Обобщение схемы бернулли. Схема независимых испытаний Бернулли

Опыты называются независимыми, если вероятность того или иного исхода каждого опыта не зависит от того, какие исходы имели другие опыты.

Замечание. Независимые опыты могут производиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления какого-то события А во всех опытах одна и та же, во втором случае она меняется от опыта к опыту.

Пусть теперь производится n независимых опытов, в каждом из которых с одной и той же вероятностью p может наступить некоторое событие А . Требуется найти вероятность Р n (к) того, что в n опытах событие А наступит ровно к раз (событие В ).

Описанная схема называется схемой независимых испытаний, или схемой Бернулли, по имени швейцарского математика конца XVII и начала XVIII века Якоба Бернулли, изучавшего её.

Найдем вероятность Р n (к) . Событие В можно представить в виде суммы ряда элементарных событий – вариантов события А . Каждый вариант события А можно записать в виде строки длиной n (число опытов), в которой к компонент соответствуют событию А , а остальные n-к компонент событию . Например, один из возможных вариантов есть

(успех и 1,2,…,k -м опытах и неудача в остальных).

Число всех вариантов равно (числу сочетаний из n элементов по к ), а вероятность каждого варианта в виду независимости опытов равна р к q n -к (где q =1-р ). Отсюда вероятность события В будет равна

Формула (1) носит название формулы Бернулли .

Отсюда следует, что вероятность, хотя бы одного появления события А при n независимых испытаниях (опытах) в одинаковых условиях равна

Пример 1 . Монета бросается 5 раз. Какова вероятность того, что герб выпадет при этом 3 раза?

Решение . В данном случае событием А считается выпадение герба, вероятность p этого события в каждом опыте равна . Отсюда

P = .

Для наглядности условимся каждое наступление события А рассматривать как успех. Если зафиксировать n , то, Р n (к) . есть функция аргумента к , принимающая значения . Выясним, при каком значении к функция Р n (к) принимает наибольшее значение, т.е., какое число успехов к 0 является наиболее вероятным при данном числе опытов n . Оказывается что число к=к 0 можно определить из двойного неравенства.

(3)

Разность граничных значений в этом двойном неравенстве равна 1. Если np+p не является целым числом, то двойное неравенство определяет лишь одно наивероятнейшее значение к 0 .Если же np+p – целое число, то имеются два наивероятнейших значения: и .

Пример 2 . Игральную кость бросают 20 раз. Каково наиболее вероятное число выпадений грани «6» ?

Решение. В данном случае n = 20, откуда . Поскольку nр + р не целое число, то наибольшим среди чисел Р 20 (0), Р 20 (1),…, Р 20 (20) будет число Р 20 (3). Следовательно, наиболее вероятное число выпадений грани «6» будет 3. Найдём, чему равна вероятность такого числа выпадений. По формуле Бернулли имеет:


.

Из формулы (3) видно, что одно из двух ближайших к целых чисел является наиболее вероятным числом успехов.

Оказывается, число допускает и другую интерпретацию. А именно: можно рассматривать, в определенном смысле, как среднее число успехов в n опытах . Будем исходить из частотного истолкования вероятности. Назовем (для краткости) n - кратное повторение данного опыта серией. Пусть мы произвели N серий. Пусть в первой серии было получено к 1 успехов, во второй – к 2 , ….., в N -ой –к N . Составим среднее арифметическое этих чисел

. (4)

Равенство (4) - есть среднее число успехов в N сериях. Оказывается, что с увеличением N указанное среднее арифметическое приближается к некоторому постоянному значению, а именно к числу np .

Действительно запишем (4) в виде:

. (5)

Поскольку каждая серия состоит из n опытов, то производя N серий мы осуществляем данный опыт раз.

Написанная дробь (5) со знаменателем Nn есть нечто иное как отношение общего числа успехов в этих опытах к числу всех опытов. С увеличением N (а значит, и Nn ) эта дробь будет приближаться к числу р - вероятности успеха. Следовательно, число (4) будет приближаться к рn , что и требовалось получить.

