Общее для всех веществ. Органические вещества

Органические вещества - это такие соединения, которые имеют в своем составе атом Карбона. Еще на ранних этапах развития химии все вещества разделяли на две группы: минеральные и органические. В те времена считали, что для того, чтобы синтезировать органическое веществонеобходимо иметь небывалую «жизненную силу», которая присущая только живым биосистемам. Поэтому осуществить синтез органических веществ из минеральных невозможен. И лишь в начале 19 века Ф. Веллер опровергнул существующее мнение и синтезировал карбамид из цианата аммония, то есть он получил органическое вещество из минерального. После чего рядом ученных были синтезированы хлороформ, анилин, ацетатная кислота и множество других химических соединений.

Органические вещества лежат в основе существования живой материи, а также являются основными продуктами питания для человека и животных. Большинство органических соединений являются сырьем для разных отраслей промышленности - пищевой, химической, легкой, фармацевтической и т.д.

На сегодня известно более 30 млн. разнообразных органических соединений. Поэтому органические веществапредставляют наиболее обширный класс Разнообразие органических соединений связано с уникальными свойствами и структурой Карбона. Соседние атомы Карбона связываются между собой одинарными или кратными (двойной, тройной) связями.

Характеризируются наличием ковалентных связей С-С, а также полярных ковалентных связей С-N, C-O, C-Hal, C-металл и т.д. Реакции, проходящие с участием органических веществ, имеют некоторые особенности по сравнению с минеральными. В реакциях неорганических соединений, как правило, участвуют ионы. Зачастую такие реакции очень быстро проходят, иногда мгновенно при оптимальной температуре. В реакциях с обычно участвуют молекулы. Следует сказать, что в этом случае одни ковалентные связи разрываются, а другие при этом образуются. Как правило, данные реакции протекают значительно медленнее, а для их ускорения необходимо повысить температуру или использовать катализатор (кислота или основание).

Как образуются органические вещества в природе? Большая часть органических соединений в природе синтезируется в из диоксида карбона и воды в хлорофиллах зеленых растений.

Классы органических веществ.

Основана на теории О. Бутлерова. Систематическая классификация является фундаментом научной номенклатуры, что дает возможность назвать органическое вещество, исходя из существующей структурной формулы. Классификация основана на двух основных признаках - структуре карбонового скелета, количеству и размещению функциональных групп в молекуле.

Карбоновый скелет - это стабильная в разных часть молекулы органического вещества. В зависимости от его строения все органические вещества разделяются на группы.

К ациклическим соединениям относят вещества с прямой или разветвленной углеродной цепью. К карбоциклическим соединениям относят вещества с циклами, их разделяют на две подгруппы - алициклические и ароматические. Гетероциклические соединения - вещества, в основе молекул которых циклы, образованы атомами Карбона и атомами других химических элементов (Оксиген, Нитроген, Сульфур), гетероатомами.

Также органические вещества классифицируют по наличию функциональных групп, которые входят в состав молекул. Например, классы углеводородов (исключение - в их молекулах нет функциональных групп), фенолов, спиртов, кетонов, альдегидов, аминов, эфиров, карбоновых кислот, и т.д. Следует помнить, что каждая функциональная группа (СООН, OH, NH2, SH, NH, NO) обуславливает физико-химические свойства данного соединения.

Первый подход – по природе углеводородного скелета

I. Ациклические или алифатические соединения - не содержат цикл:

    предельные (насыщенные, парафиновые)

    непредельные (ненасыщенные) с двойными, тройными связями.

II. Карбоциклические (в цикле только углерод) соединения:

    алициклические – насыщенные и ненасыщенные циклические углеводороды;

    ароматические – сопряженные циклические соединения с особыми ароматическими свойствами.

III. Гетероциклические соединения - в составе цикла гетероатомы (heteros – иной).

Второй подход – по природе функциональной группы, определяющей химические свойства соединения.

Функциональная группа

Название

Углеводороды

Ацетилен

Галогенсодержащие соединения

Галогенопроизводные

–Hal (halogen)

Хлористый этил, этилхлорид

Кислородосодержащие соединения

Спирты, фенолы

CH 3 CH 2 OH

Этиловый спирт, этанол

Простые эфиры

CH 3 –O–CH 3

Диметиловый эфир

Альдегиды

Уксусный альдегид, этаналь

Ацетон, пропанон

Карбоновые кислоты

Уксусная кислота, этановая кислота

Сложные эфиры

Этиловый эфир уксусной кислоты, этилацетат

Галогенангидриды

Хлорангидрид уксусной кислоты, ацетилхлорид

Ангидриды

Ангидрид уксусной кислоты

Амид уксусной кислоты, ацетамид

Азотосодержащие соединения

Нитросоединения

Нитрометан

Этиламин

Ацетонитрил, нитрил уксусной кислоты

Нитрозосоединения

Нитрозобензол

Гидразосоединения

Фенилгидразин

Азосоединения

C 6 H 5 N=NC 6 H 5

Азобензол

Диазонивые соли

Фенилдиазоний хлорид

Номенклатура органических соединений

1) 1892 г. (Женева, Международный химический конгресс) - женевская ;

2) 1930 г. (Льеж, Международный союз теоретической и прикладной химии - International Union of Pure and Applied Chemistry (IUPAC) - льежская ;

Тривиальная номенклатура : названия дают случайно.

