.

Генетика по праву может считаться одной из самых важных областей биологии. Она является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.

На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Элементарными дискретными единицами наследственности и изменчивости являются гены.

Отцом генетики принято считать чешского монаха Грегора Менделя. Он был учителем физики и естествознания в обычной средней школе, а всё своё свободное время отдавал выращиванию растений в саду монастыря. Мендель занимался этим не из гастрономических интересов, а для изучения закономерностей наследования признаков. Опыты по гибридизации растений проводились и до Менделя, но никто из его предшественников не делал попыток как-то проанализировать свои результаты.

Мендель взял семена гороха с пурпурными цветками и семена сорта, у которого цветки были белые. Когда из них выросли растения и зацвели, он удалил из пурпурного цветка тычинки и перенёс на его пестик пыльцу белого цветка. Через положенное время образовались семена, которые Мендель следующей весной опять посадил на своём огороде. Вскоре взошли новые растения. Результат превзошёл все ожидания: растения оказались с пурпурными цветками, среди них не было ни одного белого. Мендель ни один раз повторял свои опыты, но результат был один и тот же. Итак, гибриды всегда приобретают один из родительских признаков.

Важнейший результат опытов Менделя: в гибридах, полученных от скрещивания растений с разными признаками, не происходит никакого растворения признаков, а один признак (более сильный, или, как назвал его Мендель, доминантный) подавляет другой (более слабый или рецессивный).

Но Мендель не остановился на достигнутом. Он взял и скрестил между собой пурпурные растения гороха, полученные в результате этого опыта. В результате из бутонов появились и пурпурные и белые цветки. Признак белой окраски, исчезнувшей после первого скрещивания, вновь проявил себя. Самым интересным было то, что растений с пурпурными цветками было ровно в 3 раза больше, чем с белыми.

Похожие результаты были получены ещё в четырёх опытах, и во всех случаях отношение доминантных и рецессивных признаков после второго скрещивания составляло в среднем 3:1

Знания, которыми обладал Мендель, были ничтожны, но сделанные им выводы намного опережали свой век. Мендель высказал предположение, которое вскоре стало самым важным из открытых им законов. Он приходит к мысли, что половые клетки (гаметы) несут только по одному задатку каждого из признаков и чисты от других задатков этого же признака. Этот закон получил название закона чистоты гамет, который не потерял своего значения даже сейчас. Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

Но как часто бывает в науке, исследования, которые могли означать рождение нового направления в биологии, были забыты на несколько десятилетий. Настоящая история генетики началась в 1900 году, когда закономерности, обнаруженные ещё Менделем, были снова «открыты» учёными. Три ботаника, голландец Гуго Де Фриз, немец К. Корренс и австриец К. Чермак, занимались изучением закономерностей наследования признаков при скрещивании.

Де Фриз исследовал энотеру, мак и дурман и открыл закон расщепления признаков у гибридов. Корренс открыл тот же закон расщепления, но только на кукурузе, а Чермак - на горохе. Затем, учёные решили изучать мировую литературу по этим вопросам и натолкнулись на исследования Менделя. Оказалось, что ничего нового они не открыли, более того, выводы Менделя были глубже их собственных.

Слава Менделя распространилась моментально. Во всём мире сразу же нашлось множество последователей, которые повторили его опыт на различных объектах. В научном обиходе появился даже особый термин – «менделирующие признаки», - то есть признаки, подчиняющиеся законам Менделя.

Генетика как наука решает следующие задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и её материальные носители; анализирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания; изучает закономерности и механизмы изменчивости и её роль в эволюционном процессе; изыскивает способы исправления повреждённой генетической информации.

Для решения задач используются разные методы исследования.

1. Метод гибридологического анализа. Он позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.

2. Цитогенетический метод позволяет изучать кариотип клеток организма и выявлять геномные и хромосомные мутации.

3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях.

4. Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.

ГЕНЕТИКА (греч. genetikos относящийся к происхождению) - наука о наследственности и изменчивости организмов.

Предмет и методы генетики. Предметом изучения Г. являются два свойства организмов - наследственность (см.) и изменчивость (см.). Наследственность - свойство организмов передавать следующему поколению присущие данному организму особенности становления в ходе онтогенеза определенных черт строения и типа обмена веществ. Передача особенностей организма следующим поколениям возможна только в процессе размножения или самовоспроизведения.

Самовоспроизведение организмов может осуществляться путем вегетативного размножения, когда из частей родительской особи возникает организм потомков. Так, картофель, напр., разводится в основном клубнями. У низших животных, таких как гидра, некоторые клетки воспроизводят целое животное. Микроорганизмы размножаются преимущественно путем деления, некоторые размножаются почкованием, а плесени и дрожжи - путем образования спор. Такие доклеточные формы организации живой материи, как вирусы, размножаются путем репродукции в чувствительной клетке, где сперва идет раздельный синтез вирусной нуклеиновой к-ты (ДНК или РНК) и белка, а затем происходит их объединение и формирование вирусных частиц (см. Вирусы). Высшие же организмы осуществляют воспроизведение себе подобных путем полового размножения. Новое дочернее поколение при половом размножении возникает в результате слияния женской и мужской половых клеток.

Другим свойством организмов, входящим в предмет исследования Г., является изменчивость. Изменчивость - свойство живых организмов, заключающееся в изменении генов и их проявления в процессе развития организма, т. е. изменчивость является свойством, противоположным наследственности.

Различают фенотипическую (модификационную) и генотипическую изменчивость.

Фенотипическая изменчивость организмов связана с тем, что в процессе индивидуального развития, который совершается в определенных условиях окружающей среды, может наблюдаться изменение морфол., физиол., биохим, и других особенностей организмов. Однако свойства, приобретенные организмом в результате такой изменчивости, не наследуются, хотя пределы флюктуации признака (норма реакции) организма определяются его наследственностью, т. е. совокупностью генов.

Генотипическая изменчивость организмов обусловлена либо изменением собственно генетического материала - мутациями (см. Мутация), либо возникновением новых сочетаний генов - рекомбинацией (см.). В зависимости от этого генетическая изменчивость подразделяется на мутационную и рекомбинативную (комбинативную).