Пример 3 . Станок штампует изделия. Вероятность р брака одного изделия равна 0,05. Чему равно среднее число бракованных изделий на сотню?

Решение . Искомое число бракованных изделий равно: .

Замечание 1. Можно рассмотреть более общую схему независимых испытаний. Рассмотрим n независимых испытаний (в различных условиях), причём вероятность события А («успеха») в i -ом опыте равна p i , a q i =1-p i – вероятность неуспеха в i -м испытании (i =1,2,…,n ). Тогда можно показать, что вероятность P n (к) того, что событие А появится в этих n опытах ровно к раз, равна коэффициенту при z k в разложении по степеням z функции

Такую схему независимых испытаний называют схемой Пуассона . Схема Пуассона при p i =p превращается в схему Бернулли. Вероятности P n (к) в схеме Пуассона не записываются в компактном виде аналогичной формуле(1). Из (6) , например, следует:

Замечание 2. Схемы Бернулли и Пуассона допускают обобщение на тот случай, когда в результате каждого опыта возможные не два исхода (А или ), а несколько исходов.

Если производится n независимых опытов (схема Бернулли) причём каждый опыт может иметь к исключающих друг друга исходов , с вероятностями , то вероятность того, что в m 1 опытах появится событие А 1 , в m 2 опытах событие А 2 и т.д., в m k опытах событие А к выражается формулой

Если условия опыта различны (схема Пуассона), т.е.

в i- омопыте событие A j имеет вероятность p ji (i =1,2,…,n ; j =1,2,…,k ), то вероятность вычисляется как коэффициент при члене в разложении по степеням функции:

Пример 4. Завод изготавливает изделия, каждое из которых подвергается четырём видам испытаний. Первое испытание изделия проходит благополучно с вероятностью 0,9; второе с вероятностью 0,95; третье-0,8 и четвертое-0,85. Найти вероятность того, что изделие пройдет благополучно:

A- все четыре испытания

B- ровно два испытания (из четырех)

C- не менее двух испытании (из четырех)

Решение. В условиях задачи проводятся четыре независимых опыта (испытания) в различных условиях. Вероятность события. А – испытание прошло благополучно, в каждом опыте разное. Искомые вероятности находим из формулы (6)

Отсюда получаем:

§12. Вероятности P n (к) при больших значениях n . Приближённые формулы Лапласа и Пуассона.

В приложениях часто возникает необходимость в вычислении вероятностей Р n (к) для весьма больших значений n и k . Рассмотрим, например, такую задачу.

Задача. На некотором предприятии вероятность брака, равна 0,02. Обследуются 500 изделий готовой продукции. Найти вероятность того, что среди них окажется ровно 10 бракованных.

Рассматривая обследование каждого изделия как отдельный опыт, можно сказать, что производиться 500 независимых опытов, причем в каждом их них событие А (изделие оказалось бракованным) наступает с вероятностью 0,02, тогда по формуле Бернулли получаем

Непосредственный подсчет этого выражения представляется сложным. Ещё большую трудность пришлось бы испытать, если бы мы искали вероятность того, что число бракованных изделий среди 500 окажется в пределах, скажем, от 10 до 20. В этом случае потребовалось бы вычислить сумму , что является более сложным делом.

Задачи подобного рода встречаются в приложениях весьма часто. Поэтому возникает необходимость в отыскании приближённых формул для вероятностей Р n (к) , а также для сумм вида

(1)

при больших n .

1. Приближённые формулы Лапласа. Их используют при больших n (порядка сотен или тысяч), вероятностей p или q не слишком близким к 0 или 1 (порядка сотых долей). Обычно условием применения этих приближений является условие npq >9.

а) Локальная приближённая формула Лапласа . При больших n справедливо равенство.

, (2)

где , а φ (х ) обозначает следующую функцию: .

