Нормальное распределение св. Нормальное распределение случайной величины

Файл примера

Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .

Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества. Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из теории вероятностей.

Определение : Случайная величина x распределена по нормальному закону , если она имеет :

Нормальное распределение зависит от двух параметров: μ (мю) - является , и σ ( сигма) - является (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ - разброс относительно центра (среднего).

Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про , а в файле примера на листе Влияние параметров можно с помощью понаблюдать за изменением формы кривой.

Нормальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Нормального распределения имеется функция НОРМ.РАСП() , английское название - NORM.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина X, распределенная по нормальному закону , примет значение меньше или равное x). Вычисления в последнем случае производятся по следующей формуле:

Вышеуказанное распределение имеет обозначение N (μ; σ). Так же часто используют обозначение через N (μ; σ 2).

Примечание : До MS EXCEL 2010 в EXCEL была только функция НОРМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности. НОРМРАСП() оставлена в MS EXCEL 2010 для совместимости.

Стандартное нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с μ=0 и σ=1. Вышеуказанное распределение имеет обозначение N (0;1).

Примечание : В литературе для случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение z.

Любое нормальное распределение можно преобразовать в стандартное через замену переменной z =( x -μ)/σ . Этот процесс преобразования называется стандартизацией .

Примечание : В MS EXCEL имеется функция НОРМАЛИЗАЦИЯ() , которая выполняет вышеуказанное преобразование. Хотя в MS EXCEL это преобразование называется почему-то нормализацией . Формулы =(x-μ)/σ и =НОРМАЛИЗАЦИЯ(х;μ;σ) вернут одинаковый результат.

В MS EXCEL 2010 для имеется специальная функция НОРМ.СТ.РАСП() и ее устаревший вариант НОРМСТРАСП() , выполняющий аналогичные вычисления.

Продемонстрируем, как в MS EXCEL осуществляется процесс стандартизации нормального распределения N (1,5; 2).

Для этого вычислим вероятность, что случайная величина, распределенная по нормальному закону N(1,5; 2) , меньше или равна 2,5. Формула выглядит так: =НОРМ.РАСП(2,5; 1,5; 2; ИСТИНА) =0,691462. Сделав замену переменной z =(2,5-1,5)/2=0,5 , запишем формулу для вычисления Стандартного нормального распределения: =НОРМ.СТ.РАСП(0,5; ИСТИНА) =0,691462.

Естественно, обе формулы дают одинаковые результаты (см. файл примера лист Пример ).

Обратите внимание, что стандартизация относится только к (аргумент интегральная равен ИСТИНА), а не к плотности вероятности .

Примечание : В литературе для функции, вычисляющей вероятности случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение Ф(z). В MS EXCEL эта функция вычисляется по формуле =НОРМ.СТ.РАСП(z;ИСТИНА) . Вычисления производятся по формуле

В силу четности функции распределения f(x), а именно f(x)=f(-х), функция стандартного нормального распределения обладает свойством Ф(-x)=1-Ф(x).

Обратные функции

Функция НОРМ.СТ.РАСП(x;ИСТИНА) вычисляет вероятность P, что случайная величина Х примет значение меньше или равное х. Но часто требуется провести обратное вычисление: зная вероятность P, требуется вычислить значение х. Вычисленное значение х называется стандартного нормального распределения .

В MS EXCEL для вычисления квантилей используют функцию НОРМ.СТ.ОБР() и НОРМ.ОБР() .

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение , находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% - в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:

= НОРМ.СТ.РАСП(1;ИСТИНА)-НОРМ.СТ.РАСП(-1;ИСТИНА)

которая вернет значение 68,2689% - именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).

В силу четности функции плотности стандартного нормального распределения: f ( x )= f (-х) , функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:

= 2*НОРМ.СТ.РАСП(1;ИСТИНА)-1

Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:

2* НОРМ.РАСП(μ+1*σ;μ;σ;ИСТИНА)-1

Вышеуказанные расчеты вероятности требуются для .