Хлороформ, мочевина.

Древесный спирт, винный спирт.

Муравьиная кислота, янтарная кислота.

Глюкоза, сахароза и т.д.

Рациональная номенклатура : в основе «рациональное звено» - название простейшего представителя класса + названия заместителей (начиная с простейшего) с указанием количества при помощи приставок ди-, три-, тетра-, пента- .

Встречается для простых органических соединений, особенно в старой химической литературе.

Положение заместителей указывают латинскими буквами

или словами “симметричный” (симм -), “несимметричный” (несимм -), орто -(о- ), мета - (м -), пара -(п -),

буквами N–(у азота), О–(у кислорода).

Номенклатура IUPAC (международная)

Основные принципы этой системы номенклатуры следующие.

1. В основе - самая длинная углеводородная цепь со старшей функциональной группой, обозначаемой суффиксом.

2. Атомы углерода в цепи нумеруются последовательно с того конца, к которому ближе расположена старшая функциональная группа.

При нумерации предпочтение (при прочих равных условиях) имеет двойная, затем тройная связь.

Если оба варианта нумерации равнозначны, то направление выбирается таким образом, чтобы сумма цифр, указывающих положение заместителей, была наименьшей (правильней – в которой первой стоит меньшая цифра).

3. К основе названия добавляются, начиная с простейшего, названия заместителей, при необходимости – с указанием их количества при помощи приставок ди-, три-, тетра-, пента-.

При этом для каждого заместителя указывают его номер в цепи.

Положение, название заместителей указывают в префиксе перед названием цепи, отделяя цифры дефисом.

Для функциональных групп цифра может стоять перед названием цепи или после названия цепи перед или после названия суффикса с отделением дефисом;

4. Названия заместителей (радикалов) могут быть системные и тривиальные.

Алкильные радикалы называют, изменяя окончание -ан на -ил в названии соответствующего алкана.

В названии радикала отражается тип атома углерода, имеющего свободную валентность: атом углерода, связанный

с одним углеродным атомом, называется первичным –СН 3 ,

с двумя – вторичным
,

с тремя – третичным

с четырьмя – четвертичным .

Другие радикалы, имея или не имея окончание -ил , обычно носят тривиальное название.

Двухвалентные радикалы имеют окончание -ен или -иден.

Базовое соединение

Название

Структура радикала

Название

Одновалентные радикалы

CH 3 –CH 2 –

CH 3 –CH 2 –CH 3

СH 3 –CH 2 –CH 2 –

Изопропил (втор -пропил)

CH 3 –CH 2 –CH 2 –CH 3

CH 3 –CH 2 –CH 2 –CH 2 –

втор -Бутил

Изобутан

Изобутил

трет -Бутил

CH 3 (CH 2) 3 CH 3

CH 3 (CH 2) 3 CH 2 –

(н -амил)

Изопентан

Изопентил (изоамил)

Неопентан

Неопентил

CH 2 =CH–CH 2 –

CH 3 –CH=CH–

Пропенил

С развитием химической науки и появлением большого числа новых химических соединений все более возрастала необходимость в разработке и принятии понятной ученым всего мира системы их наименования, т.е. . Далее приведем обзор oсновных номенклатур органических соединений.

Тривиальная номенклатура

В истоках развития oрганической химии новым сoединениям приписывали тривиальные названия, т.е. названия сложившиеся исторически и нередко связанные со способом их получения, внешним видом и даже вкусом и т.п. Такая номенклатура органических соединений называется тривиальной. В таблице ниже приведены некоторые из соединений, сохранивших свои названия и в нынешние дни.

Рациональная номенклатура

С расширением списка органических соединений, возникла необходимость связывать их название со Базой рациональной номенклатуры органических соединений является наименование простейшего органического соединения. Например:

Однако, более сложным органическим соединениям невозможно приписать названия подобным способом. В этом случае следует называть соединения согласно правилам систематической номенклатуры ИЮПАК.