Заметим, что функция φ(х) табулирована, т.е. для нее составлена таблица её значений.

Вторая приближённая формула Лапласа даёт приближённые значения для величины -вероятности того, что число наступлений события А в n опытах (число «успехов») окажется заключенным между заданными границами к 1 и к 2 .

б) Интегральная приближённая формула Лапласа . При больших n справедливо приближённое равенство

, (3)

где Φ(х) обозначает следующую функцию

. (4)

Функция Φ(х) обладает следующими полезными для вычисления свойствами:

1. Φ(х) – нечётная функция: ,

2. при возрастании х от 0 до ∞ функция Φ(х) растет от 0

до 0,5, причем уже при х = 5 значение функции Φ(х)

отличается от 0,5 меньше чем на (т.е. при функция Ф(x) практически равна 0,5).

Пример 1. Монету бросают 100 раз. Какова вероятность того, что герб выпадет ровно 50 раз?

Решение . Имеем: npq = 100· · = 25>9. Воспользовавшись приближённой формулой (2), получим. . Из таблицы для функции φ(x) найдем, что φ(0) = 0,3989…. Отсюда получаем .

Пример 2 . Доведём до конца решение задачи, приведённой в начале этого параграфа. В ней требовалось найти , а также вероятность P 500 (10≤ к ≤20).

Решение. В данном случае npq = 500·0,02·0,98=9,8. Воспользовавшись приближёнными формулами (2) и (3), получим: ,

Замечание. Если мы осуществляем опыт n раз и k - число наступлений события А при этом, то, вообще говоря, дробь -относительная частота наступления события

А – будет близка к р (вероятности события А ). Однако сколь тесной окажется эта близость, предугадать невозможно.

Интегральная теорема Лапласа позволяет оценить вероятность неравенства при достаточно больших n и значениях р не слишком близких к 0 или 1, т.е. определить вероятность того, что отклонение частоты случайного события от его вероятности р по абсолютной величине не превосходит некоторого . Имеем

Таким образом, получаем

(5)

Вероятность в этом случае называют надёжностью оценки , а сама оценка доверительной оценкой частоты с надёжностью .

На практике надёжность оценки задаётся заранее. Тогда по заданной надёжности можно найти соответствующее значение из уравнения с помощью таблиц функции Лапласа. В этом случае доверительная оценка с заданной надёжностью примет вид р или q к нулю, поэтому, в этом случае используют приближённые формулы Пуассона. При больших n (порядка тысяч, десятков тысяч и больше) и малых р (порядка тысячных долей и меньше) справедливы приближённые равенства. Обычно условием применения этих приближений является условие npq <9.

, (7).

, (8)

где λ =np .

Особенностью формул (7) и (8) является то, что для того, чтобы найти вероятность того или иного числа успехов, вовсе не требуется знать n и р . Всё определяется числом λ=np , которое является (см. §11) средним числом успехов .

Для выражения , рассматриваемого как функция двух переменных к и λ, составлены таблицы значений.

Пример 5 . Прядильщица обслуживает 1000 веретён. Вероятность обрыва нити на одном веретене в течение одной минуты равна 0,004. Найти вероятность того, что в течение одной минуты обрыв произойдет в пяти веретенах.

Решение. Формула Бернулли приведёт к громоздким вычислениям, поэтому воспользуемся формулой Пуассона (7). Здесь к = 5, р =0.004, n = 1000, тогда λ = np = 4.

Отсюда: .

Пример 6 . Книга в 1000 страниц имеет 100 опечаток. Какова вероятность того, что на случайно выбранной странице будет не менее четырёх опечаток (событие В ).

Решение: Среднее количество опечаток на одну страницу есть . В данном случае следует применить формулу Пуассона. Тогда вероятность p к иметь к опечаток на одной странице будет равна .