Примечание : Для удобства написания формул в файле примера созданы для параметров распределения: μ и σ.

Генерация случайных чисел

Сгенерируем 3 массива по 100 чисел с различными μ и σ. Для этого в окне Генерация случайных чисел установим следующие значения для каждой пары параметров:

Примечание : Если установить опцию Случайное рассеивание ( Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию равной 25, можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца чисел, на основании которых можно, оценить параметры распределения, из которого была произведена выборка: μ и σ . Оценку для μ можно сделать с использованием функции СРЗНАЧ() , а для σ – с использованием функции СТАНДОТКЛОН.В() , см. .

Примечание : Для генерирования массива чисел, распределенных по нормальному закону , можно использовать формулу =НОРМ.ОБР(СЛЧИС();μ;σ) . Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Задачи

Задача1 . Компания изготавливает нейлоновые нити со средней прочностью 41 МПа и стандартным отклонением 2 МПа. Потребитель хочет приобрести нити с прочностью не менее 36 МПа. Рассчитайте вероятность, что партии нити, изготовленные компанией для потребителя, будут соответствовать требованиям или превышать их. Решение1 : = 1-НОРМ.РАСП(36;41;2;ИСТИНА)

Задача2 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Согласно техническим условиям, трубы признаются годными, если диаметр находится в пределах 20,00+/- 0,40 мм. Какая доля изготовленных труб соответствует ТУ? Решение2 : = НОРМ.РАСП(20,00+0,40;20,20;0,25;ИСТИНА)- НОРМ.РАСП(20,00-0,40;20,20;0,25) На рисунке ниже, выделена область значений диаметров, которая удовлетворяет требованиям спецификации.

Решение приведено в файле примера лист Задачи .

Задача3 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Внешний диаметр не должен превышать определенное значение (предполагается, что нижняя граница не важна). Какую верхнюю границу в технических условиях необходимо установить, чтобы ей соответствовало 97,5% всех изготавливаемых изделий? Решение3 : = НОРМ.ОБР(0,975; 20,20; 0,25) =20,6899 или = НОРМ.СТ.ОБР(0,975)*0,25+20,2 (произведена «дестандартизация», см. выше)

Задача 4 . Нахождение параметров нормального распределения по значениям 2-х (или ). Предположим, известно, что случайная величина имеет нормальное распределение, но не известны его параметры, а только 2-я процентиля (например, 0,5- процентиль , т.е. медиана и 0,95-я процентиль ). Т.к. известна , то мы знаем , т.е. μ. Чтобы найти нужно использовать . Решение приведено в файле примера лист Задачи .

Примечание : До MS EXCEL 2010 в EXCEL были функции НОРМОБР() и НОРМСТОБР() , которые эквивалентны НОРМ.ОБР() и НОРМ.СТ.ОБР() . НОРМОБР() и НОРМСТОБР() оставлены в MS EXCEL 2010 и выше только для совместимости.

Линейные комбинации нормально распределенных случайных величин

Известно, что линейная комбинация нормально распределённых случайных величин x ( i ) с параметрами μ ( i ) и σ ( i ) также распределена нормально. Например, если случайная величина Y=x(1)+x(2), то Y будет иметь распределение с параметрами μ (1)+ μ(2) и КОРЕНЬ(σ(1)^2+ σ(2)^2). Убедимся в этом с помощью MS EXCEL.

Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

Основные свойства нормального распределения.

1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

3. Предел функции плотности при неограниченном возрастании х равен нулю, .

4. Функция плотности нормального распределения в точке имеет максимум .

5. График функции плотности симметричен относительно прямой .

6. Кривая распределения имеет две точки перегиба с координатами и .

7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

8. Форма нормальной кривой не изменяется при изменении параметра а .

9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


Тогда при получим ,

при получим ,

при получим .

Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

Биномиальное распределение

Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

Распределение Пуассона

Закон распределения редких явлений

Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести. или экспоненциальное распределение.

Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .

Нормальное распределение (normal distribution ) - играет важную роль в анализе данных.

