Нок и нод правило в кратком содержании. Наибольший общий делитель (НОД): определение, примеры и свойства

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Наименьшее общее кратное двух чисел непосредственно связано с наибольшим общим делителем этих чисел. Эта связь между НОД и НОК определяется следующей теоремой.

Теорема.

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК(a, b)=a·b:НОД(a, b) .

Доказательство.

Пусть М – какое-нибудь кратное чисел a и b . То есть, М делится на a , и по определению делимости существует некоторое целое число k такое, что справедливо равенство M=a·k . Но М делится и на b , тогда a·k делится на b .

Обозначим НОД(a, b) как d . Тогда можно записать равенства a=a 1 ·d и b=b 1 ·d , причем a 1 =a:d и b 1 =b:d будут взаимно простыми числами . Следовательно, полученное в предыдущем абзаце условие, что a·k делится на b , можно переформулировать так: a 1 ·d·k делится на b 1 ·d , а это в силу свойств делимости эквивалентно условию, что a 1 ·k делится на b 1 .

Также нужно записать два важных следствия из рассмотренной теоремы.

    Общие кратные двух чисел совпадают с кратными их наименьшего общего кратного.

    Это действительно так, так как любое общее кратное M чисел a и b определяется равенством M=НОК(a, b)·t при некотором целом значении t .

    Наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

    Обоснование этого факта достаточно очевидно. Так как a и b взаимно простые, то НОД(a, b)=1 , следовательно, НОК(a, b)=a·b:НОД(a, b)=a·b:1=a·b .

Наименьшее общее кратное трех и большего количества чисел

Нахождение наименьшего общего кратного трех и большего количества чисел можно свести к последовательному нахождению НОК двух чисел. Как это делается, указано в следующей теореме.a 1 , a 2 , …, a k совпадают с общими кратными чисел m k-1 и a k , следовательно, совпадают с кратными числа m k . А так как наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , …, a k является m k .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Одной из задач, вызывающих проблему у современных школьников, привыкших к месту и не к месту использовать калькуляторы, встроенные в гаджеты, является нахождение наибольшего общего делителя (НОД) двух и более чисел.

Невозможно решить никакую математическую задачу, если неизвестно, о чём собственно спрашивают. Для этого нужно знать, что означает то или иное выражение , используемое в математике.

Необходимо знать:

  1. Если некое число можно использовать для подсчёта различных предметов, например, девять столбов, шестнадцать домов, то оно является натуральным. Самым маленьким из них будет единица.
  2. Когда натуральное число делится на другое натуральное число, то говорят, что меньшее число - это делитель большего.
  3. Если два и более различных числа делятся на некое число без остатка, то говорят, что последнее будет их общим делителем (ОД).
  4. Самый большой из ОД именуется наибольшим общим делителем (НОД).
  5. В таком случае, когда у числа есть только два натуральных делителя (оно само и единичка), оно называется простым. Самое маленькое среди них — двойка, к тому же она и единственное чётное в их ряду.
  6. В случае если у двух чисел максимальным общим делителем является единица, то они будут взаимно простыми.
  7. Число, у которого больше чем два делителя, именуется составным.
  8. Процесс когда находятся все простые множители, которые при умножении между собой дадут в произведении начальное значение в математике называют разложением на простые множители. Причём одинаковые множители в разложении могут встречаться неоднократно.

В математике приняты следующие записи:

  1. Делители Д (45) = (1;3;5;9;45).
  2. ОД (8;18) = (1;2).
  3. НОД (8;18) = 2.

Различные способы найти НОД

Проще всего ответить на вопрос как найти НОД в том случае, когда меньшее число является делителем большего. Оно и будет в подобном случае наибольшим общим делителем.

Например, НОД (15;45) = 15, НОД (48;24) = 24.

Но такие случаи в математике являются весьма редкими, поэтому для того, чтобы находить НОД используются более сложные приёмы, хотя проверять этот вариант перед началом работы все же весьма рекомендуется.

Способ разложения на простые сомножители

Если необходимо найти НОД двух или более различных чисел , достаточно разложить каждое из них на простые сомножители, а затем произвести процесс умножения тех из них, которые имеются в каждом из чисел.

