Океанические желоба. Глубоководный желоб

Поскольку я любитель всего необычного на нашей планете, не могу пройти мимо этого вопроса не поделившись своими знаниями. Расскажу о том, как образуются желоба и опишу самый глубокий из них - Марианский.

Что такое глубоководный желоб

В некоторых частях океана обнаружены особые формы дна - глубоководные желоба. Как правило, они представляют собой узкую впадину, склоны которой отвесно уходят вниз на многие километры. Фактически это переходная область между океаном и материком, расположенная вдоль островных дуг и, как правило, повторяющая их очертания.


Как образуются глубоководные желоба

Причина, по которой происходит образование таких участков - подвижность литосферных плит, когда океаническая уходит под материковую, которая значительно тяжелее. Эти районы отличаются повышенной сейсмичностью и вулканизмом. Большая часть желобов расположена в Тихом океане, и там же находится самый глубокий - Марианский. Всего насчитывается 14 таких образований, но я приведу пример только крупнейших. Итак:

  • Марианский - 11035 м., Тихий океан;
  • Тонга - 10889 м., Тихий океан;
  • Филиппинский - 10236 м., Тихий океан;
  • Кермадек - 10059 м., Тихий океан;
  • Идзу-Огасавара - 9826 м., Тихий океан.

Марианский желоб

Его протяженность составляет более тысячи километров, однако, несмотря на огромную глубину и внушительные размеры, это место ничем не выделяется на поверхности. Несмотря на развитие техники в наше время, этого недостаточно для детального изучения этого места и его обитателей, а причина тому - гигантское давление у дна. Однако даже поверхностные исследования показали, что и в таких условиях возможна жизнь. Например, были обнаружены огромные амебы - ксенофиофоры, размеры которых достигают 12 сантиметров. Предположительно, это последствие непростых условий: давление, низкая температура и недостаточная освещенность.


Это место признано национальным памятником США, а также является самым крупным в мире морским заповедником. Поэтому здесь запрещена любая деятельность, будь то ловля рыбы или добыча полезных ископаемых.

Вытянутые в длину, шириной иногда менее 100 км океанические впадины, с крутыми склонами, происхождение которых связано с опусканием края плит обратно в мантию, называются глубоководными желобами. Некоторые из самых глубоких точек на Земле обнаружены в глубоководных желобах. Глубина желоба Ява в Вест-Индии и Марианского желоба в Тихом океане в среднем между 7450 и 11 200 метров.

Глубоководный желоб формируется вдоль конвергентной границы двух плит. Субдукция роет океанические траншеи, когда одна плита сталкивается с другой, подминая ее под себя и порождая глубоководный желоб. Передняя кромка верхней плиты крошится и задирается вверх подобно снегу впереди снегоочистителя. Силы столкновения и непрерывный нажим вдоль границы двух плит формируют воздымающиеся горные цепи параллельно желобу, такие, как Анды вдоль Перуано-Чилийского желоба.

До того как была признана идея глобальной тектоники плит, морские геологи по поводу происхождения глубоководных желобов находились в тупике. Они не могли понять, что вызвало столь углубленные долины на океаническом дне. Они продолжали пытаться выяснить, почему ядро или нижняя мантия, как представлялось, сносят вниз литосферу. Они многого не знали об конвекционных потоках в том месте и поэтому не могли найти источника энергии для движения континентов.

Так как большинство зон субдукции заложено в Тихом океане, края Тихоокеанской плиты, где поверхностные породы постоянно сталкиваются и разрушаются, имеют наиболее глубоко прорытые желоба. Тихий океан окружен этими глубоководными желобами вследствие постоянного воздействия Тихоокеанской плиты на Северо-Американскую, Евразийскую, Индо-Австралийскую, Филиппинскую и Антарктическую плиты.

Глубоководные желоба обнаружены на обеих континентальных окраинах и в зонах конвергенции (схождения) океан-океан вдоль островных дуг. Желоб Ява, известный также как желоб Сунда, является самой глубокой впадиной в Индийском океане, в 350 км от побережий островов Суматра и Ява (Индонезия). Желоб протяженностью 2600 км и глубочайшая точка в Индийском океане – место грандиозного землетрясения 26 декабря 2004 года силой 9 баллов и цунами, которые погубили свыше 200 000 человек.

Двадцать два глубоководных желоба было идентифицировано, хотя не все они являются основными желобами. Из них 18 находятся в Тихом океане и один (желоб Ява) в Индийском океане. Глубины основных желобов больше чем 5,5 км, а ширина между ними – 16 и 35 км. Самое глубокое место – впадина Челленджер (глубиной 11 км) обнаружено в Марианском желобе. Перуано-Чилийский желоб, находящийся недалеко от побережья Южной Америки, является самым протяженным глубоководным желобом длиной 1609 км, в то время как Японский желоб длиной 241 км – самый короткий.

Глубоководные желоба. Это сравнительно узкие впадины с крутыми, отвесными склонами, тянущиеся на сотни и тысячи километров. Глубина таких впадин очень велика. Глубоководные желоба имеют почти ровное дно. Именно в них находятся самые большие глубины океанов. Обычно желоба расположены с океанической стороны дуг, повторяя их изгиб, или протягиваются вдоль материков. Глубоководные желоба - это переходная зона между материком и океаном.

Образование желобов связано с движением . Океаническая плита изгибается и как бы «ныряет» под континентальную. При этом край океанической плиты, погружаясь в мантию, образует желоб. Районы глубоководных желобов находятся в зонах проявления и высокой . Это объясняется тем, что желоба примыкают к краям литосферных плит.

По мнению большинства ученых, глубоководные желоба считаются краевыми прогибами и именно там идет интенсивное накопление осадков .

Самый глубокий на Земле - Марианский желоб . Его глубина достигает 11022 м. Он был обнаружен в 50-е годы экспедицией на советском исследовательском судне «Витязь». Исследования этой экспедиции имели очень большое значение для изучения желобов.

Глубоководные желоба Земли

Название желоба Глубина, м Океан
Марианский желоб 11022 Тихий
() 10882 Тихий
Филиппинский желоб 10265 Тихий
Кермадек (Океания) 10047 Тихий
Идзу-Огасавара 9810 Тихий
Курило-Камчатский желоб 9783 Тихий
Желоб Пуэрто-Рико 8742
Японский желоб 8412 Тихий
Южно-Сандвичев желоб 8264 Атлантический
Чилийский желоб 8180 Тихий
Алеутский желоб 7855 Тихий
Зондский желоб 7729 Индийский
Центральноамериканский желоб 6639 Тихий
Перуанский желоб 6601 Тихий

Вот уже многие годы морские глубины манят людей. Вода, как известно, занимает более 2/3 поверхности Земли. Поэтому исследовать ее можно очень долго. Глубоководные океанические желоба в наши дни привлекают множество ученых. Неудивительно, ведь человечество с давних времен стремилось познать неизвестное. К тому же глубоководные желоба на карте появились относительно недавно.

Однако не всегда технические возможности позволяют нам удовлетворить свое любопытство. Океаны до сих пор надежно хранят множество тайн, скрытых под толщей воды. Люди лишь в конце 19 века начали изучать глубоководные впадины и равнины. А это значит, что нам еще надолго хватит объектов для исследования.

Где расположены глубоководные впадины

Известно, что дно Мирового океана - это равнина, которая лежит на глубине примерно от двух метров до 6 тыс. м. Дно в некоторых участках изборождено, словно морщинами, впадинами. Они имеют различную глубину. Эти впадины находятся в основном в зонах геологической активности. Более 8 тыс. метров составляет их глубина.

Как появились глубоководные впадины

Их возникновение связано с процессами, которые происходили в давние времена, когда наша Земля только формировалась. В наши дни сложно представить себе те годы, когда на планете не существовало океана. Однако такие времена были.

Человеку все еще не доступны многие знания о процессах, протекающих во вселенной. Тем не менее о зарождении планет нам кое-что известно. Оставим божественную теорию в стороне и расскажем о том, что думает по этому поводу наука. Гравитация, имевшая огромную силу, скручивала клубки планет из холодного облака, состоящего из газа и пыли. Этот процесс можно лучше понять, представив себе, как хозяйка скатывает колобок из теста. Безусловно, эти клубки получались не идеальной формы. Однако они все-таки отправлялись путешествовать по всей вселенной.

Образование вулканов

Недра нашей планеты в течение первого миллиарда лет такого космического путешествия сильно разогрелись. На это повлияла сила гравитационного сжатия, а также радиоактивный распад изотопов с большим сроком жизни. В те времена таких изотопов было очень много. По всей видимости, недра нашей планеты тогда представляли собой нечто вроде ядерной топки - расплавилась верхняя часть И именно в то время начали действовать вулканы. Огромные массы газов, пепла и водяного пара начали выбрасывать они ввысь. А по склонам вулканов текла огнедышащая лава.

Появление озер и первичного океана

Наша планета в результате этих процессов окуталась туманом. Она скрылась за облаками, которые несли с собой, помимо вулканических газов, большие массы водяных паров. Следует сказать, что в те времена на Земле было нежарко. Ученые провели исследования, в результате которых выяснилось, что температура на планете около первого миллиарда лет ее жизни не превышала 15 °C.

На каплями конденсата падал остывающий В результате этого она сначала покрылась лишь отдельными озерцами и лужами. Изначально как вы теперь знаете, не была гладкой и ровной. Однако эти неровности увеличились в результате вулканической деятельности. Вода заполняла впадины разной глубины. Все крупнее становились отдельные озера, до тех пор, пока они не слились воедино. Так был сформирован первичный океан. Объяснение, представленное выше, было дано советским ученым. Конечно, это спорная гипотеза, как и любые другие, подобные ей. Однако никто до сих пор не выдвинул более правдоподобной версии.

Тектонические впадины

Теперь вы знаете, как образовались впадины. Они представляют собой понижения земной поверхности. Где расположены глубоководные впадины? Они встречаются как на суше, так и на дне морей и океанов. Их происхождение в основном тектоническое. Другими словами, оно связано с деятельностью вулканов нашей планеты. Поэтому тектонические впадины особенно многочисленны. Они представляют собой области, в которых отмечается продолжительное опускание коры Земли из-за процессов, происходящих в мантии (верхней ее части, которая называется астеносферой).

Астеносфера

Слово "астеносфера" происходит из двух греческих слов. Одно из них переводится как "слабый", а второе - "шар". Примерно 800-900 км составляет толщина астеносферы. Она является наиболее подвижной частью поверхности Земли. Астеносфера менее плотна, чем нижняя часть мантии. Кроме того, она более эластична, так как ее массу заполняет расплавленная магма, которая имеет глубинное происхождение. В астеносфере регулярно происходит то отток, то уплотнение вещества. Поэтому магма все время движется. Она то опускается вниз, то поднимается вверх.

Литосфера

Мантию надежно скрывает твердая прочная оболочка земной коры, толщина которой составляет до 70 км. Земная кора, а также верхняя часть мантии вместе образуют литосферу. Это название также имеет греческое происхождение и состоит из двух слов. Первое из них - "камень", а второе - "сфера". Расплавленная магма, которая поднимается вверх из глубин, растягивает (вплоть до разрыва) земную кору. Чаще всего такие разрывы происходят именно в океанских глубинах. Иногда движения магмы даже приводят к изменению скорости вращения Земли, а значит и ее фигуры.

Литосфера - это не однородный сплошной покров. Она состоит из 13 больших плит - блоков, толщина которых составляет от 60 до 100 км. У всех этих литосферных плит есть как океаническая, так и материковая кора. Наиболее крупными из них являются Американская, Индо-Австралийская, Антарктическая, Евразийская и Тихоокеанская.

Движение плит и глубоководные впадины

В далеком прошлом были иные очертания океанов и материков, что объясняется движением плит. В наши дни постепенно расходятся Американская и Африканская. Американская плита медленно плывет к Тихоокеанской, а Евразийская сближается с Африканской, Тихоокеанской и Индо-Австралийской.

Из-за тектонической активности наблюдались во все периоды истории нашей планеты. Впадины также формировались в разное время. Они характеризуются разным геологическим возрастом. Вулканогенные и осадочные отложения заполняют древние впадины. А самые молодые четко выражены в рельефе нашей планеты. Поэтому ученым нетрудно определить, где расположены глубоководные впадины.

Форма впадин

Понижения земной коры могут быть замкнутыми как со всех сторон, так и с большинства из них. Обыкновенно в поперечнике они достигают десятки и сотни километров, реже - тысячи. Как правило, их форма в относительно спокойных участках коры нашей планеты является более или менее округлой, иногда - овальной. А вот в подвижных поясах, где расположены глубоководные впадины, они имеют линейную форму. Также они здесь часто ограничены разломами.

Глубоководные желоба

Впадины - не единственное обозначение интересующих нас геологических объектов. В последнее время, указывая на них, все чаще говорят "глубоководные желоба". Дело в том, что это понятие точнее передает форму впадин подобного рода. Их много в зоне, переходной между океаном и материком. Особенно многочисленны глубоководные желоба Тихого океана. Здесь находятся 16 впадин. Известны также глубоководные желоба Атлантического океана (их 3). Что касается Индийского, здесь имеется всего одна впадина.

Глубина самых значительных желобов превышает 10 тыс. метров. Они находятся в Тихом океане, который является старейшим. Марианская впадина (на карте, представленной выше), самый глубокий желоб из известных, расположена именно здесь. "Бездна Челленджера" - так называется глубочайшая ее точка. Ее глубина составляет около 11 тыс. м. Эта впадина получила свое название по находящимся возле нее.

История изучения Марианской впадины

Ученые начали исследовать этот объект с 1875 года. Именно тогда "Челленджер", британский корвет, опустил в нее глубоководный лот, который определил, что ее глубина составляет 8367 м. Англичане в 1951 году повторили свой опыт, но на сей раз они использовали эхолот. Максимальная глубина, которую он определил, составила 10 863 метра. Новая отметка была зафиксирована в 1957 году. Ее установила русская экспедиция, которая отправилась ко впадине на судне "Витязь". Новый рекорд составил 11 023 м. Относительно недавно, в 1995 и 2011 годах, были проведены исследования, показавшие следующие результаты - 10 920 и 10 994 метра соответственно. Не исключено, что глубина Марианской впадины еще больше.

Океанический жёлоб - это длинная узкая впадина на дне океана, скрытая глубоко под водой. Эти темные, мистические углубления могут находится на глубине до 10 994 метров. Для сравнения, если бы гора Эверест была помещена на дно самой глубокой впадины, ее вершина находилась бы примерно на 2,1 километра ниже поверхности воды.

Формирование океанических желобов

Океанический желоб

В мире множество высоких вулканов и гор, но глубокие океанические желоба затмевают любую из континентальных возвышенностей. Как формируются эти впадины? Короткий ответ исходит из геологии и изучения движений тектонических плит, что относятся к землетрясениям, а также к вулканической активности.

Ученые обнаружили, что глубокие блоки земной коры движутся на поверхности мантии Земли. Как правило, океаническая кора пододвигается под островные дуги или континентальную окраину. Граница, где они встречаются - это места, которые представляют собой глубокие океанические желоба. Например, Марианская впадина, расположенная на дне Тихого океана, рядом с Марианской островной дугой, недалеко от побережья Японии, является результатом так называемой «субдукции». Марианский желоб образовался на стыке Евразийской и Филиппинской плит.

Расположение желобов

Океанические желоба существуют во всем мире и являются, как правило, самыми глубокими районами . К ним относятся: Филиппинский жёлоб, жёлоб Тонга, Южно-Сандвичев жёлоб, жёлоб Пуэрто-Рико, Перуанско-Чилийский жёлоб и др.

Многие (но не все) напрямую связаны с субдукцией. Интересно, что жёлоб Диамантина сформировался, около 40 миллионов лет назад, когда и размежевались. Большинство самых глубоких океанических впадин, известных как обнаружено в Тихом океане.

Самая глубокая точка Марианской впадины называется Бездной Челленджера, и она находится на глубине почти 11 км. Однако не все океанические желоба столь же глубоки, как и Марианская впадина. С возрастом желоба могут заполняться донными отложениями (песком, камнями, грязью и мертвыми организмами, которые оседают на дно океана).

Изучение океанических желобов

Большинство желобов не были известны до конца 20-го века. Для их изучения требуются специализированные подводные аппараты, которые не существовали до второй половины 1900-х годов.

Батискаф "Триест"

Эти глубокие океанические желоба мало пригодны для жизни большинства живых организмов. Давление воды на этих глубинах мгновенно убьет человека, поэтому никто не осмеливался исследовать дно Марианской впадины на протяжении многих лет. Однако в 1960 году двое исследователей осуществили погружение в Бездну Челленджера с помощью батискафа под названием "Триест". И только в 2012 году (52 года спустя) другой человек отважился покорить самую глубокую точку Мирового океана. Это был кинорежиссер (известный по фильмам "Титаник", "Аватар" и др.) и подводный исследователь Джеймс Кэмерон, который осуществил одиночное погружение с помощью батискафа "Deepsea Challenger" и достиг дна в котловине Челленджера Марианской впадины. Большинство других глубоководных исследовательских аппаратов, таких как Алвин (используется Океанографическим институтом Вудс-Хоул в Массачусетсе), не погружаются на большую глубину до сих пор, но все же могут опускаться примерно на 3600 метров.

Существует ли жизнь в глубоководных желобах?

Удивительно, но несмотря на высокое давление воды и холодные температуры, которые существуют на дне глубоководных желобов, жизнь процветает в этих экстремальных условиях.

Крошечные одноклеточные организмы живут на большой глубине, а также некоторые виды рыб (включая ), трубчатых червей и морских огурцов.

Будущее исследование глубоководных впадин

Изучение глубоководного моря дорогой и сложный процесс, хотя научные и экономические награды могут быть весьма значительными. Человеческая разведка (например, глубоководное погружение Кэмерона) опасна. Будущие исследования могут хорошо полагаться (по крайней мере частично) на автоматизированные беспилотные аппараты, точно так же, как астрономы используют их для изучения отдаленных планет. Существует множество причин продолжать изучение глубин океана; они остаются наименее изученными земными средами. Дальнейшие исследования помогут ученым понять действия тектоники плит, а также выявить новые формы жизни, которые адаптировались к самым неприветливым местам обитания на планете.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .