Но не для множества различных. Понятие множества

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, ... Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий "наиболее известных", "самых красивых", "лучших" варьируется от человека к человеку.

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами ;
  • элементы набора представлены маленькими буквами a, b, c.

Если «a» - элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если "b" - элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 - записывается как {меньше 7};
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок {} и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = {a, e, i, o, u, y} → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = {1, 3, 5, 7} → форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = {M, A, T, H, E, I, C, S} → Форма реестра
  5. W - это набор последних четырех месяцев года. Следовательно, W = {сентябрь, октябрь, ноябрь, декабрь} → реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P - множество счетных чисел, большее 12. P в форме set-builder написано, как - {счетное число и больше 12}. Это будет читаться определенным образом. То есть, «P - множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание {}. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть <0. Следовательно, это пустое множество.
  3. Набор, содержащий только одну переменную, называется одноэлементным множеством. Не является ни простым, ни составным.

Конечное множество

Множество, содержащее определенное число элементов, называется конечным либо бесконечным множеством. Пустое относится к первому. Например, набор всех цветов в радуге.

Бесконечное количество - это набор. Элементы в нем не могут быть перечислены. То есть, содержащий подобные переменные, называется бесконечным множеством. Примеры:

  • мощность множества всех точек в плоскости;
  • набор всех простых чисел.

Но стоит понимать, что все мощности объединения множества не могут быть выражены в форме списка. К примеру, вещественные числа, так как их элементы не соответствуют какой-либо конкретной схеме.

Кардинальный номер набора - это число различных элементов в заданном количестве A. Оно обозначается n (A).

Например:

  1. A {x: x ∈ N, x <5}. A = {1, 2, 3, 4}. Следовательно, n (A) = 4.
  2. B = набор букв в слове ALGEBRA.

Эквивалентные наборы для сравнения множеств

Две мощности множества A и B являются таковыми, если их кардинальное число одинаково. Символом для обозначения эквивалентного набора является «↔». Например: A ↔ B.

Равные наборы: две мощности множества A и B, если они содержат одни и те же элементы. Каждый коэффициент из A является переменной из B, и каждый из B является указанным значением A. Следовательно, A = B. Различные типы объединения множеств в мощности и их определения объясняются с помощью указанных примеров.

Сущность конечности и бесконечности

Каковы различия между мощностью конечного множества и бесконечного?

Для первого значения характерно следующее название, если оно либо пустое, либо имеет конечное число элементов. В конечном множестве переменная может быть указана, если она имеет ограниченный счет. Например, с помощью натурального числа 1, 2, 3. И процесс листинга заканчивается на некотором N. Число различных элементов, отсчитываемых в конечном множестве S, обозначается через n (S). А также называется порядком или кардинальным. Символически обозначается по стандартному принципу. Таким образом, если множество S является русским алфавитом, то оно содержит в себе 33 элемента. Также важно запомнить, что элемент не встречается более одного раза в наборе.

Бесконечное количество в множестве

Множество называется бесконечным, если элементы не могут быть перечислены. Если оно имеет неограниченное (то есть несчетное) натуральное число 1, 2, 3, 4 для любого n. Множество, которое не является конечным, называется бесконечным. Теперь можно обсудить примеры рассматриваемых числовых значений. Варианты конечного значения:

  1. Пусть Q = {натуральные числа меньше 25}. Тогда Q - конечное множество и n (P) = 24.
  2. Пусть R = {целые числа между 5 и 45}. Тогда R - конечное множество и n (R) = 38.
  3. Пусть S = {числа, модуль которых равен 9}. Тогда S = {-9, 9} является конечным множеством и n (S) = 2.
  4. Набор всех людей.
  5. Количество всех птиц.

Примеры бесконечного множества:

  • количество существующих точек на плоскости;
  • число всех пунктов в сегменте линии;
  • множество положительных целых чисел, кратных 3, является бесконечным;
  • все целые и натуральные числа.

Таким образом, из приведенных выше рассуждений понятно, как различать конечные и бесконечные множества.

Мощность множества континуум

Если провести сравнение множества и других существующих значений, то к множеству присоединено дополнение. Если ξ - универсальное, а A - подмножество ξ, то дополнение к A является количеством всех элементов ξ, которые не являются элементами A. Символически обозначается дополнение A относительно ξ как A". К примеру, 2, 4, 5, 6 являются единственными элементами ξ, которые не принадлежат A. Следовательно, A"= {2, 4, 5, 6}

Множество с мощностью континуум имеет следующие особенности:

  • дополнением универсального количества является пустое рассматриваемое значение;
  • эта переменная нулевого множества является универсальным;
  • количество и его дополнение являются непересекающимися.

