Однофакторный дисперсионный анализ для начинающих. Многофакторный дисперсионный анализ

Чтобы проанализировать изменчивость признака под воздействием контролируемых переменных, применяется дисперсионный метод.

Для изучения связи между значениями – факторный метод. Рассмотрим подробнее аналитические инструменты: факторный, дисперсионный и двухфакторный дисперсионный метод оценки изменчивости.

Дисперсионный анализ в Excel

Условно цель дисперсионного метода можно сформулировать так: вычленить из общей вариативности параметра 3 частные вариативности:

  • 1 – определенную действием каждого из изучаемых значений;
  • 2 – продиктованную взаимосвязью между исследуемыми значениями;
  • 3 – случайную, продиктованную всеми неучтенными обстоятельствами.

В программе Microsoft Excel дисперсионный анализ можно выполнить с помощью инструмента «Анализ данных» (вкладка «Данные» - «Анализ»). Это надстройка табличного процессора. Если надстройка недоступна, нужно открыть «Параметры Excel» и включить настройку для анализа .

Работа начинается с оформления таблицы. Правила:

  1. В каждом столбце должны быть значения одного исследуемого фактора.
  2. Столбцы расположить по возрастанию/убыванию величины исследуемого параметра.

Рассмотрим дисперсионный анализ в Excel на примере.

Психолог фирмы проанализировал с помощью специальной методики стратегии поведения сотрудников в конфликтной ситуации. Предполагается, что на поведение влияет уровень образования (1 – среднее, 2 – среднее специальное, 3 – высшее).

Внесем данные в таблицу Excel:


Значимый параметр залит желтым цветом. Так как Р-Значение между группами больше 1, критерий Фишера нельзя считать значимым. Следовательно, поведение в конфликтной ситуации не зависит от уровня образования.



Факторный анализ в Excel: пример

Факторным называют многомерный анализ взаимосвязей между значениями переменных. С помощью данного метода можно решить важнейшие задачи:

  • всесторонне описать измеряемый объект (причем емко, компактно);
  • выявить скрытые переменные значения, определяющие наличие линейных статистических корреляций;
  • классифицировать переменные (определить взаимосвязи между ними);
  • сократить число необходимых переменных.

Рассмотрим на примере проведение факторного анализа. Допустим, нам известны продажи каких-либо товаров за последние 4 месяца. Необходимо проанализировать, какие наименования пользуются спросом, а какие нет.



Теперь наглядно видно, продажи какого товара дают основной рост.

Двухфакторный дисперсионный анализ в Excel

Показывает, как влияет два фактора на изменение значения случайной величины. Рассмотрим двухфакторный дисперсионный анализ в Excel на примере.

Задача. Группе мужчин и женщин предъявляли звук разной громкости: 1 – 10 дБ, 2 – 30 дБ, 3 – 50 дБ. Время ответа фиксировали в миллисекундах. Необходимо определить, влияет ли пол на реакцию; влияет ли громкость на реакцию.

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.



Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

nj - число единиц в j-ой группе;

Частная средняя по j-ой группе;

Общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σj2.

.

Между общей дисперсией σ02, внутригрупповой дисперсией σ2 и межгрупповой дисперсией существует соотношение:

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij, (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n 1 , n 2 , …, n m изделий (для простоты полагается, что n 1 =n 2 =...=n m =n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x 11 x 12 … x 1n

x 21 x 22 … x 2n

………………… = (x ij), (i = 1,2, …, m; j = 1,2, …, n).

x m1 x m2 … x mn

Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х 1 ,Х 2 ,...,Х m , выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a 1 ,а 2 ,...,а m и одинаковыми дисперсиями σ 2 , то данная задача сводится к проверке нулевой гипотезы Н 0: a 1 =a 2 =...= а m , осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:

где i* – среднее значение по столбцам;

Ij – элемент матрицы наблюдений;

n – объем выборки.

А общая средняя:

(5)

Сумма квадратов отклонений наблюдений х ij от общей средней ** выглядит так:

2 = 2 + 2 +

2 2 . (6)

Q = Q 1 + Q 2 + Q 3 .

Последнее слагаемое равно нулю

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.

2 =0.