Изучение наследственности и изменчивости живых систем ведется на разных уровнях организации живой материи - на молекулярном, хромосомном, клеточном, организменном и популяционном с привлечением методов смежных дисциплин, таких как биохимия, биофизика, иммунология, физиология и т. д. Этим объясняется то, что в Г. большое количество конкретных разделов выделилось в самостоятельные научные дисциплины, такие как молекулярная, биохим, физиол, и мед. генетика, иммуногенетика, феногенетика, филогенетика, популяционная генетика и др. Из них большое значение для медицины имеют феногенетика, к-рая изучает роль генов в индивидуальном развитии особи; физиологическая генетика, изучающая наследственную обусловленность физиологии организмов и влияние на нее факторов окружающей среды; иммуногенетика, фармакогенетика и генетика патогенности и вирулентности микроорганизмов; генетика популяций, выясняющая законы наследственности и изменчивости в экологических природных условиях.

Основным методом исследования наследственности и изменчивости организмов является генетический анализ (см.), который включает ряд частных методов. Наиболее информативным и специфическим методом генетического анализа является выяснение природы выбранного для такого анализа признака. Этот метод предусматривает систему скрещиваний в ряде поколений или изучение семейной приуроченности интересующего признака с целью анализа за кономерностей наследования отдельных свойств и признаков организмов (см. Инбридинг , Близнецовый метод). Генетический анализ располагает также частными методами анализа: рекомбинационным, мутаци онным, комплементационным и популяционным.

Процесс материальной преемственности в поколениях отдельных клеток и организмов изучают с помощью цитол. метода, который в сочетании с генетическим получил название цитогенетического метода изучения наследственности. После открытия генетической роли нуклеиновых к-т успешно развивается метод молекулярного анализа структуры и функционирования гена. Феногенетический метод предусматривает изучение действия гена и его проявления в индивидуальном развитии организма. Для этого используются такие приемы, как трансплантация наследственно различных тканей, пересадка ядер из одной клетки в другую и т. д. Анализ таких генетических явлений ведут также с привлечением новейших методов различных отраслей естествознания, в особенности биохимии, однако все используемые методы других дисциплин для Г. являются только вспомогательными к основному методу - генетическому анализу.

Основные этапы и направления развития генетики. Всевозможные гипотезы о природе наследственности и изменчивости высказывались еще на заре культуры человечества. Основой для них служили наблюдения человека над самим собой, а также результаты опытов, полученные при разведении животных и выращивании растений. Уже в те времена человек производил определенный отбор, т. е. оставлял для дальнейшего воспроизводства только тех животных или те растения, которые обладали ценными для него качествами. Благодаря такой примитивной селекции человеку удалось создать большое число видов различных домашних животных и культурных растений- Первые сочинения по наследственности и изменчивости появились лишь в 17 в., когда Камерарцус (R. Camerarius) в 1694 г. опубликовал «Записки о поле у растений», где сделал вывод, что растения, как и животные, имеют половую дифференциацию. Он также высказал предположение, что опыление растения одного вида пыльцой другого вида может привести к возникновению новых форм. В начале 18 в. стали получать гибриды и описывать их. Первые научные исследования по гибридизации осуществил Кельрейтер (J. Kolreuter) в 60-х гг. 18 в. Он показал, что в качестве отцовского или материнского растения может быть использован любой из родительских видов, Т. к. при скрещивании в обоих направлениях получаются одинаковые гибриды, т. е. в передаче наследственности играют одинаковую роль как пыльца, так и семяпочка.

В дальнейшем исследованием растительных гибридов с целью выявления закономерностей появления в них родительских признаков занимались многие исследователи - Найт (Th.Knight), Ноден (Ch. Naudin) и др. Их наблюдения еще не могли стать базой для формирования науки, однако наряду с бурным развитием племенного животноводства, а также растениеводства и семеноводства во второй половине 19 в. они возбудили повышенный интерес к анализу явлений наследственности.

Особенно сильно развитию науки о наследственности и изменчивости способствовало учение Ч. Дарвина (1859) о происхождении видов, к-рое обогатило биологию историческим методом исследования эволюции организмов. Дарвин приложил много усилий для изучения явлений наследственности и изменчивости, и хотя ему не удалось установить закономерности наследственности, он все же собрал большое количество фактов, сделал на их основе целый ряд правильных выводов и доказал, что виды непостоянны и что они произошли от других видов, которые отличались от ныне живущих.

Основные законы Г. были открыты и сформулированы чеш. естествоиспытателем Г. Менделем, экспериментировавшим с различными сортами гороха (1865). Результаты своих исследований Г. Мендель изложил в ставшей классической книге «Опыты с растительными гибридами», опубликованной в 1866 г. Для опытов по гибридизации им были использованы два сорта гороха, которые различались по форме семян или окраске цветов. Это позволило Г. Менделю практически разработать методы генетического анализа наследования отдельных признаков и установить принципиально важное положение, гласящее, что признаки определяются отдельными наследственными факторами, передающимися через половые клетки, и что отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве (см. Менделя законы). Хотя Г. Мендель ничего не знал о местонахождении наследственных факторов в клетке, об их хим. природе и механизме влияния на тот или иной признак организма, тем не менее его учение о наследственных факторах как единицах наследственности легло в основу теории гена (см. Ген).

Однако принципиальные результаты опытов Г. Менделя были поняты биологами лишь в 1900 г., когда голл. ботаник X. де Фрис и почти одновременно с ним нем. ботаник Корренс (С. Correns) и австр. учецый Чермак (E. Tschermak) вторично открыли законы наследования признаков. С этого времени началось бурное развитие Г., утверждавшей принципы дискретности в явлениях наследования, а 1900 г. принято считать официальной датой рождения Г.

В 1906 г. на III Международном конгрессе по гибридизации по предложению Бейтсона (W. Bateson) наука, изучающая наследственность и изменчивость, была названа генетикой, а менделевская единица наследственности по предложению Иогансена (W. Johannsen) вскоре получила название «ген» (1909).