Систематическая номенклатура ИЮПАК

ИЮПАК (IUPAC) - Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

В данном случае, называя соединения, следует учитывать местоположение атомов углерода в молекуле и структурных элементов. Наиболее часто применяемой является заместительная номенклатура органических соединений, т.е. выделяется базовая основа молекулы, в которой атомы водорода замещены на какие-либо структурные звенья или атомы.

Прежде чем приступить к построению названий соединений, советуем выучить наименования числовых приставок, корней и суффиксов используемых в номенклатуре ИЮПАК .

А также названия функциональных групп:

Для обозначения числа кратных связей и функциональных групп пользуются числительными:

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

Правила построения названия органического соединения по номенклатуре ИЮПАК:

  1. Выбрать главную цепь молекулы

Определить все присутствующие функциональные группы и их старшинство

Определить наличие кратных связей

  1. Пронумеровать главную цепь, причем нумерацию следует начинать с наиболее близкому к старшей группе конца цепи. При существовании нескольких таких возможностей, нумеруют цепь так, чтобы минимальный номер получили или кратная связь, или другой заместитель, присутствующий в молекуле.

Карбоциклические соединения нумеруют начиная со связанного со старшей характеристической группой атома углерода. При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.

  1. Составить название соединения:

— Определить основу названия соединения, составляющего корень слова, который обозначает предельный углеводород с тем же количеством атомов, что и главная цепь.

— После основы названия следует суффикс, показывающий степень насыщенности и количество кратных связей. Например, — тетраен, — диен . При отсутствии кратных связей используют суффикс – ск.

— Затем, также в суффикс добавляется наименование самой старшей функциональной группы .

— После следует перечисление заместителей в алфавитном порядке с указанием их местоположения арабской цифрой. Например, — 5-изобутил, — 3-фтор. При наличии нескольких одинаковых заместителей указывают их количество и положение, например, 2,5 – дибром-, 1,4,8-тримети-.

Следует учесть, что цифры отделяются от слов дефисом, а между собой – запятыми.

В качестве примера дадим название следующему соединению:

1. Выбираем главную цепь , в состав которой обязательно входит старшая группа – СООН.

Определяем другие функциональные группы : — ОН, — Сl, — SH, — NH 2 .

Кратных связей нет.

2. Нумеруем главную цепь , начиная со старшей группы.

3. Число атомов в главной цепи – 12. Основа названия

10-амино-6-гидрокси -7-хлоро-9-сульфанил-метиловыйэфир додекановой кислоты.

10-амино-6-гидрокси-7-хлоро-9-сульфанил-метилдодеканоат

Номенклатура оптических изомеров

  1. В некоторых классах соединений, таких как альдегиды, окси- и аминокислоты для обозначения взаимного расположения заместителей используют D , L – номенклатуру. Буквой D обозначают конфигурацию правовращающего изомера, L – левовращающего.

В основе D,L -номенклатуры органических соединений лежат проекции Фишера:

  • α-аминокислот и α- оксикислот вычленяют «оксикислотный ключ», т.е. верхние части их проекционных формул. Если гидроксильная (амино-) группа расположена справа, то это D -изомер, слева L -изомер.

Например, представленная ниже винная кислота имеет D — конфигурацию по оксикислотному ключу:

  • чтобы определить конфигурации изомеров сахаров вычленяют «глицериновый ключ», т.е. сравнивают нижние части (нижний асимметрический атом углерода) проекционной формулы сахара с нижней частью проекционной формулы глицеринового альдегида.

Обозначение конфигурации сахара и направление вращения аналогично конфигурации глицеринового альдегида, т.е. D – конфигурации соответствует расположение гидроксильной группы расположена справа, L – конфигурации – слева.

Так, например, ниже представлена D-глюкоза.

2) R -, S-номенклатура (номенклатура Кана, Ингольда и Прелога)

В данном случае заместители при асимметрическом атоме углерода располагаются по старшинству. Оптических изомеры имеют обозначения R и S , а рацемат — RS .

Для описания конфигурации соединения в соответствии с R,S-номенклатурой поступают следующим образом:

  1. Определяют все заместители у асимметричного атома углерода.
  2. Определяют старшинство заместителей, т.е. сравнивают их атомные массы. Правила определения ряда старшинства те же, что и при использовании E/Z-номенклатуры геометрических изомеров.
  3. Ориентируют в пространстве заместители так, чтобы младший заместитель (обычно водород) находился в наиболее отдаленном от наблюдателя углу.
  4. Определяют конфигурацию по расположению остальных заместителей. Если движение от старшего к среднему и далее к младшему заместителю (т.е. в порядке уменьшения старшинства) осуществляется по часовой стрелке, то это R конфигурация, против часовой стрелки — S-конфигурация.

В таблице ниже приведен перечень заместителей, расположенных в порядке возрастания их старшинства:

Категории ,

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.