Первое слагаемое можно записать в виде:

В результате получается тождество:

Q = Q 1 + Q 2 , (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент – Q 1 и Q 2 , характеризующих изменчивость этого показателя между партиями (Q 1) и изменчивость внутри партий (Q 2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s 1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k 1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:

Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:

(9)

т.к. с учетом свойств математического ожидания

(10)

Для модели I с фиксированными уровнями фактора F i (i=1,2,...,m) – величины неслучайные, поэтому

M(S ) = 2 /(m-1) +σ 2 .

Гипотеза H 0 примет вид F i = F * (i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы

M(S )= M(S )= σ 2 .

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H 0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.

Применение статистики в этой заметке будет показано на сквозном примере. Предположим, что вы - руководитель производства в компании Perfect Parachute («Идеальный парашют»). Парашюты изготавливаются из синтетических волокон, поставляемых четырьмя разными поставщиками. Одной из основных характеристик парашюта является его прочность. Вам необходимо убедиться, что все поставляемые волокна обладают одинаковой прочностью. Чтобы ответить на этот вопрос, следует разработать схему эксперимента, в ходе которого измеряется прочность парашютов, сотканных из синтетических волокон разных поставщиков. Информация, полученная в ходе этого эксперимента, позволит определить, какой поставщик обеспечивают наибольшую прочность парашютов.

Многие приложения связаны с экспериментами, в которых рассматривается несколько групп или уровней одного фактора. Некоторые факторы, например, температура обжига керамики, могут иметь несколько числовых уровней (т.е. 300°, 350°, 400° и 450°). Другие факторы, например, местоположение товаров в супермаркете, могут иметь категориальные уровни (например, первый поставщик, второй поставщик, третий поставщик, четвертый поставщик). Однофакторные эксперименты, в ходе которых экспериментальные единицы случайным образом распределяются по группам или уровням фактора, называются полностью рандомизированными.

Использование F -критерия для оценки разностей между несколькими математическими ожиданиями

Если числовые измерения фактора в группах являются непрерывными и выполняются некоторые дополнительные условия, для сравнения математических ожиданий нескольких групп применяется дисперсионный анализ (ANOVA - An alysis o f Va riance). Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая - эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате или , примеры в формате

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н 0: μ 1 = μ 2 = … = μ с . Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н 1 : не все μ j одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: μ 1 = μ 2 = μ 3 = μ 4 = μ 5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень - чуть меньшее математическое ожидание, а остальные уровни - одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

Рис. 3. Наблюдается эффект условий эксперимента: μ 4 > μ 1 > μ 2 = μ 3 = μ 5

При проверке гипотезы о равенстве математических ожиданий нескольких генеральных совокупностей полная вариация разделяется на две части: межгрупповую вариацию, обусловленную разностями между группами, и внутригрупповую, обусловленную разностями между элементами, принадлежащими одной группе. Полная вариация выражается полной суммой квадратов (SST – sum of squares total). Поскольку нулевая гипотеза заключается в том, что математические ожидания всех с групп равны между собой, полная вариация равна сумме квадратов разностей между отдельными наблюдениями и общим средним (среднее средних) , вычисленным по всем выборкам. Полная вариация:

где - общее среднее, X ij - i -e наблюдение в j -й группе или уровне, n j - количество наблюдений в j -й группе, n - общее количество наблюдений во всех группах (т.е. n = n 1 + n 2 + … + n c ), с - количество изучаемых групп или уровней.

Межгрупповая вариация , называемая обычно межгрупповой суммой квадратов (SSA – sum of squares among groups), равна сумме квадратов разностей между выборочным средним каждой группы j и общим средним , умноженных на объем соответствующей группы n j :

где с - количество изучаемых групп или уровней, n j - количество наблюдений в j -й группе, j - среднее значение j -й группы, - общее среднее.

Внутригрупповая вариация , называемая обычно внутригрупповой суммой квадратов (SSW – sum of squares withing groups), равна сумме квадратов разностей между элементами каждой группы и выборочным средним этой группы j :

где Х ij - i -й элемент j -й группы, j - среднее значение j -й группы.

Поскольку сравнению подвергаются с уровней фактора, межгрупповая сумма квадратов имеет с – 1 степеней свободы. Каждый из с уровней обладает n j – 1 степенями свободы, поэтому внутригрупповая сумма квадратов имеет n – с степеней свободы, и

Кроме того, общая сумма квадратов имеет n – 1 степеней свободы, поскольку каждое наблюдение Х ij сравнивается с общим средним , вычисленным по всем n наблюдениям. Если каждую из этих сумм разделить на соответствующее количество степеней свободы, возникнут три вида дисперсии: межгрупповая (mean square among - MSA), внутригрупповая (mean square within - MSW) и полная (mean square total - MST):

Несмотря на то что основное предназначение дисперсионного анализа - сравнить математические ожидания с групп, чтобы выявить эффект условий эксперимента, его название обусловлено тем, что главным инструментом является анализ дисперсий разного типа. Если нулевая гипотеза является истинной, и между математическими ожиданиями с групп нет существенных различий, все три дисперсии - MSA, MSW и MST - являются оценками дисперсии σ 2 , присущей анализируемым данным. Таким образом, чтобы проверить нулевую гипотезу Н 0: μ 1 = μ 2 = … = μ с и альтернативную гипотезу Н 1 : не все μ j одинаковы j = 1, 2, …, с ), необходимо вычислить статистику F -критерия, представляющую собой отношение двух дисперсий, MSA и MSW. Тестовая F -статистика в однофакторном дисперсионном анализе

Статистика F -критерия подчиняется F -распределению с с – 1 степенями свободы в числителе MSA и n – с степенями свободы в знаменателе MSW . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F F U , присущего F -распределению с с – 1 n – с степенями свободы в знаменателе. Таким образом, как показано на рис. 4, решающее правило формулируется следующим образом: нулевая гипотеза Н 0 отклоняется, если F > F U ; в противном случае она не отклоняется.

Рис. 4. Критическая область дисперсионного анализа при проверке гипотезы Н 0

Если нулевая гипотеза Н 0 является истинной, вычисленная F -статистика близка к 1, поскольку ее числитель и знаменатель являются оценками одной и той же величины - дисперсии σ 2 , присущей анализируемым данным. Если нулевая гипотеза Н 0 является ложной (и между математическими ожиданиями разных групп существует значительная разница), вычисленная F -статистика будет намного больше единицы, поскольку ее числитель, MSA, помимо естественной изменчивости данных, оценивает эффект условий эксперимента или разности между группами, в то время как знаменатель MSW оценивает лишь естественную изменчивость данных. Таким образом, процедура ANOVA представляет собой F -критерий, в котором при заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F -статистика больше верхнего критического значения F U , присущего F -распределению с с – 1 степенями свободы в числителе и n – с степенями свободы в знаменателе, как показано на рис. 4.

Для иллюстрации однофакторного дисперсионного анализа вернемся к сценарию, изложенному в начале заметки. Цель эксперимента - определить, имеют ли парашюты, сотканные из синтетического волокна, полученного от разных поставщиков, одинаковую прочность. В каждой из групп соткано по пять парашютов. Группы разделены по поставщикам- Поставщик 1, Поставщик 2, Поставщик 3 и Поставщик 4. Прочность парашютов измеряется с помощью специального устройства, испытывающего ткань на разрыв с двух сторон. Сила, необходимая для разрыва парашюта, измеряется по особой шкале. Чем выше сила разрыва, тем прочнее парашют. Excel позволяет провести анализ F -статистики одним кликом. Пройдите по меню Данные Анализ данных , и выберите строку Однофакторный дисперсионный анализ , заполните открывшееся окно (рис. 5). Результаты эксперимента (сила разрыва), некоторые описательные статистики и результаты однофакторного дисперсионного анализа представлены на рис. 6.

Рис. 5. Окно Однофакторный дисперсионный анализ Пакета анализа Excel

Рис. 6. Показатели прочности парашютов, сотканных из синтетических волокон, полученных от разных поставщиков, описательные статистики и результаты однофакторного дисперсионного анализа

Анализ рисунка 6 показывает, что между выборочными средними наблюдается некоторая разница. Средняя прочность волокон, полученных от первого поставщика, равна 19,52, от второго - 24,26, от третьего - 22,84 и от четвертого - 21,16. Можно ли назвать эту разницу статистически значимой? Распределение силы разрыва продемонстрировано на диаграмме разброса (рис. 7). На ней ясно видны разности как между группами, так и внутри них. Если бы объем каждой группы был больше, для их анализа можно было бы применить диаграмму «ствол и листья», блочную диаграмму или график нормального распределения.

Рис. 7. Диаграмма разброса прочности парашютов, сотканных из синтетических волокон, полученных от четырех поставщиков

Нулевая гипотеза утверждает, что между средними показателями прочности нет существенных различий: Н 0: μ 1 = μ 2 = μ 3 = μ 4 . Альтернативная гипотеза заключается в том, что существует по крайней мере один поставщик, у которого средняя прочность волокон отличается от других: Н 1 : не все μ j одинаковы (j = 1, 2, …, с ).

Общее среднее (см. рис. 6) =СРЗНАЧ(D12:D15) = 21,945; для определения также можно усреднить все 20 исходных чисел: =СРЗНАЧ(A3:D7). Значения дисперсий рассчитываются Пакетом анализа и отражаются в табличке Дисперсионный анализ (см. рис. 6): SSA = 63,286, SSW = 97,504, SST = 160,790 (см. колонку SS таблицы Дисперсионный анализ рисунка 6). Средние значения вычисляются путем деления этих сумм квадратов на соответствующее количество степеней свободы. Поскольку с = 4, а n = 20, получаем следующие значения степеней свободы; для SSA: с – 1 = 3; для SSW: n – c = 16; для SST: n – 1 = 19 (см. колонку df ). Таким образом: MSA = SSA / (с – 1) = 21,095; MSW = SSW / (n – c ) = 6,094; MST = SST / (n – 1 ) = 8,463 (см. колонку MS ). F -статистика = MSA / MSW = 3,462 (см. колонку F ).

Верхнее критическое значение F U , характерное для F -распределения, определяется по формуле =F.ОБР(0,95;3;16) = 3,239. Параметры функции =F.ОБР(): α = 0,05, числитель имеет три степени свободы, а знаменатель - 16. Таким образом, вычисленная F -статистика, равная 3,462, превышает верхнее критическое значение F U = 3,239, нулевая гипотеза отклоняется (рис. 8).

Рис. 8. Критическая область дисперсионного анализа при уровне значимости, равном 0,05, если числитель имеет три степени свободы, а знаменатель -16

р -значение, т.е. вероятность того, что при истинной нулевой гипотезе F -статистика не меньше 3,46, равно 0,041 или 4,1% (см. колонку р-Значение таблицы Дисперсионный анализ рисунка 6). Поскольку эта величина не превышает уровень значимости α = 5%, нулевая гипотеза отклоняется. Более того, р -значение свидетельствует о том, что вероятность обнаружить такую или большую разность между математическими ожиданиями генеральных совокупностей при условии, что на самом деле они одинаковы, равна 4,1%.

Итак. Между четырьмя выборочными средними существует разница. Нулевая гипотеза заключалась в том, что все математические ожидания четырех генеральных совокупностей равны между собой. В этих условиях мера полной изменчивости (т.е. полная вариация SST) прочности всех парашютов вычисляется путем суммирования квадратов разностей между каждым наблюдением X ij и общим средним . Затем полная вариация разделялась на два компонента (см. рис. 1). Первый компонент представлял собой межгрупповую вариацию SSA, а второй - внутригрупповую SSW.

Чем объясняется изменчивость данных? Иначе говоря, почему все наблюдения не одинаковы? Одна из причин заключается в том, что разные фирмы поставляют волокна разной прочности. Это частично объясняет, почему группы имеют разные математические ожидания: чем сильнее эффект условий эксперимента, тем больше разность между математическими ожиданиями групп. Другой причиной изменчивости данных является естественная изменчивость любого процесса, в данном случае - производства парашютов. Даже если бы все волокна приобретались у одного и того же поставщика, их прочность была бы неодинаковой при прочих равных условиях. Поскольку этот эффект проявляется в каждой из групп, он называется внутригрупповой вариацией.

Разности между выборочными средними называются межгрупповой вариацией SSA. Часть внутригрупповой вариации, как уже указывалось, объясняется принадлежностью данных разным группам. Однако даже если бы группы были совершенно одинаковыми (т.е. нулевая гипотеза была бы истинной), межгрупповая вариация все равно существовала. Причина этого заключается в естественной изменчивости процесса производства парашютов. Поскольку выборки разные, их выборочные средние отличаются друг от друга. Следовательно, если нулевая гипотеза является истинной, как межгрупповая, так и внутригрупповая изменчивость представляют собой оценку изменчивости генеральной совокупности. Если нулевая гипотеза является ложной, межгрупповая гипотеза будет больше. Именно этот факт лежит в основе F -критерия для сравнения разностей между математическими ожиданиями нескольких групп.

После выполнения однофакторного дисперсионного анализа и обнаружения значительной разницы между фирмами остается неизвестным, какой же из поставщиков существенно отличается от остальных. Нам известно лишь, что математические ожидания генеральных совокупностей не равны. Иначе говоря, по крайней мере одно из математических ожиданий существенно отличается от других. Чтобы определить, какой из поставщиков отличается от других, можно воспользоваться процедурой Тьюки , использующей попарное сравнение между поставщиками. Эта процедура была разработана Джоном Тьюки. Впоследствии он и К. Крамер независимо друг от друга модифицировали эту процедуру для ситуаций, в которых объемы выборок отличаются друг от друга.

Множественное сравнение: процедура Тьюки-Крамера

В нашем сценарии для сравнения прочности парашютов использовался однофакторный дисперсионный анализ. Обнаружив значительные различия между математическими ожиданиями четырех групп, необходимо определить, какие именно группы отличаются друг от друга. Хотя существует несколько способов решить эту задачу, мы опишем лишь процедуру множественного сравнения Тьюки-Крамера. Этот метод является примером процедур апостериорного сравнения (post hoc comparison), поскольку проверяемая гипотеза формулируется после анализа данных. Процедура Тьюки-Крамера позволяет одновременно сравнить все пары групп. На первом этапе вычисляются разности X j – X j , где j ≠ j , между математическими ожиданиями с(с – 1)/2 групп. Критический размах процедуры Тьюки-Крамера вычисляется по формуле:

где Q U - верхнее критическое значение распределения стьюдентизированного размаха, имеющего с степеней свободы в числителе и n – с степеней свободы в знаменателе.

Если объемы выборок не одинаковы, критический размах вычисляется для каждой пары математических ожиданий отдельно. На последнем этапе каждая из с(с – 1)/2 пар математических ожиданий сравнивается с соответствующим критическим размахом. Элементы пары считаются значимо различными, если модуль разности |X j – X j | между ними превышает критический размах.

Применим процедуру Тьюки-Крамера к задаче о прочности парашютов. Поскольку компания, производящая парашюты, имеет четыре поставщика, следует проверить 4(4 – 1)/2 = 6 пар поставщиков (рис. 9).

Рис. 9. Попарные сравнения выборочных средних

Поскольку все группы имеют одинаковый объем (т.е. все n j = n j ), достаточно вычислить только один критический размах. Для этого по таблице Дисперсионного анализа (рис. 6) определим величину MSW = 6,094. Затем найдем величину Q U при α = 0,05, с = 4 (число степеней свободы в числителе) и n – с = 20 – 4 = 16 (число степеней свободы в знаменателе). К сожалению, я не нашел соответствующей функции в Excel, так что воспользовался таблицей (рис. 10).

Рис. 10. Критическое значение стьюдентизированного размаха Q U

Получаем:

Поскольку лишь 4,74 > 4,47 (см. нижнюю таблицу рис. 9), статистически значимая разница существует между первым и вторым поставщиком. Все остальные пары имеют выборочные средние, которые не позволяют говорить о их различии. Следовательно, средняя прочность парашютов, сотканных из волокон, приобретенных у первого поставщика, значимо меньше, чем у второго.

Необходимые условия однофакторного дисперсионного анализа

При решении задачи о прочности парашютов мы не проверяли, выполняются ли условия, при которых можно использовать однофакторный F -критерий. Как же узнать, можно ли применять однофакторный F -критерий при анализе конкретных экспериментальных данных? Однофакторный F -критерий можно применять, только если выполняются три основных предположения: экспериментальные данные должны быть случайными и независимыми, иметь нормальное распределение, а их дисперсии должны быть одинаковыми.

Первое предположение - случайность и независимость данных - должно выполняться всегда, поскольку корректность любого эксперимента зависит от случайности выбора и/или процесса рандомизации. Чтобы избежать искажения результатов, необходимо, чтобы данные извлекались из с генеральных совокупностей случайно и независимо друг от друга. Аналогично данные должны быть случайным образом распределенными по с уровням интересующего нас фактора (экспериментальным группам). Нарушение этих условий может серьезно исказить результаты дисперсионного анализа.

Второе предположение - нормальность - означает, что данные извлечены из нормально распределенных генеральных совокупностей. Как и для t -критерия, однофакторный дисперсионный анализ на основе F -критерия относительно мало чувствителен к нарушению этого условия. Если распределение не слишком значительно отличается от нормального, уровень значимости F -критерия изменяется мало, особенно если объем выборок достаточно велик. Если же условие о нормальности распределения нарушается серьезно, следует применять .

Третье предположение - однородность дисперсии - означает, что дисперсии каждой генеральной совокупности равны между собой (т.е. σ 1 2 = σ 2 2 = … = σ j 2). Это предположение позволяет решить, разделять или объединять внутригрупповые дисперсии. Если объемы групп совпадают, условие однородности дисперсии слабо влияет на выводы, полученные с помощью F -критерия. Однако, если объемы выборок неодинаковы, нарушение условия о равенстве дисперсий может серьезно исказить результаты дисперсионного анализа. Таким образом, следует стремиться к тому, чтобы объемы выборок были одинаковыми. Одним из методов проверки предположения об однородности дисперсии является критерий Левенэ , описанный ниже.

Если из всех трех условий нарушается лишь условие об однородности дисперсии, можно применять процедуру, аналогичную t -критерию, использующему раздельную дисперсию (подробнее см. ). Однако, если предположения о нормальном распределении и однородности дисперсии нарушаются одновременно, необходимо выполнить нормализацию данных и уменьшить разности между дисперсиями или применить непараметрическую процедуру.

Критерий Левенэ для проверки однородности дисперсии

Несмотря на то что F -критерий относительно устойчив к нарушениям условия о равенстве дисперсий в группах, грубое нарушение этого предположения существенно влияет на уровень значимости и мощность критерия. Возможно, одним из наиболее мощных является критерий Левенэ . Для проверки равенства дисперсий с генеральных совокупностей проверим следующие гипотезы:

Н 0: σ 1 2 = σ 2 2 = … = σ j 2

Н 1 : не все σ j 2 одинаковы (j = 1, 2, …, с )

Модифицированный критерий Левенэ основан на утверждении, что если изменчивость в группах одинакова, для проверки нулевой гипотезы о равенстве дисперсий можно применить анализ дисперсии абсолютных величин разностей между наблюдениями и медианами групп. Итак, сначала следует вычислить абсолютные величины разностей между наблюдениями и медианами в каждой группе, а затем выполнить однофакторный дисперсионный анализ полученных абсолютных величин разностей. Для иллюстрации критерия Левенэ вернемся к сценарию, изложенному в начале заметки. Используя данные, представленные на рис. 6, проведем аналогичный анализ, но в отношении модулей разниц исходных данных и медиан по каждой выборке отдельно (рис. 11).

В данной теме будет рассмотрен только однофакторный дисперсионный анализ, используемый для несвязанных выборок. Оперируя как основным понятием дисперсии, этот анализ базируется на расчете дисперсий трех типов:

Общая дисперсия, вычисленная по всей совокупности экспериментальных данных;

Внутригрупповая дисперсия, характеризующая вариативность признака в каждой выборке;

Межгрупповая дисперсия, характеризующая вариативность групповых средних.

Основное положение дисперсионного анализа гласит: общая дисперсия равна сумме внутригрупповой и межгруппповой дисперсий.

Это положение можно записать в виде уравнения:

где х ij - значения всех переменных, полученных в эксперименте; при этом индекс j меняется от 1 до р , где р - число сравниваемых выборок, их может быть три и больше; индекс i соответствует числу элементов в выборке (их может быть два и больше);

Общая средняя всей анализируемой совокупности данных;

Средняя j выборки;

N - общее число всех элементов в анализируемой совокупности экспериментальных данных;

р - число экспериментальных выборок.

Проанализируем это уравнение более подробно.

Пусть у нас имеется р групп (выборок). В дисперсионном анализе каждую выборку представляют в виде одного столбца (или строки) чисел. Тогда, для того чтобы можно было указать на конкретную группу (выборку), вводится индекс j , который меняется соответственно от j = 1 до j = р. Например, если у нас 5 групп (выборок), то р=5, а индекс j меняется соответственно от j= 1 до j= 5.

Пусть перед нами стоит задача - указать конкретный элемент (значение измерения) какой-либо выборки. Для этого мы должны знать номер этой выборки, например 4, и расположение элемента (измеренного значения) в этой выборке. Этот элемент может располагаться в выборке начиная с первого значения (первая строчка) до последнего (последняя строчка). Пусть наш искомый элемент расположен на пятой строчке. Тогда его обо значение будет таково: х 54 . Это значит, что выбран пятый элемент в строчке из четвертой выборки.

В общем случае в каждой группе (выборке) число составляющих ее элементов может быть различным - поэтому обозначим число элементов в j группе (выборке) через n j . Полученные в эксперименте значения признака в j группе обозначим через х ij , где i = 1, 2, ... n - порядковый номер наблюдения в j группе.

Дальнейшие рассуждения целесообразно проводить с опорой на таблицу 35. Отметим, однако, что для удобства дальнейших рассуждений, выборки в этой таблице представлены не как столбцы, а как строчки (что, однако, не принципиально).

В итоговой, последней строке таблицы даны: общий объем всей выборки - N, сумма всех полученных значений G и общая средняя всей выборки . Эта общая средняя получена как сумма всех элементов анализируемой совокупности экспериментальных данных, обозначенная выше как G, деленная на число всех элементов N.


В крайнем правом столбце таблицы представлены величины средних по всем выборкам. Например, в j выборке (строчка таблицы обозначенная символом j) величина средней (по всей j выборке) такова:

Предположим, что на автоматической линии несколько станков параллельно выполняют одинаковую операцию. Для правильного планирования последующей обработки важно знать, насколько однотипны средние размеры деталей, получаемые на параллельно работающих станках. Здесь имеет место лишь один фактор, влияющий на размер деталей, это станки, на которых они изготовляются. Необходимо выяснить, насколько существенно влияние этого фактора на размеры деталей. Предположим, что совокупности размеров деталей, изготовленных на каждом станке, имеют нормальное распределение и равные дисперсии.

Имеем т станков, следовательно, т совокупностей или уровней, на которых произведено n 1 , n 2 ,..., п т наблюдений. Для простоты рассуждений предположим, что n 1 =n 2 =…= п т. Размеры деталей, составляющие n i наблюдений на i -м уровне, обозначим х i 1 ,х i 2 ,..., x in . Тогда все наблюдения можно представить в виде таблицы, которая называется матрицей наблюдений (табл. 3.1).

Таблица 3.1

Уровни Результаты наблюдений
1 2 j n
x 11 x 12 x 1 j x 1 n
x 21 x 22 x 2 j x 2 n
x 31 x 32 x 3 j x 3 n
i x i1 x i2 x i j x i n
m x m1 x m2 x mj x mn

Будем полагать, что для i -го уровня п наблюдений имеют среднюю β i , равную сумме общей средней µ и вариации ее, обусловленной i -м уровнем фактора, т.е. β i = µ + γ i . Тогда одно наблюдение можно представить в следующем виде:

x i j = µ + γ i . +ε ij = β i +ε ij (3.1)

где µ - общая средняя; γ i - эффект, обусловленный i -м уровнем фактора; ε ij - вариация результатов внутри отдельного уровня.

Член ε ij характеризует влияние всех не учтенных моделью (3.1) факторов. Согласно обшей задаче дисперсионного анализа нужно оценить существенность влияния фактора γ на размеры деталей. Общую вариацию переменной x i j можно разложить на части, одна из которых характеризует влияние фактора γ, другая - влияние неучтенных факторов. Для этого необходимо найти оценку общей средней µ и оценки средних по уровням β i . Очевидно, что оценкой β является средняя арифметическая п наблюдений i-го уровня, т.е.

Звездочка в индексе при х означает, что наблюдения фиксированы на i-м уровне. Средняя арифметическая всей совокупности наблюдений является оценкой общей средней µ, т.е.

Найдем сумму квадратов отклонений x i j от , т.е.

Представим ее в виде (3.2)

Причем =

Но = 0, так как это есть сумма отклонений переменных одной совокупности от средней арифметической этой же совокупности, т.е. вся сумма равна нулю. Второй член суммы (3.2) запишем в виде:



Или

Слагаемое является суммой квадратов разностей между средними уровней и средней всей совокупности наблюдений. Эта сумма называется суммой квадратов отклонений между группами и характеризует расхождение между уровнями. Величину , называют также рассеиванием по факторам, т.е. рассеиванием за счет исследуемого фактора.

Слагаемое является суммой квадратов разностей между отдельными наблюдениями и средней i-го уровня. Эта сумма назы­вается суммой квадратов отклонений внутри группы и характеризует расхождение между наблюдениями i-го уровня. Величину называют также остаточным рассеиванием, т.е. рассеиванием за счет неучтенных факторов.

Величину называется общей или полной суммой квадратов отклонений отдельных наблюдений от общей средней .

Зная суммы квадратов SS, SS 1 и SS 2 , можно оценить несмещенные оценки соответствующих дисперсий - общей, межгрупповой и внутригрупповой (таблица 3.2).

Если влияние всех уровней фактора γ одинаково, то и - оценки общей дисперсии.

Тогда для оценки существенности влияния фактора γ достаточно проверить нулевую гипотезу H 0: = .

Для этого вычисляют критерий Фишера F B = , с числом степеней свободы k 1 = т - 1 и k 2 = т(п - 1). Затем по таблице F-распределения (см. таблицу распределения критерия Фишера) для уровня значимости α находят критическое значение F кр.

Таблица 3.2

Если F B > F кр то нулевая гипотеза отвергается и делается заключение о существенном влиянии фактора γ.

При F B < F кр нет основания отвергать нулевую гипотезу и можно считать, что влияние фактора γ несущественно.



Сравнивая межгрупповую и остаточную дисперсии, по величине их отношения судят, насколько сильно проявляется влияние факторов.

Пример 3.1. Имеется четыре партии тканей для спецодежды. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в табл. 3.3.

Таблица 3.3

Номер партии, т

Требуется выяснить, существенно ли влияние различных партий сырья на величину разрывной нагрузки.

Решение.

В данном случае т = 4, п = 5. Среднюю арифметическую каждой строки вычисляем по формуле

Имеем: =(200+140+170+145+165)/5=164; =170; =202; = 164.

Найдем среднюю арифметическую всей совокупности:

Вычислим величины, необходимые для построения табл. 3.4:

· сумму квадратов отклонений между группами SS 1 , с k 1 =т –1=

4-1=3 степенями свободы:

· сумму квадратов отклонений внутри группы SS 2 с k 2 = тп – т= =20-4=16 степенями свободы:

· полную сумму квадратов SS c k=mn-1=20-1=19 степенями свободы:

По найденным значениям оценим дисперсию, по формулам (табл. 3.2) составим (табл. 3.4) для рассматриваемого примера.

Таблица 3.4

Проведем статистический анализ по критерию Фишера. Вычислим F B = =(4980 1/3)/(7270 1/16) =1660/454,4= 3,65.

По таблице F-распределения (см. приложения) находим значение F Kp при k 2 = 16 и k 1 = 3 степенях свободы и уровне значимости α = 0,01. Имеем F Kp = 5,29.

Вычисленное значение F B меньше табличного, поэтому можно утверждать, что нулевая гипотеза не отвергается, а это значит, что различие между тканями в партиях не влияет на величину разрывной нагрузки.

В пакете Анализ данных инструмент Однофакторный дисперсионный анализ используется для проверки гипотезы о сходстве средних значений двух или более выборок, принадлежащих одной и той же генеральной совокупности. Рассмотрим работу пакета для проведения однофакторного дисперсионного анализа.

Решим пример 3.1, используя инструмент Однофакторный дисперсионный анализ.