Например:

  1. Пусть количество натуральных чисел является универсальным множеством и А - четное. То, тогда A "{x: x - множество нечетное с такими же цифрами}.
  2. Пусть ξ = множество букв в алфавите. A = набор согласных. Тогда A "= количество гласных.
  3. Дополнением к универсальному множеству является пустое количество. Можно обозначить через ξ. Тогда ξ "= Множество тех элементов, которые не входят в ξ. Пишется и обозначается пустое множество φ. Поэтому ξ = φ. Таким образом, дополнение к универсальному множеству является пустым.

В математике «континуум» иногда используется для обозначения реальной линии. И в более общем плане, для описания подобных объектов:

  • континуум (в теории множеств) - вещественная линия или соответствующее кардинальное число;
  • линейный - любое упорядоченное множество, которое разделяет определенные свойства реальной прямой;
  • континуум (в топологии) - непустое компактное связное метрическое пространство (иногда хаусдорфово);
  • гипотеза о том, что никакие бесконечные множества больше целых чисел, но меньшие, чем действительные числа;
  • мощность континуума - кардинальное число, представляющее размер множества действительных чисел.

По существу дела, континуум (измерение), теории или модели, которые объясняют постепенные переходы из одного состояния в другое без каких-либо резких изменений.

Проблемы объединения и пересечения

Известно, что пересечение двух или более множеств - это количество, содержащее все элементы, которые являются общими в этих значениях. Задачи Word на множествах решаются, чтобы получить основные идеи о том, как использовать свойства объединения и пересечения множеств. Решенные основные проблемы слов на множествах выглядят так:

  1. Пусть A и B - два конечных множества. Они представляют собой такие, что n (A) = 20, n (B) = 28 и n (A ∪ B) = 36, находится n (A ∩ B).

Связь в наборах с использованием диаграммы Венна:

  1. Объединение двух множеств может быть представлено заштрихованной областью, представляющей A ∪ B. A ∪ B, когда A и B - непересекающиеся множества.
  2. Пересечение двух множеств может быть представлено диаграммой Венна. С затененной областью, представляющей A ∩ B.
  3. Разность двух наборов может быть представлена диаграммами Венна. С заштрихованной областью, представляющей A - B.
  4. Связь между тремя наборами, использующими диаграмму Венна. Если ξ представляет универсальное количество, то A, B, C - три подмножества. Здесь все три набора являются перекрывающимися.

Обобщение информации о множестве

Мощность множества определяется как общее количество отдельных элементов в наборе. А последнее указанное значение описывается как количество всех подмножеств. При изучении подобных вопросов требуются методы, способы и варианты решения. Итак, у мощности множества примерами могут служить следующие:

Пусть A = {0,1,2,3}| | = 4, где | A | представляет мощность множества A.

Теперь можно найти свой набор мощности. Это тоже довольно просто. Как уже сказано, набор мощности установлен из всех подмножеств заданного количества. Поэтому нужно в основном определить все переменные, элементы и другие значения A, которые {}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, { 2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}.

Теперь мощность выясняет P = {{}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}}, который имеет 16 элементов. Таким образом, мощность множества A = 16. Очевидно, что это утомительный и громоздкий метод решения этой проблемы. Однако есть простая формула, по которой, непосредственно, можно знать количество элементов в множестве мощности заданного количества. | P | = 2 ^ N, где N - число элементов в некотором A. Эта формула может быть получена применением простой комбинаторики. Таким образом, вопрос равен 2 ^ 11, поскольку число элементов в множестве A равно 11.

Итак, множеством является любое численно выраженное количество, которое может быть всевозможным объектом. К примеру, машины, люди, числа. В математическом значении это понятие шире и более обобщенное. Если на начальных этапах разбираются числа и варианты их решения, то в средних и высших стадиях условия и задачи усложнены. По сути, мощность объединения множества определена принадлежностью объекта к какой-либо группе. То есть один элемент принадлежит к классу, но имеет одну или несколько переменных.

Элемент множества

Мно́жество - один из ключевых объектов математики , в частности, теории множеств . «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие - значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество - это, пожалуй, самое широкое понятие математики и логики).

Теории

Существует два основных подхода к понятию множества - наивная и аксиоматическая теория множеств.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело - Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита , его элементы - маленькими. Если а - элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Упорядоченное множество -- множество, на котором задано отношение порядка .
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x 1 , x 2 , x 3 , … ), а элементы могут повторяться.