Сумма р = p 0 +p 1 +p 2 +p 3 есть вероятность того, что на странице окажется не более трёх опечаток. Пользуясь таблицами (или калькулятором) получаем р = 0,999996 (в данном случае мы пользовались калькулятором, таблицы дадут р =0,9048+0,0905+0,0045+0,0002=1). Вероятность того, что на случайно выбранной странице будет не менее четырёх опечаток, равна 1-р =1-0,999996=0,0000004 (таблицы дадут 1-р =1-1=0). Отсюда можно сделать вывод, что событие В практически невозможно.

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ»  РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

Повторение испытаний. Схема бернулли

Методические указания к практическим занятиям

по дисциплине «Высшая математика»

Составители: Егорова Ю.Б.

Мамонов И.М.

Москва 2006 введение

Методические указания предназначены для студентов дневного и вечернего отделения факультета №14 специальностей 150601, 160301, 230102. Указания выделяют основные понятия темы, определяют последовательность изучения материала. Большое количество рассмотренных примеров помогает в практическом освоении темы. Методические указания служат методической основой для практических занятий и выполнения индивидуальных заданий.

    СХЕМА БЕРНУЛЛИ. ФОРМУЛА БЕРНУЛЛИ

Схема Бернулли - схема повторных независимых испытаний, при которой какое-то событие А может многократно повторяться с постоянной вероятностью Р (А )= р .

Примеры испытаний, проводимых по схеме Бернулли: многократное подбрасывание монеты или игральной кости, изготовление партии деталей, стрельба по мишени и т.п.

Теорема. Если вероятность наступления события А в каждом испытании постоянна и равна р , то вероятность того, что событие А наступит m раз в n испытаниях (безразлично в какой последовательности), можно определить по формуле Бернулли:

где q = 1 – p .

ПРИМЕР 1. Вероятность того, что расход электроэнергии на протяжении одних суток не превысит установленной нормы, равна р= 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

РЕШЕНИЕ. Вероятность нормального расхода элек­троэнергии на протяжении каждых из 6 суток постоянна и равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1р = 1  0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

ПРИМЕР 2. Стрелок производит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна р= 0,3. Найти вероятность того, что поражена: а) одна мишень; б) все три мишени; в) ни одной мишени; г) хотя бы одна мишень; д) менее двух мишеней.

РЕШЕНИЕ. Вероятность попадания в мишень при каждом выстреле постоянна и равна р =0,75. Следовательно, вероятность промаха равна q = 1 р = 1  0,3= 0,7. Общее число проведенных опытов n =3.

а) Вероятность поражения одной мишени при трех выстрелах равна:

б) Вероятность поражения всех трех мишеней при трех выстрелах равна:

в) Вероятность трех промахов при трех выстрелах равна:

г) Вероятность поражения хотя бы одной мишени при трех выстрелах равна:

д) Вероятность поражения менее двух мишеней, то есть или одной мишени, или ни одной:

  1. Локальная и интегральная теоремы муавра-лапласа

Если произведено большое число испытаний, то вычисление вероятностей по формуле Бернулли становится технически сложным, так как формула требует действий над огромными числами. Поэтому существуют более простые приближенные формулы для вычисления вероятностей при больших n . Эти формулы называются асимптотическими и определяются теоремой Пуассона, локальной и интегральной теоремой Лапласа.

Локальная теорема Муавра-Лапласа. А А произойдет m раз в n n (n →∞ ), приближенно равна:

где функция
а аргумент

Чем больше n , тем точнее вычисление вероятностей. Поэтому теорему Муавра-Лапласа целесообразно применять при npq 20.

f ( x ) составлены специальные таблицы (см. приложение 1). При использовании таблицы необходимо иметь в виду свойства функции f(x) :

    Функция f(x) является четной f( x)= f(x) .

    При х  ∞ функция f(x)  0. Практически можно считать, что уже при х >4 функция f(x) ≈0.

ПРИМЕР 3. Найти вероятность того, что событие А наступит 80 раз в 400 испытаниях, если вероятность появления события А в каждом испытании равна р= 0,2.