Пример 1

Рассмотрим, как находить НОД 36 и 90:

  1. 36 = 1*2*2*3*3;
  2. 90 = 1*2*3*3*5;

НОД (36;90) = 1*2*3*3 = 18.

Теперь посмотрим как находить то же самое в случае трёх чисел , возьмём для примера 54; 162; 42.

Как разложить 36 мы уже знаем, разберёмся с остальными:

  1. 162 = 1*2*3*3*3*3;
  2. 42 = 1*2*3*7;

Таким образом, НОД (36;162;42) = 1*2*3 = 6.

Следует заметить, что единицу в разложении писать совершенно необязательно.

Рассмотрим способ, как просто раскладывать на простые множители , для этого слева запишем необходимую нам цифру, а справа станем писать простые делители.

Разделять колонки можно, как знаком деления, так и простой вертикальной чертой.

  1. 36 / 2 продолжим наш процесс деления;
  2. 18 / 2 далее;
  3. 9 / 3 и ещё раз;
  4. 3 / 3 сейчас совсем элементарно;
  5. 1 — результат готов.

Искомое 36 = 2*2*3*3.

Евклидов способ

Этот вариант известен человечеству ещё со времён древнегреческой цивилизации, он во многом проще, и приписывается великому математику Евклиду, хотя весьма похожие алгоритмы применялись и ранее. Этот способ заключается в использовании следующего алгоритма , мы делим большее число с остатком на меньшее. Затем наш делитель делим на остаток и продолжаем так действовать по кругу пока не произойдёт деление нацело. Последнее значение и окажется искомым наибольшим общим делителем.

Приведём пример использования данного алгоритма :

попробуем выяснить какой НОД у 816 и 252:

  1. 816 / 252 = 3 и остаток 60. Сейчас 252 разделим на 60;
  2. 252 / 60 = 4 в остатке на этот раз окажется 12. Продолжим наш круговой процесс, разделим шестьдесят на двенадцать;
  3. 60 / 12 = 5. Поскольку на сей раз никакого остатка мы не получили, то у нас готов результат, двенадцать будет искомым для нас значением.

Итак, по завершении нашего процесса мы получили НОД (816;252) = 12.

Действия при необходимости определения НОД если задано более двух значений

Мы уже разобрались, что делать в случае, когда имеется два различных числа, теперь научимся действовать, если их имеется 3 и более .

При всей кажущейся сложности, данная задача проблем у нас уже не вызовет. Сейчас мы выбираем два любые числа и определяем искомое для них значение. Следующим шагом отыскиваем НОД у полученного результата и третьего из заданных значений. Затем снова действуем по уже известному нам принципу для четвёртого пятого и так далее.

Заключение

Итак, при кажущейся большой сложности поставленной перед нами изначально задачи, на самом деле все просто, главное уметь выполнять безошибочно процесс делений и придерживаться любого из двух описанных выше алгоритмов.

Хотя оба способа и являются вполне приемлемыми, в общеобразовательной школе гораздо чаще применяется первый способ . Это связано с тем, что разложение на простые множители понадобится при изучении следующей учебной темы - определение наибольшего общего кратного (НОК). Но все же стоит ещё раз заметить — применение алгоритма Евклида ни в коей мере не может считаться ошибочным.

Видео

С помощью видео вы сможете узнать, как найти наибольший общий делитель.

Не получили ответ на свой вопрос? Предложите авторам тему.

Ключевые слова конспекта: Натуральные числа. Арифметические действия над натуральными числами. Делимость натуральных чисел. Простые и составные числа. Разложение натурального числа на простые множители. Признаки делимости на 2, 3, 5, 9, 4, 25, 10, 11. Наибольший общий делитель (НОД), а также наименьшее общее кратное (НОК). Деление с остатком.

Натуральные числа — это числа, которые используются для счета предметов - 1, 2, 3, 4 , … Но число 0 не является натуральным!

Множество натуральных чисел обозначают N . Запись «3 ∈ N» означает, что число три принадлежит множеству натуральных чисел, а запись «0 ∉ N» означает, что число нуль не принадлежит этому множеству.

Десятичная система счисления - позиционная система счисления по основанию 10 .

Арифметические действия над натуральными числами

Для натуральных чисел определены следующие действия: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня. Первые четыре действия являются арифметическими .

Пусть a, b и c - натуральные числа, тогда

1. СЛОЖЕНИЕ. Слагаемое + Слагаемое = Сумма

Свойства сложения
1. Переместительное а + b = b + а.
2. Сочетательное а + (b + с) = (а + Ь) + с.
3. а + 0= 0 + а = а.

2. ВЫЧИТАНИЕ. Уменьшаемое — Вычитаемое = Разность

Свойства вычитания
1. Вычитание суммы из числа а — (b + с) = а — b — с.
2. Вычитание числа из суммы (а + b) — с = а + (b — с); (а + b) — с = (а — с) + b.
3. а — 0 = а.
4. а — а = 0.

3. УМНОЖЕНИЕ. Множитель * Множитель = Произведение

Свойства умножения
1. Переместительное а*b = b*а.
2. Сочетательное а*(b*с) = (а*b)*с.
3. 1 * а = а * 1 = а.
4. 0 * а = а * 0 = 0.
5. Распределительное (а + b) * с = ас + bс; (а — b) * с = ас — bс.

4. ДЕЛЕНИЕ. Делимое: Делитель = Частное

Свойства деления
1. а: 1 = а.
2. а: а = 1. Делить на ноль нельзя!
3. 0: а= 0.

Порядок действий

1. Прежде всего действия в скобках.
2. Потом умножение, деление.
3. И только в конце сложение, вычитание.

Делимость натуральных чисел. Простые и составные числа.

Делителем натурального числа а называется натуральное число, на которое а делится без остатка. Число 1 является делителем любого натурального числа.

Натуральное число называется простым , если оно имеет только два делителя: единицу и само это число. Например, числа 2, 3, 11, 23 - простые числа.

Число, имеющее более двух делителей, называется составным . Например, числа 4, 8, 15, 27 - составные числа.

Признак делимости произведения нескольких чисел: если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число. Произведение 24 15 77 делится на 12 , поскольку множитель этого числа 24 делится на 12 .

Признак делимости суммы (разности) чисел: если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число. Если а: b и c: b , то (а + c) : b . А если а: b , а c не делится на b , то a + c не делится на число b .

Если а: c и c: b , то а: b . Исходя из того, что 72:24 и 24:12, делаем вывод, что 72:12.

Представление числа в виде произведения степеней простых чисел называют разложением числа на простые множители .

Основная теорема арифметики : любое натуральное число (кроме 1 ) либо является простым , либо его можно разложить на простые множители только одним способом.

При разложении числа на простые множители используют признаки делимости и применяют запись «столбиком» В таком случае делитель располагается справа от вертикальной черты, а частное записывают под делимым.

Например, задание: разложить на простые множители число 330 . Решение:

Признаки делимости на 2, 5, 3, 9, 10, 4, 25 и 11.

Существуют признаки делимости на 6, 15, 45 и т. д., то есть на числа, произведение которых можно разложить на множители 2, 3, 5, 9 и 10 .

Наибольший общий делитель

Наибольшее натуральное число, на которое делится нацело каждое из двух данных натуральных чисел, называется наибольшим общим делителем этих чисел (НОД ). Например, НОД (10; 25) = 5; а НОД (18; 24) = 6; НОД (7; 21) = 1.

Если наибольший общий делитель двух натуральных чисел равен 1 , то эти числа называются взаимно простыми .

Алгоритм нахождения наибольшего общего делителя (НОД)

НОД часто используется в задачах. Например, между учениками одного класса поделили поровну 155 тетрадей и 62 ручки. Сколько учеников в этом классе?

Решение: Нахождение количества учащихся этого класса сводится к нахождению наибольшего общего делителя чисел 155 и 62, поскольку тетради и ручки поделили поровну. 155 = 5 31; 62 = 2 31. НОД (155; 62) = 31 .

Ответ: 31 ученик в классе.

Наименьшее общее кратное

Кратным натурального числа а называется натуральное число, которое делится на а без остатка. Например, число 8 имеет кратные: 8, 16, 24, 32 , … Любое натуральное число имеет бесконечно много кратных.

Наименьшее общее кратное (НОК) называется наименьшее натуральное число, которое кратно этим числам.