В 1901 г. X. де Фрис сформулировал теорию мутаций, гласящую, что наследственные свойства и признаки организмов изменяются скачкообразно, т. е. в результате мутаций (см. Мутация). Вскоре было установлено, что наследственные факторы связаны с хромосомами, а в 1911г. Т. Морган, Бриджиз (С. В. Bridges), Меллер (Н. J. Muller), Стертевант (A. H. Sturtevant) и др. создали хромосомную теорию наследственности (см.) и экспериментально доказали, что основными носителями генов являются хромосомы и что гены располагаются в хромосоме в линейном порядке (см. Хромосомы).

Создание хромосомной теории сделало центральной теорией Г. материалистическую концепцию гена. Руководствуясь этой теорией, генетики в 30-50-е гг. 20 в. получили возможность осуществить исследования, результаты которых имели огромное принципиальное значение.

В 1926-1929 гг. С. С. Четвериков с сотр. первым провел экспериментальный генетический анализ популяций дрозофилы, чем заложил основы современного направления в популяционной и эволюционной Г. Большой вклад в развитие популяционной генетики (см.) сделали амёр. ученый Райт (S. Wright) и англ. ученые Фишер (R. Fisher, 1890-1962) и Холдейн (J. В. S. Haldane, 1892-1964), заложившие в 20-30-х гг. основы генетико-математического метода и генетической теории отбора. Для развития экспериментальной Г. популяций много сделали советские ученые Н. П. Дубинин, Д. Д. Ромашов и Н. В. Тимофеев-Ресовский.

В разработку генетических основ селекции крупный вклад внесли советские генетики М. Ф. Иванов, А. С. Серебровский, Б. И. Васин, П. И. Кулешов и др.

В 1929-1934 гг. Н. П. Дубинин, А. С. Серебровский и др. впервые выдвинули и экспериментально подтвердили идею о дробимости гена, согласно к-рой ген представляет собой сложную систему со своей особой внутренней организацией и с ложностью функций. В 1943 г. опытами по определению эффекта положения генов у дрозофилы Н. П. Дубинин и Б. Н. Сидоров исчерпывающе доказали, что нормальный доминантный ген в результате изменения генного окружения в хромосоме теряет такое важное свойство, как доминантность (см.). Открытое явление свидетельствовало о том, что действие гена находится в связи с его положением в хромосоме.

В 1925 г. Г. А. Надсон и Г. С. Филиппов на дрожжах и в 1927 г. Меллер на дрозофиле получили наследственные изменения (мутации) под влиянием рентгеновских лучей. Почти одновременно с Меллером радиационные мутации у растений получил Стадлер (L. J. Stadler). Т. о., впервые экспериментальна была доказана изменчивость генов под влиянием факторов окружающей среды.

Открытие мутагенеза под влиянием хим. веществ было по своему значению равно открытию мутационного действия радиационного облучения. Было установлено, что многие хим. вещества резко повышают частоту мутаций по сравнению со спонтанным фоном. И. А. Раппопорт открыл мощное мутагенное действие этиленимина (1946), к-рое впоследствии было широко использовано для создания высокопродуктивных штаммов продуцентов антибиотиков (С. И. Алиханян, С. Ю. Гольдинг и др., 1967).

В 1941 г. Бидл (G. W. Beadle) и Тейтем (E. L. Tatum) в США получили биохим, мутации у нейроспоры, что положило начало изучению механизмов генетического контроля метаболизма клетки.

Принципиальным этапом в развитии направления, ставшего в дальнейшем центральным при создании молекулярной генетики (см.), явилась речь Н. К. Кольцова «Физикохимические основы биологии», к-рую он произнес на III Всероссийском съезде анатомов, зоологов и гистологов в 1927 г. Н. К. Кольцов высказал и развил взгляд, который позже был положен в основу всей молекулярной биологии, а именно, что сущность явлений наследственности надо искать в молекулярных структурах тех веществ в клетке, которые являются носителями этих свойств. Он развил матричную теорию ауторепродукции хромосом, считая, что исходная хромосома является матрицей (шаблоном) для; дочерней хромосомы. Конкретные мeханизмы размножения наследственных молекул оказались иными, однако идейные принципы современных представлений о репродукции молекул были созданы Н. К. Кольцовым.

Крупный вклад в генетику был внесен в 1920-1940 гг. Н. И. Вавиловым. В предложенном им законе рядов гомологичной изменчивости и центров генофонда показано эволюционное происхождение направленности мутаций у родственных форм. Все это позволило Н. И. Вавилову (1936) обосновать такой подход к проблемам вида, который позволял представить вид как сложную систему в определенных условиях окружающей среды. Н. И. Вавилов творчески обосновал учение о генетических основах селекции (см. Искусственный отбор).

В области мед. Г. наша страна уже в 30-е гг. 20 в. заняла ведущее положение в мире. В особенности это проявилось в области Г. нервных болезней, изучение которых прободалось под руководством С. Н. Давиденкова. Им были обнаружены признаки, связанные с неполным проявлением генов и их гетерозиготностью при различных нервных болезнях. Давиденков описал большое число наследственных факторов, коррелятивно влияющих на нервную систему. Он охарактеризовал и классифицировал более ста заболеваний ц. н. с. и сделал первую попытку обобщить и представить данные об эволюции генофонда человечества.

Т. о., к 40-м гг. 20 в. Г. как наука достигла значительных успехов, а советская Г. заняла ведущее место в мировой науке о наследственности и изменчивости. Однако по-прежнему было принято считать, что материальной основой гена является белок. В 1944 г. Эйвери (О. Т. Avery), Мак-Лауд (G. М. MacLeod) и Мак-Карти (М. McCarty) доказали, что веществом, ответственным за передачу наследственных признаков у Diplococcus pneumoniae, является дезоксирибонуклеиновая к-та (ДНК). Это явилось стимулом для изучения хим., физ. и генетической сущности ДНК, началом периода молекулярной Г. Вслед за открытием трансформации (см.) большую роль в развитии Г. сыграло открытие полового процесса у бактерий - конъюгации (см. Конъюгация у бактерий) и способности фагов переносить генетический материал от одних бактерий к другим - так наз. трансдукции (см.). Именно с этого времени генетики начинают работать на организмах, обладающих относительной генетической простотой, т. е. на бактериях и на бактериальных вирусах.