Иногда вместо термина нормальное распределение употребляют термин гауссовское распределение в честь К. Гаусса (более старые термины, практически не употребляемые в настоящее время: закон Гаусса, Гаусса-Лапласа распределение).

Одномерное нормальное распределение

Нормальное распределение имеет плотность::

В этой формуле , фиксированные параметры, - среднее , - стандартное отклонение .

Графики плотности при различных параметрах приведены .

Характеристическая функция нормального распределения имеет вид:

Дифференцируя характеристическую функцию и полагая t = 0 , получаем моменты любого порядка.

Кривая плотности нормального распределения симметрична относительно и имеет в этой точке единственный максимум, равный

Параметр стандартного отклонения меняется в пределах от 0 до ∞.

Среднее меняется в пределах от -∞ до +∞.

При увеличении параметра кривая растекается вдоль оси х , при стремлении к 0 сжимается вокруг среднего значения (параметр характеризует разброс, рассеяние).

При изменении кривая сдвигается вдоль оси х (см. графики).

Варьируя параметры и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.

Типичное применение нормального закона в анализе, например, телекоммуникационных данных - моделирование сигналов, описание шумов, помех, ошибок, трафика.

Графики одномерного нормального распределения

Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1

Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений

Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)

Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).

Заметьте, центр распределения сдвинулся при изменении параметра .

Замечание

В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее = 3 и стандартное отклонение =2.

В литературе иногда второй параметр трактуется как дисперсия , т.е. квадрат стандартного отклонения.

Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA

С помощью вероятностного калькулятора STATISTICA можно вычислить различные характеристики распределений, не прибегая к громоздким таблицам, используемым в старых книгах.

Шаг 1. Запускаем Анализ / Вероятностный калькулятор / Распределения .

В разделе распределения выберем нормальное .

Рисунок 5. Запуск калькулятора вероятностных распределений

Шаг 2. Указываем интересующие нас параметры.

Например, мы хотим вычислить 95% квантиль нормального распределения со средним 0 и стандартным отклонением 1.

Укажем эти параметры в полях калькулятора (см. поля калькулятора среднее и стандартное отклонение).

Введем параметр p=0,95.

Галочка «Обратная ф.р». отобразится автоматически. Поставим галочку «График».

Нажмем кнопку «Вычислить» в правом верхнем углу.

Рисунок 6. Настройка параметров

Шаг 3. В поле Z получаем результат: значение квантиля равно 1,64 (см. следующее окно).

Рисунок 7. Просмотр результата работы калькулятора

Рисунок 8. Графики плотности и функции распределения. Прямая x=1,644485

Рисунок 9. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=-1.5, x=-1, x=-0.5, x=0

Рисунок 10. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=0.5, x=1, x=1.5, x=2

Оценка параметров нормального распределения

Значения нормального распределения можно вычислить с помощью интерактивного калькулятора .

Двумерное нормальное распределение

Одномерное нормальное распределение естественно обобщается на двумерное нормальное распределение.

Например, если вы рассматриваете сигнал только в одной точке, то вам достаточно одномерного распределения, в двух точках - двумерного, в трех точках - трехмерного и т.д.

Общая формула для двумерного нормального распределения имеет вид:

Где - парная корреляция между X 1 и X 2 ;

X 1 соответственно;

Среднее и стандартное отклонение переменной X 2 соответственно.

Если случайные величины Х 1 и Х 2 независимы, то корреляция равна 0, = 0, соответственно средний член в экспоненте зануляется, и мы имеем:

f(x 1 ,x 2) = f(x 1)*f(x 2)

Для независимых величин двумерная плотность распадается в произведение двух одномерных плотностей.

Графики плотности двумерного нормального распределения

Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

Рисунок 16. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной) плоскостью z=0.05

Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

Для лучшего понимания двумерного нормального распределения попробуйте решить следующую задачу.

Задача. Посмотрите на график двумерного нормального распределения. Подумайте, можно ли его представить, как вращение графика одномерного нормального распределения? Когда нужно применить прием деформации?