Алгоритм нахождения наименьшего общего кратного (НОК ):

НОК также часто применяется в задачах. Например, два велосипедиста одновременно стартовали по велотреку в одном направлении. Один делает круг за 1 мин, а другой - за 45 с. Через какое наименьшее количество минут после начала движения они встретятся на старте?

Решение: Количество минут, через которое они снова встретятся на старте, должно делиться на 1 мин , а также на 45 с . В 1 мин = 60 с. То есть необходимо найти НОК (45; 60). 45 = 32 5; 60 = 22 3 5. НОК (45; 60) = 22 32 5 = 4 9 5 = 180 . В результате получается, что велосипедисты встретятся на старте через 180 с = 3 мин.

Ответ: 3 мин.

Деление с остатком

Если натуральное число а не делится нацело на натуральное число b , то можно выполнить деление с остатком . В таком случае полученное частное называется неполным . Справедливо равенство:

а = b n + r,

где а - делимое, b - делитель, n - неполное частное, r - остаток. Например, пусть делимое равно 243 , делитель - 4 , тогда 243: 4 = 60 (остаток 3) . То есть а = 243, b = 4, n = 60, r = 3, тогда 243 = 60 4 + 3 .

Числа, которые делятся на 2 без остатка, называются четными : а = 2n , n N.

Остальные числа называются нечетными : b = 2n + 1 , n N.

Это конспект по теме «Натуральные числа. Признаки делимости» . Чтобы продолжить, выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например :

Число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

Число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа . Делитель натурального числа a - это такое натуральное число, которое делит данное число a без остатка. Натуральное число, которое имеет более двух делителей, называется составным . Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12. Наибольший из делителей этих чисел - 12.

Общий делитель двух данных чисел a и b - это число, на которое делятся без остатка оба данных числа a и b . Общий делитель нескольких чисел (НОД) — это число, служащее делителем для каждого из них.

Кратко наибольший общий делитель чисел a и b записывают так:

Пример : НОД (12; 36) = 12.

Делители чисел в записи решения обозначают большой буквой «Д».

Пример:

НОД (7; 9) = 1

Числа 7 и 9 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми чи слами .

Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1. Их НОД равен 1.

Наибольший общий делитель (НОД), свойства.

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример : для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Следствие 1: множество общих делителей m и n совпадает с множеством делителей НОД(m , n ).
  • Следствие 2: множество общих кратных m и n совпадает с множеством кратных НОК (m , n ).

Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.

  • Наибольший общий делитель чисел m и n может быть определён как наименьший положительный элемент множества всех их линейных комбинаций:

и поэтому представим в виде линейной комбинации чисел m и n :

Это соотношение называется соотношением Безу , а коэффициенты u и v коэффициентами Безу . Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы , порождённая набором , — циклическая и порождается одним элементом: НОД (a 1 , a 2 , … , a n ).

Вычисление наибольшего общего делителя (НОД).

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм . Кроме того, значение НОД (m ,n ) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

где — различные простые числа, а и — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД (m ,n ) и НОК (m ,n ) выражаются формулами:

Если чисел более двух: , их НОД находится по следующему алгоритму:

— это и есть искомый НОД.

Также, для того, чтобы найти наибольший общий делитель , можно разложить каждое из заданных чисел на простые множители . Потом выписать отдельно только те множители, которые входят во все заданные числа. Потом перемножаем между собой выписанные числа - результат перемножения и есть наибольший общий делитель.

Разберем пошагово вычисление наибольшего общего делителя:

1. Разложить делители чисел на простые множители:

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа - делитель. Далее в левом столбце записываем значения частных. Поясним сразу на примере. Разложим на простые множители числа 28 и 64.

2. Подчёркиваем одинаковые простые множители в обоих числах:

28 = 2 . 2 . 7

64 = 2 . 2 . 2 . 2 . 2 . 2

3. Находим произведение одинаковых простых множителей и записываем ответ:

НОД (28; 64) = 2 . 2 = 4

Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Первый способ записи НОД:

Найти НОД 48 и 36.

НОД (48; 36) = 2 . 2 . 3 = 12

Второй способ записи НОД:

Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15.

Д (10) = {1, 2, 5, 10}

Д (15) = {1, 3, 5, 15}

Д (10, 15) = {1, 5}