Исключительным событием в Г. явилась расшифровка структуры молекулы ДНК Дж. Уотсоном и Ф. Криком (1953). Это открытие сделало возможным раскрытие тайны генетического кода (см.). Благодаря расшифровке генетического кода оказался разгаданным механизм последовательного соединения остатков аминокислот в строящихся молекулах полипептидов и белков. За этим последовали другие открытия: синтез генома фага X174 (А. Корнберг с соавт., 1967), выделение из E. coli lac-оперона [Шапиро (J.Shapiro) с соавт., 1969], выделение гена, управляющего синтезом рибосомальной РНК [Колли (Colli), Ойши (Oishi) и соавт., 1970; Спадари (Spadari) и соавт., 1971], выделение гена, контролирующего синтез тирозиновой транспортной РНК [Маркс (Marks) и соавт., 1971], выделение генов II области фага Т4 [Голдберг (I. Н. Goldberg, 1969], химический синтез гена аланиновой транспортной РНК дрожжей, состоящего из 77 нуклеотидов (X. Корана и др., 1968).

Следующим этапом развития молекулярной Г. было создание концепции о передаче генетической информации. Эта концепция получила название «центральной догмы молекулярной биологии». Ее содержание сводилось к тому, что передача генетической информации идет лишь в одном направлении: ДНК-> иРНК-> белок. Между тем исследованиями Темина (H. Temin, 1970) и Балтимора (D. Baltimore, 1970) было установлено, что опухолевые РНК-содержащие вирусы обладают ферментом, под влиянием к-рого вирусная РНК становится матрицей для синтеза ДНК, т. е. осуществляется обратная передача генетической информации (обратная транскрипция) с молекул РНК на ДНК. Этот фермент получил название «обратная транскриптаза». Открытие этого явления имеет глубокое методологическое значение, т. к. свидетельствует о том, что хотя генетический код зашифрован в молекулах ДНК или РНК, но сущность наследственности этим не ограничивается, а заключается во взаимодействии белков и нуклеиновых к-т. Это подтверждается и тем, что все генетические процессы, связанные с ДНК, требуют для своего осуществления наличия ферментов, т. е. белков. В частности, такие процессы, как репликация, рекомбинация, мутация, репарация поврежденной хим. и физ. факторами молекулы ДНК, требуют участия соответствующих ферментов, т. е. сущность наследственности заключается во взаимодействии ДНК, РНК и белка в клетке.

Наряду с изучением хромосомных факторов наследственности большое теоретическое значение имеет выяснение роли так наз. внехромосомных факторов наследственности у бактерий - эписом. К эписомам относятся умеренные бактериофаги, половые факторы, факторы множественной резистентности к лекарственным веществам и бактериоциногенные факторы (см. Эписомы). Для мед. генетиков проблема эписом представляет собой интерес, т. к. получены экспериментальные данные, свидетельствующие о том, что гены, определяющие вирулентность бактерий, имеют не только хромосомную природу, но часто входят и в состав эписом. Достаточно отметить, что патогенные свойства некоторых бактерий, как, напр., возбудителя дифтерии, ботулизма, а также патогенных стафилококков и стрептококков, связаны с лизогенизацией их бактериофагами, имеющими в составе ДНК гены, детерминирующие синтез токсических продуктов. Выделение таких лизогенных бактерий из смеси с профагами приводило к возникновению авирулентных культур.

Т. о., историю развития Г. можно разделить на три этапа. Первый этап - период классической генетики (1900-1930), обусловленный созданием теории дискретной наследственности (менделизм). Второй этап (1930-1953) характеризуется углублением принципов классической Г., но вместе с тем и пересмотром ряда ее положений. В это время были открыты возможности искусственного получения мутаций, обнаружено и доказано сложное строение гена, установлено, что именно ДНК, а не белок, является материальным носителем наследственности (см.).

Третьим этапом развития Г. можно считать период ее развития с 1953 г., когда практически полностью была выявлена генетическая роль молекул ДНК и раскрыта ее структура. Дальнейшие исследования в этой области, а особенно в области ДНК-зависимого синтеза белка, неразрывно связали Г. с биохимией.

Начиная с 1953 г. особенно интенсивно идет проникновение Г. в смежные науки, в частности особое значение приобретает биохимическая генетика (см.) и медицинская генетика (см.).

Последовательное применение принципа «один ген - один фермент» (т. е. один ген ответственен за синтез одного фермента) дало возможность выяснить механизм возникновения ряда наследственных дефектов обмена у человека и установить, нарушение синтеза какого именно фермента или вещества вызывает такие болезни человека, как фенил кетонурия, алкаптонурия, тирозиноз, альбинизм, гемофилия, различные формы наследственного кретинизма, серповидноклеточной анемии и других гемоглобинопатий и т. д.

В этот же период развивается учение о хромосомных болезнях человека. В 1956 г. впервые удалось определить истинное диплоидное число хромосом человека (46), а уже в 1959 г. установить, что при болезни Дауна во всех клетках тела человека обнаруживается лишняя 21-я хромосома, в результате чего был сделан вывод, что это заболевание вызвано нерасхождением пар хромосом 21 при образовании гамет (обычно яйцеклетки) .

Почти одновременно было установлено, что три формы врожденных аномалий пола (синдром Клайнфелтера, синдром Шерешевского-Тернера и аномалия, ведущая к умственной отсталости и бесплодию) вызваны нарушением набора половых хромосом. Выяснилось, что все эти три формы возникают в результате нерасхождения половых хромосом при образовании гаметы. Наряду с этими типичными хромосомными болезнями описано более 200 различных синдромов, вызываемых более сложными типами нерасхождения хромосом.

Открытие роли хромосом в возникновении многих врожденных аномалий и наследственных заболеваний привело к бурному развитию цитогенетики (см.) и ее прочной связи с медициной.

Цитогенетика стремительно проникает в онкологию. Выяснено значение хромосомных аномалий соматических клеток и соматического отбора в развитии злокачественных опухолей. Установлено, что опухолевые клетки имеют, как правило, аномальные хромосомные комплексы и что в ходе канцерогенеза происходит интенсивная конкуренция между клетками разного кариотипа и генотипа (см. Генетика соматических клеток).

Выявление большого числа наследственных болезней эндокринной системы, являющихся следствием аномального набора половых хромосом, привело к тесному контакту между Г. и эндокринологией.

Отмечается все большее проникновение Г. в иммунологию и особенно в радиобиологию. Получены экспериментальные данные, позволяющие сделать вывод о том, что в основе лучевой болезни лежит повреждение наследственных элементов значительной части клеток организма.

Стремительное развитие Г. в 60-е гг. 20 в. не могло не оказать влияния на ряд смежных с нею дисциплин. Было продемонстрировано интенсивное действие естественного отбора в отношении генных мутаций, некоторых типов хромосомных перестроек. Все это привело к созданию эволюционной Г. (см. Эволюционное учение), изучающей распространение и закрепление ряда мутаций в ходе естественного отбора и при видообразовании. Именно методами эволюционной Г. (в опытах с микроорганизмами и насекомыми) было показано, что наследственное приспособление к окружающей среде совершается не в результате адекватного изменения наследственных свойств индивидуального организма под воздействием внешнего фактора, а в результате направленного отбора наследственных изменений, возникающих независимо от того фактора среды, к к-рому идет приспособление.

Интенсивно развивается учение о сбалансированном наследственном полиморфизме человека, заключающемся в существовании в популяциях человека не менее двух аллелей одного и того же гена, причем оба аллеля (а иногда и многие аллели) встречаются с частотой, исключающей распространение менее частого аллеля без участия интенсивного отбора. Так, помимо 15 систем антигенов эритроцитов (групп крови А, В, 0, NH, резус и т. д.), открывается большое число групп лейкоцитов и тромбоцитов, белков плазмы, различных ферментов, наследственных систем выделения и обмена и т. п. Обнаружение резких наследственных различий в реакции на некоторые медикаменты уже привело к бурному развитию совершенно новой области мед. Г.- фармакогенетики (см.). Накапливается все большее количество данных о том, что эта наследственная биохим, разнородность человечества в пределах его нормы возникает под влиянием отбора, причем в большинстве случаев отбирающим фактором явились микробные инфекции. Это подтвердилось различием наследственных вариантов гемоглобина, повышенной восприимчивостью людей с группой крови А к оспе и т. д.

Таким образом, генетика изучает и анализирует основные биол, процессы на молекулярном уровне (биосинтез, аутосинтез ДНК и гена), клеточном (физиол. Г., цитогенетика), индивидуальном (Г. индивидуальных различий, физиология размножения) и популяционном (Г. популяций), раскрывает механизмы индивидуального и филогенетического развития.

Г. устанавливает связи с цитологией, селекцией, эволюционным учением, систематикой, экспериментальной эмбриологией, биохимией, биофизикой, кибернетикой, медициной, микробиологией, иммунологией, радиобиологией. Каждую из этих наук Г. обогащает своими методами и достижениями, становясь их неотъемлемой частью, и в то же время сама обогащается данными и методами этих дисциплин. Именно это делает Г. важнейшим орудием познания сущности жизни. Раскрыв многие тайны природы, Г. сделала тем самым неоценимый вклад в развитие материалистического естествознания.

Перед Г. стоят важные задачи, вытекающие из уже установленных общих закономерностей наследственности и изменчивости. К ним прежде всего относится изучение механизма изменения гена, репродукции генов и хромосом, действие генов и контролирование ими элементарных реакций и образования сложных признаков и свойств организма в целом, взаимосвязь процессов наследственной изменчивости и отбора в развитии органической природы. Кроме того, перед Г. стоят и более близкие задачи, разрешение которых необходимо для практики, особенно для клин, медицины.

Генетика и практика

Г. как наука, стоящая на переднем крае научно-технической революции, опираясь на открытые ею законы, вносит существенный вклад во многие отрасли человеческой деятельности. Благодаря успехам Г. заложены основы микробиол, промышленности, значение к-рой все возрастает. Производство антибиотиков, аминокислот и других веществ базируется на использовании радиационных и хим. мутантов бактерий, вирусов и др.

Успехи Г. растений способствовали резкому увеличению продуктивности всех основных с.-х. культур: пшеницы, подсолнечника, кукурузы, сахарной свеклы и др. В целом работа генетиков и селекционеров позволила серьезно улучшить производство пищевых ресурсов на всей планете.

Особенно важное значение имеет Г. для решения многих мед. проблем, особенно в борьбе с инфекционными и наследственными болезнями. Только благодаря успехам Г. микроорганизмов получены продуценты антибиотиков, эффективность синтеза которых в сотни и тысячи раз больше, чем у диких штаммов этих микробов.

Особое значение для мед. практики имело обнаружение японскими исследователями Ватанабе (Т. Watanabe, 1959) и Акиба (Т. Akiba, 1959) у бактерий факторов множественной резистентности (R-факто-ров) к лекарственным веществам.

Для наследственных болезней в зависимости от того, где локализован измененный ген (аутосома или половая хромосома) и каково его взаимоотношение с нормальным аллелем (доминантная или рецессивная мутация), характерны три основных типа наследования: аутосомно-доминантный, аутосомно-рецессивный и сцепленный с полом, или ограниченный полом (см. Наследование). При заболеваниях, наследуемых по аутосомно-доминантному типу, больные мальчики и девочки рождаются с одинаковой частотой, т. к. мутационный ген проявляется уже в гетерозиготном состоянии. При заболеваниях, наследуемых по аутосомно-рецессивному типу, мутационный ген проявляется лишь в гомозиготном состоянии. При болезнях, передача которых ограничена полом (Х-хромосомный тип), действия мутационного гена проявляются только у мужчин, т. е. у гетерогаметного пола (гемофилия А, цветовая слепота и др.).

Дальнейшее углубление представлений о характере наследования различных заболеваний и особенно дальнейшее изучение влияния различных факторов окружающей среды на проявление мутационных генов позволяет яснее наметить пути профилактики, диагностики и лечения наследственных болезней (см.). Большое значение в этом отношении имеет разработка микробиол, и других экспресс-методов выявления наследственных болезней обмена. Установление этиол, фактора болезни открывает пути лечения: исключение (или ограничение) из числа продуктов питания тех соединений, метаболизм которых в организме нарушен из-за блокирования какого-либо фермента; заместительная терапия этим ферментом. В профилактике наследственных болезней огромная роль отводится системе медико-генетических консультаций (см.), значение которых все возрастает, особенно в ходе разработки методов определения гетерозиготного носительства и установления природы распространения и частоты генных и хромосомных наследственных болезней. Своевременное установление наследственной природы заболевания и типа наследования позволяет более успешно разрабатывать методы предупреждения развития болезни, особенно в раннем возрасте, и ее лечения.

Особый интерес и значение для медицины представляет быстро развивающаяся область генетики, получившая название генной инженерии (см. Генная инженерия , Генотерапия), суть к-рой заключается во введении в геном генетического материала, изменяющего наследственные свойства организма. Для осуществления генной инженерии необходимы, с одной стороны, селекция и выделение генов и, с другой - введение этих генов в геномы клеток выбранных организмов.

Большое внимание уделяется изучению механизма репарации повреждений клеточного генома. Исследования, вначале проведенные на микроорганизмах, показали, что бактериальные клетки обладают специальными системами, которые восстанавливают повреждения генетического материала (ДНК), полученные при действии ряда хим. и физ. агентов, и обеспечивают относительную устойчивость клеток к действию этих агентов. Репарация повреждения ДНК осуществляется при участии ряда ферментов, детерминируемых определенными генами (см. Репарация генетических повреждений). Репарирующие системы, впервые открытые у бактерий, присущи также и клеткам человека и животных. Напр., клетки Xeroderma pigmentosum (наследственная болезнь человека, приводящая к раку кожи) гораздо чувствительнее к УФ-облучению, чем нормальные клетки, т. к. они не могут восстанавливать участки ДНК, поврежденные ультрафиолетовыми лучами, из-за отсутствия соответствующих ферментных систем. В то же время клетки рака глаз крупного рогатого скота способны к репарации поврежденной ДНК, т. к. они содержат необходимые для этого ферменты.

Наличие систем, контролирующих репарацию ДНК, имеет общебиол. значение. Если бы механизм ликвидации нарушения структур ДНК отсутствовал, то организм оказался бы совершенно беззащитным, а химиотерапия и лекарственная терапия были бы невозможными. Интенсивно ведущиеся исследования по изучению механизма образования ферментов репарирующих систем являются весьма перспективными.

Современная Г., несмотря на уже достигнутые значительные успехи в изучении молекулярных основ наследственности, продолжает развиваться на молекулярном, субмолекулярном, клеточном, тканевом, организменном и популяционном уровнях и стала ключевой наукой современной биологии, тесно связанной в практическом отношении с сельским хозяйством, медициной, космической биологией, учением о биосфере, теорией эволюции, антропологией и общим учением о человеке.

Развитие Г. определяется ее диалектическим взаимодействием с физикой, химией, математикой и цитологией. Г. подходит к пониманию наследственности, руководствуясь принципами интеграции, целостности ее организации, и именно это приближает ее к познанию сущности жизни, дает качественно новые методы для управления ею, что позволило назвать этот этап развития Г. синтетическим. В целом же Г., как и другие науки, в 60-70-е гг. 20 в. переходит от стихийного обнаружения диалектики в основных законах жизни к сознательному использованию материалистической диалектики.

Основные центры генетических исследований и органы печати

В СССР главными центрами исследований по Г. являются: Ин-т общей генетики АН СССР, Ин-т биологии развития АН СССР, Ин-т молекулярной биологии АН СССР, Радиобиологический отдел Ин-та атомной энергии АН СССР, Ин-т мед. генетики АМН СССР, Ордена Трудового Красного Знамени Ин-т эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи АМН СССР, Ин-т вирусологии имени Д. И. Ивановского АМН СССР. Исследования в области мед. Г. ведутся во многих клин, ин-тах АМН СССР и М3 СССР и союзных республик, в Ин-те цитологии и генетики Сибирского отделения АН СССР (Новосибирск), Ин-те генетики и цитологии АН БССР (Минск), Ин-те цитологии АН СССР (Ленинград), Ин-те генетики и селекции промышленных микроорганизмов Главмикробиопрома (Москва), Секторе молекулярной биологии и генетики АН УССР (Киев), а также на соответствующих кафедрах МГУ, ЛГУ и других ун-тов и медвузов страны.

В 1965 г. организовано Всесоюзное об-во генетиков и селекционеров им. Н. И. Вавилова с отделениями на местах. Г. преподают во всех ун-тах, мед. и с.-х. вузах СССР.

Генетические исследования интенсивно ведутся в других социалистических странах. Г. развита в Великобритании, Индии, Италии, США, Франции, ФРГ, Швейцарии, Швеции, Японии и др. Каждые 5 лет собираются международные конгрессы по Г.

Основными печатными органами, систематически публикующими статьи по Г., являются: журнал «Генетика» АН СССР, журнал «Цитология и генетика» АН УССР. Статьи по Г. печатают также многие биол, и мед. журналы, напр. «Цитология», «Радиобиология», «Молекулярная биология».

За рубежом статьи по Г. печатаются в «Annual Review of Genetics»* «Theoretical and Applied Genetics», «Biochemical Genetics», «Molecular and General Genetics», «Heredity»> «Mutation Research», «Genetics», «Hereditas», «Journal of Heredity», «Canadian Journal of Genetics and Cytology», «Japanese Journal of Genetics», «Genetica Polonica», «Indian Journal of Genetics and Plant Breeding».