По иерархии:

Множество множеств Подмножество Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. - М .: Просвещение, 1968. - 232 с.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Элемент множества" в других словарях:

    элемент множества - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] элемент множества Объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в… …

    Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в этом смысле употребляют «точка множества», «член множества» и др.… …

    МНОЖЕСТВА, в математике совокупность определенных объектов. Эти объекты называются элементами множества. Число элементов может быть бесконечным или конечным, или даже равняться нулю (число элементов в пустом множестве обозначается 0). Каждый… … Научно-технический энциклопедический словарь

    элемент - Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем … Справочник технического переводчика

    Часть чего нибудь. Одна из возможных этимологий этого слова по названию ряда согласных латинских букв L, M, N (el em en). Элемент (философия) Элемент обязательная принадлежность флага, знамени и штандарта. Элемент множества Элементарные… … Википедия

    Элемент - первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы … Экономико-математический словарь

    Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    А; м. [от лат. elementum стихия, первоначальное вещество] 1. Составная часть чего л.; компонент. Разложить целое на элементы. Из каких элементов состоит культура? Природа э. производства. Составные элементы чего л. // Характерное движение, одна… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Элемент. Элемент (лат. elementum стихия) самостоятельная часть, являющаяся основой чего либо, например системы или множества. Этимология Латинское слово elementum использовали ещё … Википедия

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества . Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, - а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей - вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел - буквой $Z$; множество рациональных чисел - буквой $Q$; множество всех действительных чисел - буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством . Если множество содержит бесконечное количество элементов, его называют бесконечным .

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ - конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ - множество простых чисел.

Что такое простое число : показать\скрыть

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел - бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество - пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение - универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными , если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе - $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества . В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным . Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии : показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Если $A\subseteq B$, при этом $A\neq B$ и $A\neq \varnothing$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$. Множества $B$ и $\varnothing$ именуются несобственными подмножествми множества $B$.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии - дело вкуса.

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.
  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта - верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество - это портфель. Пустое множество $\varnothing$ - пустой портфель. Множество $\{\varnothing \}$ - портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть - разные портфели:)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ - ложно.

Ответ : Утверждения в пунктах №1, №2, №4 - истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества - собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ : $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ - это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ - задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых - истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ - задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ - целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ : $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ - является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее - это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 - натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?

Понятие множества относится к аксиоматическим понятиям математики.

Определение . Множество – такой набор, группа, коллекция элементов, которые обладают каким-либо общим для них всех свойством или признаком.

Обозначение: A , B .

Определение . Два множества A и B равны тогда и только тогда, когда они состоят из одних и тех же элементов. A = B .

Запись a ∈ A (a ∉ A) означает, что a является (не является) элементом множества A.

Определение . Множество, не содержащее элементов, называется пустым и обозначается ∅.

Обычно в конкретных случаях элементы всех рассматриваемых множеств берутся из одного, достаточно широкого множества U, которое называется уни- версальным множеством .

Мощность множества обозначается как |M| .
Замечание : для конечных множеств мощность множества – это число элементов.

Определение . Если |A| = |B| , то множества называются равномощными .

Для иллюстрации операций над множествами часто используются диаграммы Эйлера – Венна . Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов, представляющих множества.

Над множествами определены следующие операции:

Объединение А∪В: = {х/х∈А∨х∈В}

Пересечение А∩В: = {х/х∈А&х∈В}

Разность А\В: = {х/х∈А&х∈В}

Дополнение A U \ A: = {x / x U & x ∉ A}

Задача1.1. Дано: а)A,B⊆Z, A = {1;3;4;5;9}, B = {2;4;5;10}. б)A,B⊆R, A = [-3;3), B = (2;10].

Решение.

a) A∩B = {4;5}, A∪B = {1;2;3;4;5;9;10}, A \ B = {1;3;9}, B \ A = {2;10}, B = Z \ B ;

б) A∩B = (2;3), A∪B = [-3;10] , A\B = [-3,2], B\A = ,B Z\B = (-∞,2]∪(10,+∞).


1) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = [-3; 7), B = [-4; 4].

Найти: A∩B, A∪B, A\B, B\A, B .


2) Дано: а) A, B ⊆ Z, A = {3;6;7;10}, B = {2;3;10;12}.

б) A, B ⊆ R, A = .

Найти: A∩B, A∪B, A\B, B\A, B .


3) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = .


4) Дано: а) A, B ⊆ Z, A = {0;4;6;7}, B = {-3;3;7}.

б)A,B ⊆ R, A = [-15;0), B = [-2;1].

Найти: A∩B, A∪B, A\B, B\A, A .