РЕШЕНИЕ. По условию n =400, m =80, p =0,2, q =0,8. Следовательно:

По таблице определим значение функции f (0)=0,3989.

Интегральная теорема Муавра-Лапласа. Если вероятность наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А произойдет от m 1 до m 2 раз в n испытаниях при достаточно большом числе n (n →∞ ), приближенно равна:

где
 интеграл или функция Лапласа,

Для нахождения значений функции Ф( x ) составлены специальные таблицы (например, см. приложение 2). При использовании таблицы необходимо иметь в виду свойства функции Лапласа Ф(x) :

    Функция Ф(x) является нечетной Ф( x)= Ф(x) .

    При х  ∞ функция Ф(x)  0,5. Практически можно считать, что уже при х >5 функция Ф(x) ≈0,5.

    Ф (0)=0.

ПРИМЕР 4. Вероятность того, что деталь не прошла проверку ОТК, равна 0,2. Найти вероятность того, что среди 400 деталей окажется непроверенных от 70 до 100 деталей.

РЕШЕНИЕ. По условию n =400, m 1 =70, m 2 =100, p =0,2, q =0,8. Следовательно:


По таблице, в которой приведены значения функции Лапласа, определяем:

Ф(x 1 ) = Ф(  1,25 )= Ф( 1,25 )=  0,3944; Ф(x 2 ) = Ф( 2,5 )= 0,4938.

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обозначим эти вероятности как p и q . Исход с вероятностью p будем называть “успехом”, а исход с вероятностью q – “неудачей”.

Очевидно, что

Пространство элементарных событий для каждого испытания состоит из двух точек. Пространство элементарных событий для n испытаний Бернулли содержит точек, каждая из которых представляет один возможный исход составного опыта. Поскольку испытания независимы, то вероятность последовательности событий равна произведению вероятностей соответствующих исходов. Например, вероятность последовательности событий

{У, У, Н, У, Н, Н, Н}

равна произведению

Примеры испытаний Бернулли.

1. Последовательные бросания “правильной” монеты. В этом случае p = q = 1/2 .

При бросании несимметричной монеты соответствующие вероятности изменят свои значения.

2. Каждый результат опыта можно рассматривать как A или .

3. Если существует несколько возможных исходов, то из них можно выделить группу исходов, которые рассматриваются как “успех”, называя все прочие исходы “неудачей”.

Например, при последовательных бросаниях игральной кости под “успехом” можно понимать выпадение 5, а под “неудачей” – выпадение любого другого числа очков. В этом случае p = 1/6, q = 5/6.

Если же под “успехом” понимать выпадение четного, а под “неудачей” – нечетного числа очков, то p = q = 1/2 .

4. Повторные случайные извлечения шара из урны, содержащей при каждом испытании a белых и b черных шаров. Если под успехом понимать извлечение белого шара, то , .

Феллер приводит следующий пример практического применения схемы испытаний Бернулли. Шайбы, изготовляемые при массовом производстве, могут отличаться по толщине, но при проверке они классифицируются на годные и дефектные – в зависимости от того, находится ли толщина в предписанных границах. И хотя продукция по многим причинам не может вполне соответствовать схеме Бернулли, эта схема задает идеальный стандарт для промышленного контроля качества продукции, несмотря даже на то, что этот стандарт никогда не достигается вполне точно. Машины подвержены изменениям, и поэтому вероятности не остаются одними и теми же; в режиме работы машин имеется некоторое постоянство, в результате чего длинные серии одинаковых отклонений оказываются более вероятными, чем это было бы при действительной независимости испытаний. Однако с точки зрения контроля качества продукции желательно, чтобы процесс соответствовал схеме Бернулли, и важно то, что в некоторых пределах этого можно добиться. Целью текущего контроля является обнаружение уже на ранней стадии существенных отступлений от идеальной схемы и использование их как указаний на угрожающее нарушение правильности работы машины.

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.