Библиография: Вавилов H. И. Избранные сочинения, Генетика и селекция, М., 1966, библиогр.; Дубинины. П. Горизонты генетики, М., 1970, библиогр.; он же, Общая генетика, М., 1976, библиогр.; Дубинины. П. и Глем-боцкий Я. Л. Генетика популяций и селекция, М., 1967, библиогр*; История биологии с начала 20-го века до наших дней, под ред. Л.Я.Бляхера, М., 1975, библиогр.; Классики советской генетики 1920-1940, под ред. П. М. Жуковского, Л., 1968; Л о-б а ш e в М. Е. Генетика, Л., 1967, библиогр.; Медведевы. Н. Практическая генетика, М., 1968, библиогр.; Мендель Г. Опыты над растительными гибридами, М., 1965, библиогр.; Морган Т. Избранные работы по генетике, пер. с англ., М.-Л., 1937, библиогр.; P иг ер Р. и Михаэлис А. Генетический и цитогенетический словарь, пер. с нем., М., 1967, библиогр.; Сэджер Р. и Райн Ф. Цитологические и химические основы наследственности, пер. с англ., М., 1964.

Периодические издания - Генетика, М., с 1965; Успехи современной генетики, М., с 1967; Цитология и генетика, Киев, с 1967; Annual Review of Genetics, Palo Alto, с 1967; Biochemical Genetics, N. Y., с 1967; Genetics, Brooklyn - N.Y., с 1916; Hereditas, Lund, с 1920; Journal of Heredity, Washington, с 1910; Molecular and General Genetics, В., с 1908; Mutation Research, Amsterdam, с 1964; Theoretical and Applied Genetisa, В., с 1929.

H. П. Дубинин, И. И. Олейник.

Генетика наука о наследственности и изменчивости живых организ мов. Все живые организмы (системы) независимо от уровня организации обладают двумя альтернативными свойствами: наследственностью и изменчивостью. Наследственность проявляется в том, что любая особь, популяция или вид в целом стремятся сохранить в ряду поколений присущие им признаки и свойства. Эта способность живых организмов рождать себе подобных лежит в основе поддержания определенной консервативности вида. Однако генетическая стабильность живых систем при резком и значительном изменении среды обитания, вызвавшем дисбаланс процессов адаптации, может привести к их гибели, т. е. исчезновению. В таких условиях сохранность живых систем обеспечивается их способностью утрачивать старые признаки и приобретать новые, т. е. изменчивостью . Множественные варианты наследственных изменений служат материалом для естественного отбора наиболее приспособленных и устойчивых жизненных форм.

Рождение генетики, как науки, обычно связывают с именем Г. Менделя, который во второй половине 19 в. получил первые доказательства материальной природы наследственности. Однако официально наука возникла в 1900 г., когда Г. Де Фриз, К. Корренс и Э. Чермак, независимо друг от друга вторично открыли, законы Г. Менделя. А сам термин «генетика» был предложен в 1909 г. В. Бэтсоном.

В генетике можно выделить два существенно важных раздела: классическую генетику и современную . В развитии классической генетики выделяют ряд этапов:

1 – открытие основных законов наследственности, создание теории мутаций и формирование первых представлений о гене (1900-1910 гг.);

2 – создание хромосомной теории наследственности (1910-1920 гг.);

3 – открытие индуцированного мутагенеза, получение доказательств сложного строения гена, рождение генетики популяций (1920-1940 гг.);

4 – рождение генетики микроорганизмов , установление генетической роли ДНК, решение ряда проблем генетики человека (1940-1953 гг.).

Период развития современной генетики начался с момента расшифровки Дж. Уотсоном и Ф. Криком структуры ДНК в 1953 году.

Классическая генетика вначале представляла собой раздел общей биологии, которая за единицу жизни принимала особь и основные закономерности наследования признаков и изменчивости изучала на уровне организма. По мере интеграции генетики с такими разделами естествознания, как цитология, эмбриология, биохимия, физика, возникали новые направления в науке, а объектами исследования становились клетки животных и растений, бактерии, вирусы, молекулы.

Современная генетика – это комплексная наука, которая включает ряд отдельных дисциплин: генетика животных, генетика растений, биохимическая генетика, радиационная генетика, эволюционная генетика и др.



Общая генетика изучает организацию наследственного материала и общие закономерности наследственности и изменчивости, характерные для всех уровней организации живого.

Молекулярная генетика изучает структуру нуклеиновых кислот, белков и ферментов, первичные дефекты генов и их аномальные продукты; развивает методы картирования хромосом; решает проблемы генной инженерии.

Цитогенетика исследует кариотип человека в условиях нормы и патологии.

Генетика соматических клеток проводит картирование генома человека, используя гибридизацию клеток и нуклеиновых кислот.

Иммуногенетика изучает закономерности наследования антигенной специфичности и генетическую обусловленность иммунных реакций.

Фармакогенетика исследует генетические основы метаболизма лекарственных препаратов в организме человека и механизмы наследственно обусловленной индивидуальной реакции на введение лекарств.

Генетика человека изучает явления наследственности и изменчивости в популяциях человека, особенности наследования признаков в норме и изменения их под действием условий окружающей среды.

Популяционная генетика – определяет частоты генов и генотипов в больших и малых популяциях людей и изучает их изменения под воздействием мутаций, дрейфа генов, миграций, отбора.

Генетика, как составная часть биологии решает ряд задач:

1. Изучение закономерностей наследственности и изменчивости, разработка методов их практического использования.

2. Изучение способов хранения и материальных носителей информации у разных организмов (вирусов, бактерий, грибов, растений, животных и человека).



3. Анализ механизмов и закономерностей передачи наследственной информации от одного поколения клеток и организмов к другому.

4. Выявление механизмов и закономерностей реализации наследственной информации в конкретные признаки и свойства организма в процессе онтогенеза.

5. Изучение причин и механизмов изменения генетической информации на разных этапах развития организма под влиянием факторов внешней среды.

6. Выбор оптимальной системы скрещивания в селекционной работе и наиболее эффективного метода отбора, управления развитием наследственных признаков, использование мутагенеза в селекции.

7. Разработка мероприятий по защите наследственности человека от мутагенного действия факторов окружающей среды.

8. Разрабатывать способы исправления поврежденной генетической информации.

Для решения вышеозначенных задач разработаны методы, позволяющие проводить исследования на разных уровнях организации.

Гибридологический метод : позволяет получить разностороннюю количественную характеристику закономерностей наследования, особенностей взаимодействия генов, механизмов и закономерностей наследственной и ненаследственной изменчивости.

Цитологические методы: изучают на клеточном уровне зависимость проявления признаков от поведения хромосом, изменчивости – от состояния хромосомного аппарата и другие аналогичные проблемы.

Биохимические методы : позволяют определить локализацию генов, контролирующих синтез специфических белков, выяснить механизмы регуляции активности генов и реализации наследственной информации на молекулярном уровне.

Популяционно-статистический метод : изучает механизмы наследственности и изменчивости на уровне сообществ и групп особей, генетическую структуру популяций и характер распределения в них генных частот, определяет факторы, влияющие на эти процессы.

Клинико-генеалогический метод : на основе родословных изучает передачу конкретного признака в ряду поколений.

Близнецовый метод : определяет роль генотипа и среды в проявлении признака.

Цитологический метод : исследует кариотип.

Методы генетики соматических клеток : изучают вопросы генетики человека в эксперименте.

Методы моделирования : изучают некоторые вопросы генетики, в частности генетики человека, с использованием мутантных линий животных, имеющих сходные нарушения, или математических моделей.

Экспресс-методы изучения генетики человека : микробиологический ингибиторный тест Гатри; биохимические и микробиологические методы; выявление Х- и У-хроматина; дерматоглифический метод.

Методы пренатальной диагностики наследственных болезней : определение альфа-фетопротеина (АФП); ультрасонографии (эхографии); хорионбиопсии; амниоцентеза; фетоскопии.

Значение генетики:

1. Знание генетических механизмов и закономерностей формирования физической и психической сферы ребенка, правильная оценка роли наследственности и внешних факторов, в том числе воспитания, в процессе становления его характера необходимы специалистам педагогического профиля.

2. Достижения генетики используются в изучении проблем иммунитета и трансплантации органов и тканей, в онкологии, при гигиенической оценке окружающей среды, определении устойчивости микроорганизмов к лекарственным препаратам, для получения гормонов, ферментов, лекарств, лечения наследственных болезней и т. д.

3. Знание генетики необходимо врачу любой специальности и биологам всех профилей для понимания сущности жизни, механизмов индивидуального развития и его нарушений, природы любого заболевания, рационального подхода к диагностике, лечению и профилактике болезней.

4. Использование законов наследственности и изменчивости лежит в основе создания новых высокопродуктивных пород домашних животных и сортов растений.

5. Знание генетики необходимо для селекции микроорганизмов, продуцирующих антибиотики.

6. Применение генной инженерии позволяет получать нужные человеку биологически активные вещества путем биологического синтеза в промышленных условиях (антибиотики, инсулин, интерферон и др.).

Основные понятия генетики.

Аллели различные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом, определяющие варианты развития одного и того же признака; в нормально диплоидной клетке одновременно может быть не более двух аллелей.

Аллельные гены гены, располагающиеся в одинаковых локусах гомологичных хромосом и определяют развитие альтернативных признаков.

Альтернативные признаки взаимоисключающие, контрастные признаки (желтая и зеленая окраска семян гороха, карий и голубой цвет глаз у человека).

Ген структурная единица наследственной информации: функционально неделимая единица генетического материала. Ген это участок ДНК (у некоторых вирусов РНК), кодирующий первичную структуру полипептида, молекулы т-РНК и р-РНК, или взаимодействующий с регуляторным белком. Различают структурные гены , кодирующие синтезируемые в клетке пептиды, определяющие строение р-РНК, т-РНК и функциональные гены , служащие местами специфического присоединения определенных ферментов, участвующих в репликации, транскрипции и регуляции активности генов.

Генотип генетическая (наследственная) конституция организма, совокупность всех наследственных задатков данной клетки или организма, включая аллели генов, характер их физического сцепления в хромосомах и наличие хромосомных перестроек.

Гетерозигота организм (клетка), у которого гомологичные хромосомы несут различные аллели того или иного гена; продуцирует два типа гамет.

Гомозигота организм (клетка), у которого гомологичные хромосомы несут одинаковые алели одного и того же гена; продуцирует один тип гамет.

Доминантный ген – ген, подавляющий действие другого гена; фенотипически проявляется как в гомозиготном, так и в гетерозиготном состоянии.

Изменчивость свойство, противоположное наследственности; способность дочерних организмов отличаться от родителей морфологическими, физиологическими, биохимическими отклонениями и особенностями в индивидуальном развитии.

Наследование передача генетической информации от родителей к потомкам через половые (при половом размножении), или соматические (при бесполом размножении) клетки.

Наследственность свойство живых организмов передавать из поколения в поколение морфологические, физиологические, биохимические и другие признаки и особенности индивидуального развития в определенных условиях среды.

Неаллельные гены гены, определяющие развитие неальтернативных (разных) признаков; располагаются в негомологичных хромосомах.

Рецессивный ген ген, подавляемый другим аллельным геном; фенотипически проявляется только в гомозиготном состоянии.

Фен отдельный внешний или внутренний признак, формирующийся под действием гена и факторов среды.

Фенотип – совокупность всех (внешних и внутренних) признаков и свойств организма, формирующихся в процессе взаимодействия генотипа и внешней по отношению к нему среды; в генотипе никогда не реализуются все генетические возможности, т. е. фенотип каждой особи есть лишь частный случай проявления ее генотипа в определенных условиях развития.