5) Дано: а) A, B ⊆ Z, A = {0;9}, B = {-6;0;3;9}.

б) A, B ⊆ R, A = [-10; 5), B = [-1; 6].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


6) Дано: а)A, B ⊆ Z, A = {0;6;9}, B = {-6;0;3;7}.

б) A, B ⊆ R, A = [-8;3), B = .

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


7) Дано: а)A, B ⊆ Z, A = {-1;0;2;10}, B = {-1;2;9;10}.

б)A, B ⊆ R, A = [-10;9), B = [-5;15].

Найти: A∩B, A∪B, A\B, B\A, B .


8) Дано: а) A,B ⊆ Z, A = {1;2;9;37}, B = {-1;1;9;11;15}.

б) A, B ⊆ R, A = [-8;1), B = [-5;7].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


9) Дано: а) A, B ⊆ Z, A = {-1;0;9;17}, B = {-1;1;9;10;25}.

б) A, B ⊆ R, A = [-4;9), B = [-5;7].

Найти: A∩B, A∪B, A\B, B\A, B .


10) Дано: а)A,B⊆Z, A = {1;7;9;17}, B = {-2;1;9;10;25}.

б) A,B⊆R, A = .

Найти: A ∩ B, A ∪ B, A\B, B\A, A .

Задача1.1. Используя диаграммы Эйлера-Венна доказать тождество:

A\ (B\C) = (A\B) ∪ (A ∩ C).

Решение.

Построим диаграммы Венна.

Левая часть равенства представлена на рисунке а), правая – на рисунке б). Из диаграмм очевидно равенство левой и правой частей данного соотношения.


Задачи для самостоятельного решения

Используя диаграммы Эйлера-Венна доказать тождества:

1) A\(B ∪ C) = (A\B) ∩ (A\C);

2) A ∪ (B\C) = (A ∩ B)\C;

3) A ∪ (B \ C) = (A ∩ B) \ (A ∩ C);

4) (A\B) \C = (A\B) \ (B\C);

5) (A\B) \C = (A\B) ∪ (A∩C);

6) A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

7) (A ∩ B) \ (A ∩ C) = (A ∩ B) \C;

8) A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

9) (A ∪ B) \C = (A\C) ∪ (B\C)

10) A∪ (A ∩ B) = A ∪ B

Задача 1.3. На уроке литературы учитель решил узнать, кто из 40 учеников класса читал книги A, B, C. Результаты опроса оказались таковы: книгу A читали 25 учеников; книгу B читали 22 ученика; книгу C читали 22 ученика; книги A или B читали 33 ученика; книги A или C читали 32 ученика; книги B или C читали 31 ученик; все книги читали 10 учеников. Определите: 1) Сколько учеников прочли только книгу A?

2) Сколько учеников прочли только книгу B?

3) Сколько учеников прочли только книгу C?

4) Сколько учеников прочли только по одной книге?

5) Сколько учеников прочли хотя бы одну книгу?

6) Сколько учеников не прочитали ни одной книги?

Решение.

Пусть U - множество учеников в классе. Тогда

|U| = 40, |A| = 25, |B| = 22, |C| = 22, |A ∪ B| = 33, |A ∪ C| = 32, |B ∪ C| = 31, |A ∩ B ∩ C| = 10

Попробуем проиллюстрировать задачу.

Разобьём множество учеников, прочитавших хотя бы одну книгу, на семь подмножеств k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 , где

k 1 - множество учеников, прочитавших только книгу A;

k 3 - множество учеников, прочитавших только книгу B;

k 7 - множество учеников, прочитавших только книгу C;

k 2 - множество учеников, прочитавших книги A и B и не читавших книгу C;

k 4 - множество учеников, прочитавших книги A и C и не читавших книгу B;

k 6 - множество учеников, прочитавших книги B и C и не читавших книгу A;

k 5 - множество учеников, прочитавших книги A, B и C.

Вычислим мощность каждого из этих подмножеств.

|k 2 | = |A ∩ B|-|A ∩ B ∩ C|; |k 4 | = |A ∩ C|-|A ∩ B ∩ C|;

|k 6 | = |B ∩ C| - |A ∩ B ∩ C|; |k 5 | = |A ∩ B ∩ C|.

Тогда |k 1 | = |A| - |k 2 | - |k 4 | - |k 5 |, |k 3 | = |B| - |k 2 | - |k 6 | - |k 5 |, |k 7 | = |C| - |k 6 | - |k | - |k 5 |.

Найдём |A ∩ B|, |A ∩ C|, |B ∩ C|.

|A ∩ B| = | A| +| B| - |A ∩ B| = 25 + 22 - 33 = 14 ,

|A ∩ C| = |A| + |C| - |A ∩ C| = 25 + 22 - 32 = 15 ,

|B ∩ C| = |B| + |C| - |B ∩ C| = 22 + 22 - 31 = 13 .

Тогда k 1 = 25-4-5-10 = 6; k 3 = 22-4-3-10 = 5; k 7 = 22-5-3-10 = 4;

|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∪ C| .

Из рисунка ясно, что |C| - |(A ∪ B) ∪ C| = |k 7 | = 4, тогда |A ∪ B ∪ C| = 33+4 = 37 – число учеников, прочитавших хотя бы одну книгу.

Так как в классе 40 учеников, то 3 ученика не прочитали ни одной книги.

Ответ:
  1. 6 учеников прочли только книгу A.
  2. 5 учеников прочли только книгу B.
  3. 4 ученика прочли только книгу C.
  4. 15 учеников прочли только по одной книге.
  5. 37 учеников прочли хотя бы одну книгу из A, B, C.
  6. 3 ученика не прочитали ни одной книги.

Задачи для самостоятельного решения

1) В течение недели в кинотеатре шли фильмы A, B, C . Каждый из 40 школьни- ков видел либо все 3 фильма, либо один из трёх. Фильм A видели 13 школьников. Фильм B видели 16 школьников. Фильм C видели 19 школьников. Сколько школьников видели только по одному фильму?

2) В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и английским, 19 – английским и немецким, 15 – русским и немецким, а 10 человек владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

3) В спортивных соревнованиях участвует школьная команда из 20 человек, каждый из которых имеет спортивный разряд по одному или нескольким из трёх видов спорта: лёгкой атлетике, плаванию и гимнастике. Известно, что 12 из них имеют разряды по лёгкой атлетике, 10 – по гимнастике и 5 – по плаванию. Определите количество школьников из этой команды, имеющих разряды по всем видам спорта, если по лёгкой атлетике и плаванию разряды имеют 2 человека, по лёгкой атлетике и гимнастике – 4 человека, по плаванию и гимнастике – 2 человека.

4) Опрос 100 студентов дал следующие результаты о количестве студентов, изучающих различные иностранные языки: испанский – 28; немецкий – 30; французский – 42; испанский и немецкий – 8; испанскии и французский – 10; немецкий и французский – 5; все три языка – 3. Сколько студентов изучает немецкий язык в том и только том случае, если они изучают французский язык? 5) Опрос 100 студентов выявил следующие данные о числе студентов, изучающих различные иностранные языки: только немецкий – 18; немецкий, но не испанский – 23; немецкий и французский – 8; немецкий – 26; французский – 48; французский и испанский – 8; никакого языка – 24. Сколько студентов изучают немецкий и испанский язык?

6) В отчёте об опросе 100 студентов сообщалось, что количество студентов, изучающих различные языки, таково: все три языка – 5; немецкий и испанский – 10; французский и испанский – 8; немецкий и французский – 20; испанский – 30; немецкий – 23; французский – 50. Инспектор, представивший этот отчёт, был уволен. Почему?

7) В международной конференции участвовало 100 человек. Из них 42 владеют французским языком, 28 – английским, 30 – немецким, 10 – французским и английским, 8 – английским и немецким, 5 – французским и немецким, а 3 чело- века владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

8) Студенты 1 курса, изучающие информатику в университете, могут посещать и дополнительные дисциплины. В этом году 25 из них предпочли изучать бухгалтерию, 27 выбрали бизнес, а 12 решили заниматься туризмом. Кроме того, было 20 студентов, слушающих курс бухгалтерии и бизнеса, 5 изучали бухгалтерию и туризм, а 3 – туризм и бизнес. Известно, что никто из студентов не отважился посещать сразу 3 дополнительных курса. Сколько студентов посещали, по крайней мере, 1 дополнительный курс?
9) В олимпиаде по математике для абитуриентов приняло участие 40 учащихся. Им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. Задачу по алгебре решили 20 человек, по геометрии – 18, по тригонометрии – 18 человек. Задачи по алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 8 человек, по геометрии и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека. Сколько учащихся решили толь- ко две задачи?

10) В классе 40 учеников. Из них по русскому языку имеют тройки 19 человек, по математике – 17 человек и по физике – 22 человека. 4 ученика имеют тройки только по одному русскому языку, 4 – только по математике и 11 – только по физике. По русскому, математике и физике имеют тройки 5 учащихся. 7 человек имеют тройки по математике и физике. Сколько учеников имеют тройки по двум из трёх предметов?