Нормальный закон распределения вероятностей

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:


Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость ! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота , и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений и .

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:


Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная ; её функция плотности – чётная , и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а») , график «остаётся на месте», но меняет форму. При увеличении он становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении график становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков .

Нормальное распределёние с единичным значением «сигма» называется нормированным , а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным . Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа : . Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей . Вспоминаем её определение :
– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению ставится в соответствие несобственный интеграл , который равен некоторому числу из интервала .

Почти все значения не поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции стандартного распределения соответствующая экселевская функция вообще содержит один аргумент:

=НОРМСТРАСП(z)

Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения , и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба .

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти –вероятность того, что нормальная случайная величина примет значение из интервала . Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:

но каждый раз вымучивать приближенное значение неразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу :
.

! Вспоминает также , что

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения , скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:

Примечание : функцию легко получить из общего случая с помощью линейной замены . Тогда и:

и из проведённой замены как раз следует формула перехода от значений произвольного распределения – к соответствующим значениям стандартного распределения.

Зачем это нужно? Дело в том, что значения скрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений , с которой мы уже имели дело в интегральной теореме Лапласа :

Если же в нашем распоряжении есть таблица значений функции Лапласа , то решаем через неё:

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета .

Напоминаю, что , и во избежание путаницы всегда контролируйте , таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Тренируемся самостоятельно:

Пример 3

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал симметричен относительно математического ожидания. В такой ситуации его можно записать в виде и, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:


Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля :

– вероятность того, что значение случайной величины отклонится от математического ожидания менее чем на .

Хорошо то решение, которое умещается в одну строчку:)
– вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина примет значение из промежутка .

И в самом деле, вероятность отклонения от матожидания менее чем на составляет:
или 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез .

Продолжаем решать суровые советские задачи:

Пример 4

Случайная величина ошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию, и сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение и по формуле :

– вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ :

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении . Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте) , а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Пример 5

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью попадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Пример 6

Нормально распределенная случайная величина задана своими параметрами (математическое ожидание) и (среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что примет значение из интервала ;
в) найти вероятность того, что отклонится по модулю от не более чем на ;
г) применяя правило «трех сигм», найти значения случайной величины .

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц;)

Ну а я разберу пример повышенной сложности:

Пример 7

Плотность распределения вероятностей случайной величины имеет вид . Найти , математическое ожидание , дисперсию , функцию распределения , построить графики плотности и функции распределения, найти .

Решение : прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение . И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция определена при любом действительном значении , и её можно привести к виду , то случайная величина распределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь :


Обязательно выполняем проверку, возвращая показатель в исходный вид:

, что мы и хотели увидеть.

Таким образом:
– по правилу действий со степенями «отщипываем» . И здесь можно сразу записать очевидные числовые характеристики:

Теперь найдём значение параметра . Поскольку множитель нормального распределения имеет вид и , то:
, откуда выражаем и подставляем в нашу функцию:
, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид .

Построим график плотности:

и график функции распределения :

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке функция распределения принимает значение и здесь находится

Краткая теория

Нормальным называют распределение вероятностей непрерывной случайной величины , плотность которого имеет вид:

где – математическое ожидание , – среднее квадратическое отклонение .

Вероятность того, что примет значение, принадлежащее интервалу :

где – функция Лапласа :

Вероятность того, что абсолютная величина отклонения меньше положительного числа :

В частности, при справедливо равенство:

При решении задач, которые выдвигает практика, приходится сталкиваться с различными распределениями непрерывных случайных величин .

Кроме нормального распределения, основные законы распределения непрерывных случайных величин:

Пример решения задачи

На станке изготавливается деталь. Ее длина - случайная величина, распределенная по нормальному закону с параметрами , . Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно , будут лежать практически все размеры деталей?

вступайте в группу ВК .

Решение:

Вероятность того, что случайная величина, распределенная по нормальному закону, будет находиться в интервале :

Получаем:

Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

По условию

:

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт,