Определение доминирующих признаков классификации и разработка математической модели изображений мимики. Локализация области мимики на основе математической модели активных контурных моделей

МОДЕЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ ЭЛЕКТРОПРИВОДА

Методические указания и лабораторный практикум для студентов дневного и заочного отделения

Специальность 140604 "Электропривод и автоматика промышленных установок и технологических комплексов"


Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 621.31112: 621.313

Рецензент: кандидат технических наук доцент каф. АТ В. И. Семёновых

Составитель: преподаватель кафедры ЭПиАПУ Д.В. Ишутинов

Подписано в печать Усл. печ. л. 2,5

Бумага офсетная. Печать копир Aficio 1022

Заказ № 340 Тираж 52 Бесплатно.

Текст напечатан с оригинал-макета, предоставленного составителем

610000, г. Киров, ул. Московская, 36.

Оформление обложки, изготовление – ПРИП ВятГУ

Ó Вятский государственный университет, 2011

ВВЕДЕНИЕ

Аналогия – это частное сходство двух объектов, которое может быть существенным или менее существенным. Существенность сходства зависит от уровня абстрагирования и определяется целью исследования.

Аналогии, отражающие реальный, объективно существующий мир, обладают наглядностью, а значит, упрощают рассуждения и помогают проводить эксперименты, уточняющие природу явлений. Такие аналогии называют моделями .

Модель – это объект-заменитель объекта оригинала, обеспечивающий изучение некоторых свойств оригинала.

Моделирование – это представление реального физического объекта его моделью для получения информации о важнейших свойствах и физических процессах, протекающих в нем, путем проведения экспериментов с его моделью.

В процессе моделирования модель выступает в роли самостоятельного объекта, позволяющие получить некоторые знания – результаты моделирования. Если они подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то модель считается адекватной объекту. На основании адекватных моделей могут исследоваться подобные объекты.


1. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ

При разработке и проектировании современных электромеханических систем, представляющих собой сочетание электродвигателя, механической части электропривода и системы управления, возникает необходимость в решении сложных расчетных задач. Для этого во многих случаях прибегают к моделированию.

Виды моделирования можно классифицировать по различным критериям. С точки зрения типа модели и способа представления математического описания классификация представлена на рисунке 1.1.

Таким образом, моделирование может быть условно разделено на два основных вида: математическое и физическое.

Физическим моделированием называют проведение исследований на реальном объекте или его макете. При проведении экспериментов на реальном объекте различные характеристики исследуются на самом объекте или его части. Физическое моделирование может проводиться на объектах, работающих в нормальном режиме или в специальных режимах. Реальное моделирование является наиболее адекватным, но его возможности ограничены физическими, техническими и другими особенностями реальных объектов и систем.

Другим видом физического моделирования является моделирование на макете, которое применяется, в случае если эксперименты с реальным объектом затруднены, невозможны или опасны. Исследования с помощью макета проводятся на установках, которые обладают физическим подобием и сохраняют природу явлений в изучаемом объекте.

Физическое моделирование может протекать в реальном или произвольном масштабе времени. Наибольшую сложность и интерес представляет моделирование в реальном масштабе времени, позволяющее получить наиболее достоверные результаты исследований.

Математическое моделирование может проводиться при помощи аналитических методов исследования, а также с использованием аналоговых (АВМ) и цифровых (ЭВМ) вычислительных машин.

При использовании аналитических методов исследования можно получить в общем виде явные зависимости для искомых характеристик объекта. Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно для относительно простых систем, и связано с проведением трудоёмких расчётов. Даже в простейших случаях (для линейных систем) аналитическое моделирование не позволяет получить исчерпывающие результаты. При наличии в системе нелинейных элементов, переменных параметров и других усложняющих расчеты факторов возможности аналитических методов расчёта ещё более ограничены.

Современные вычислительные машины позволяют с достаточной точностью имитировать любые передаточные функции, нелинейные статические характеристики, произведения и частные. Вычислительные машины, а, следовательно, и модели бывают аналоговыми и цифровыми.

Под аналоговой моделью понимается такая, которая описывается уравнениями, связывающими непрерывные величины. Решение дифференциальных уравнений в АВМ носит непрерывный характер. Реальный физический объект заменяется при аналоговом моделировании подобным физическим объектом. В АВМ в качестве такого объекта выступает решающий операционный усилитель. Основным преимуществом моделирования на АВМ является высокая наглядность модели и возможность подключения к модели других технических средств. Также применение АВМ может ускорить исследование достаточно простых систем. С другой стороны возникают проблемы связанные с настройкой сложных моделей; появляются погрешности, обусловленные дрейфом параметров АВМ и кусочной линеаризацией нелинейностей. Максимальная величина выходного напряжения решающего операционного усилителя в АВМ ограничена значением в сто вольт. Поэтому для всех переменных модели вводятся масштабные коэффициенты, в результате чего могут накапливаться дополнительные ошибки.

Под цифровой моделью понимается модель, в которой решение уравнений и процессы, протекающие в ней, носят дискретный характер. Следовательно, все рассчитываемые величины определены в некоторые дискретные интервалы времени. Цифровая модель обладает меньшей физической наглядностью, однако лишена недостатков присущих аналоговой модели. Для проектирования цифровых моделей применяются современные средства вычислительной техники, а расчёт таких моделей основан на применении численных методов.

С помощью средств вычислительной техники математические модели могут исследоваться как прямым решением систем дифференциальных уравнений, так и на основе моделирования по структурным схемам.

В первом случае математическое моделирование заключается в численном решении системы дифференциальных уравнений, описывающей поведение исследуемого объекта. Такая модель не отражает реальной структуры физического объекта. В данном случае для расчета модели не нужно знание специализированных САПР, однако затрудняется понимание структуры реального физического объекта.

Во втором случае строится структурная модель, в которой элементы соединены в соответствии со структурой исследуемой системы. При использовании структурного метода модель системы представляется в виде моделей типовых динамических звеньев ТАР и нелинейных блоков, имитирующих работу отдельных физических узлов исследуемой системы. Применение структурных моделей позволяет при моделировании сохранить структуру исследуемого объекта, и поэтому на модели легко воспроизводится изменение параметров и структуры реального физического объекта, например, включение корректирующих устройств, выбор глубины обратных связей, изменение момента инерции механической части и жесткости механических характеристик.


Методы математического моделирования

Для исследования характеристик технических систем и физических процессов, протекающих при функционировании любой системы, математическими методами должна быть проведена формализация процессов, т.е. построена математическая модель.

Математическое моделирование - это процесс установления соответствия реальному физическому объекту некоторого математического объекта (математического описания), называемого математической моделью , и исследование этой модели, позволяющее получить, с некоторым приближением, характеристики рассматриваемого реального объекта. Математическое моделирование может быть динамическим, имитационным и комбинированным.

При решении задач электропривода используются динамические модели объектов. Такие модели описываются системами дифференциальных уравнений и исследуются при помощи аналитических, численных или качественных методов.

Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно лишь для относительно простых или линейных систем.

Численные методы используются, если невозможно разрешить математическое описание системы в общем виде или система существенно не линейна. Численные методы наиболее эффективны при использовании ЭВМ.

В некоторых случаях для исследования системы достаточно качественных методов анализа математической модели. Такие методы применяются в теории автоматического регулирования и позволяют судить, например, об устойчивости системы при определённом управлении.

В общем виде некоторый динамический объект описывается системой дифференциальных уравнений n-го порядка вида:

, (2.1)

где x 1 , x 2 , … x n – переменные динамического объекта;

– скорость изменения (производные) переменных динамического объекта;

– значение переменных в начальный момент времени;

t – независимая переменная.

Математическое моделирование, основанное на решении обыкновенных дифференциальных уравнений, опирается на численные методы. Численные методы позволяют получить приближенные значения реального непрерывного процесса, которые отстоят друг от друга на некоторый интервал времени, называемый шагом интегрирования. Выбор шага интегрирования зависит от динамических свойств моделируемой системы. Для широкого спектра динамических систем численное решение тем точнее, чем меньше шаг интегрирования. Однако, следует иметь ввиду, что чрезмерное уменьшение шага интегрирования может приводить к существенному увеличению затрат машинного времени.

К наиболее часто применяемым методам численного интегрирования дифференциальных уравнений относятся метод Эйлера (метод конечных приращений) и метод Рунге – Кутта четвёртого порядка.

Метод Эйлера основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора:

, (2.2)

где h – малая окрестность исследуемой точки (шаг интегрирования);

e - погрешность разложения в ряд Тейлора.

Метод Эйлера учитывает только первую производную ряда Тейлора. Тогда уравнение (2.2) будет иметь вид:

где - правая часть дифференциального уравнения, вычисленная в точке .

Следовательно, для решения уравнения или системы дифференциальных уравнений первого порядка методом Эйлера должна быть составлена следующей система уравнений с начальными условиями:

, (2.4)

где t i , t i +1

x j , i , x j , i+1 – значение j

f j – подынтегральная функция для j – ой переменной;

h – шаг интегрирования;

i = 0 .. m

j = 0 .. n


К достоинствам метода Эйлера можно отнести следующие:

· При достаточно малом шаге интегрирования можно получить высокую точность решения. Погрешность метода примерно равна квадрату шага интегрирования: e » h 2 ;

· Метод Эйлера имеет устойчивый алгоритм вычислений при решении широкого круга задач, связанных с исследованием электромеханических систем электропривода.

К недостаткам метода Эйлера можно отнести то, что уменьшение шага интегрирования необходимое для обеспечения требуемой точности существенно замедляет вычисления.

Метод Рунге – Кутта основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора. Вычисление коэффициентов ряда Тейлора (до четвёртого порядка) осуществляется с помощью специальных коэффициентов Рунге – Кутта. Такой подход позволяет получить более высокую точность решения.

Формулы для нахождения численного решения дифференциального уравнения или системы дифференциальных уравнений первого порядка методом Рунге – Кутта имеют следующий вид:

, (2.5)

где t i , t i +1 – значение независимой переменной (времени) на предыдущем и следующем шаге интегрирования;

x j , i , x j , i+1 – значение j – ой переменной динамического объекта на предыдущем и следующем шаге интегрирования;

f j – подынтегральная функция для j – ой переменной;

k l i, j – коэффициенты Рунге – Кутта (l = 1 .. 4 );

h – шаг интегрирования;

i = 0 .. m – число шагов интегрирования;

j = 0 .. n – количество переменных динамического объекта.

К достоинствам метода Рунге – Кутта можно отнести следующие. Высокая точность численного решения. При фиксированном шаге интегрирования погрешность решения примерно равна пятой степени шага интегрирования: e » h 5 .

Однако данный метод не всегда обеспечивает устойчивые решения. Устойчивость решения зависит как от величины шага интегрирования, так и от особенностей динамики исследуемой системы.


3. Динамические расчеты систем по структурным схемам

с использованием системы САПР System View

САПР System View позволяет на уровне структурных моделей производить расчеты динамических систем и получать результаты в виде таблиц, графиков переходных процессов и частотных характерис­тик, а также комплексных показателей качества регулирования.

Структурная схема набирается на рабочем поле основного окна пакета SV (рис. 3.1) с помощью блоков, которые для удобства работы объединены в четыре библиотеки. Блоки суммирования и умножения выполнены отдельно.



Рисунок 3.1 – Основное окно System View

Библиотеки элементов расположены в левой части рабочего окна SV и содержат в своём составе набор различных функциональных и динамических элементов. Графически элементы представляются в виде прямоугольника с вхо­дами и выходами. В верхнем левом углу записывается порядковый номер элемента в структурной схеме, в центре в виде рисунка - тип элемента.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Определить доминирующие признаки классификации объекта локализации и разработать математическую модель под задачи анализа изображений мимики.

Задачи

Поиск и анализ способов локализации лица, определение доминирующих признаков классификации, разработка математической модели оптимальной под задачи распознавания движения мимики.

Тема

Помимо определения оптимального цветового пространства для построения выделяющихся объектов на заданном классе изображения, которая проводилась на предыдущем этапе исследования, немаловажное значение также играет определение доминирующих признаков классификации и разработка математической модели изображений мимики.

Для решения данной задачи необходимо, прежде всего, задать системе особенности модификации задачи обнаружения лица видеокамерой, а затем уже проводить локализацию движения губ.

Что касается первой задачи, то следует выделить две их разновидности:
Локализация лица (Face localization);
Отслеживание перемещения лица (Face tracking) .
Так как перед нами стоит задача разработки алгоритма распознавания мимики, то логично предположить, что данную систему будет использовать один пользователь, который не слишком активно будет двигать головой. Следовательно, для реализации технологии распознавания движения губ необходимо взять за основу упрощенный вариант задачи обнаружения, где на изображении присутствует одно и только одно лицо.

А это значит, что поиск лица можно будет проводить сравнительно редко (порядка 10 кадров/сек. и даже менее). Вместе с тем, движения губ говорящего во время разговора являются достаточно активными, а, следовательно, оценка их контура должна проводиться с большей интенсивностью.

Задача поиска лица на изображении может быть решена существующими средствами. Сегодня имеются несколько методов обнаружения и локализации лица на изображении, которые можно разделить на 2 категории:
1. Эмпирическое распознавание;
2. Моделирование изображения лица. .

К первой категории относятся методы распознавания «сверху-вниз» на основе инвариантных свойств (invariant features) изображений лица, опираясь на предположение, что существуют некоторые признаки присутствия лиц на изображении инвариантные относительно условий съемки. Данные методы можно разделить на 2 подкатегории:
1.1. Обнаружение элементов и особенностей (features), которые характерны для изображения лица (края, яркость, цвет, характерная форма черт лица и др.) , .;
1.2. Анализ обнаруженных особенностей, вынесение решения о количестве и расположении лиц (эмпирический алгоритм, статистика взаимного расположения признаков, моделирование процессов визуальных образов, применение жестких и деформируемых шаблонов и т.д.) , .

Для корректной работы алгоритма необходимо создание базы данных особенностей лица с последующим тестированием. Для более точной реализации эмпирических методов могут быть использованы модели, которые позволяют учесть возможности трансформации лица, а, следовательно, имеют либо расширенный набор базовых данных для распознавания, либо механизм, позволяющий моделировать трансформацию на базовых элементах. Сложности с построением базы данных классификатора ориентированных на самый различный спектр пользователей с индивидуальными особенностями, чертами лица и так далее, способствует снижению точности распознавания данного метода.

Ко второй категории относятся методы математической статистики и машинного обучения. Методы этой категории опираются на инструментарий распознавания образов, рассматривая задачу обнаружения лица, как частный случай задачи распознавания. Изображению ставится некий вектор признаков, который используется для классификации изображений на два класса: лицо/не лицо. Самый распространенный способ получения вектора признаков это использование самого изображения: каждый пиксель становится компонентом вектора, превращая изображение n×m в вектор пространства R^(n×m), где n и m – целые положительные числа. . Недостатком такого представления является чрезвычайно высокая размерность пространства признаков. Достоинство этого метода стоит в исключении из всей процедуры построение классификатора участия человека, а также возможность тренировки самой системы под конкретного пользователя. Поэтому использование методов моделирования изображения для построения математической модели локализации лица является оптимальным для решения нашей задачи.

Что касается сегментирования профиля лица и отслеживания положение точек губ по последовательности кадров, то для решения данной задачи также следует использовать математические методы моделирования. Имеются несколько способов определения движения мимики, самыми известными из них являются использование математической модели на основе активных контурных моделей:

Локализация области мимики на основе математической модели активных контурных моделей

Активный контур (змейка) – это деформирующаяся модель, шаблон которой задан в форме параметрической кривой, инициализированный вручную набором контрольных точек, лежащих на открытой или замкнутой кривой на входном изображении.

Для адаптации активного контура к изображению мимики необходимо провести соответствующую бинариризацию исследуемого объекта, то есть его преобразование в разновидность цифровых растровых изображений, а затем уже следует проводить соответствующую оценку параметров активного контура и вычисление вектора признаков.

Активная контурная модель определяется как:
Множество точек N;
Внутренних областей энергии интереса (internal elastic energy term);
Внешних областей энергии интереса (external edge based energy term).

Для улучшения качества распознавания выделяются два цветовых класса – кожа и губы. Функция принадлежности цветовому классу имеет значение в диапазоне от 0 до 1.

Уравнение активной контурной модели (змейки) представляется выражающейся формулой v(s) как:

Где E – это энергия змейки (активной контурной модели). Первые два терма описывают энергию регулярности активной контурной модели (змейки). В нашей полярной координатной системе v(s) = , s от 0 до 1. Третье слагаемое – энергия, относящаяся ко внешней силе, полученной из изображения, четвертое – с силой давления.

Внешняя сила определяется, исходя из вышеописанных характеристик. Она способна сдвинуть контрольные точки к некоторому значению интенсивности. Она вычисляется как:

Множитель градиента (производная) вычисляется в точках змейки вдоль соответствующей радиальной линии. Сила увеличивается, если градиент отрицательный и уменьшается в обратном случае. Коэффициент перед градиентом – это весовой фактор, зависящий от топологии изображения. Сжимающая сила – это просто константа, используется ½ от минимального весового коэффициента. Наилучшая форма змейки получается при минимизации энергетического функционала после некоторого числа итераций.

Рассмотрим основные операции обработки изображения более подробно. Для простоты предположим, что мы уже каким-то образом выделили область рта диктора. В этом случае основные операции по обработке полученного изображения, которые нам необходимо выполнить, представлены на рис. 3.

Заключение

Для определения доминирующих признаков классификации изображения в ходе проведения исследовательской работы было выявлены особенности модификации задачи обнаружения лица видеокамерой. Среди всех методов локализации лица и обнаружения исследуемой области мимики наиболее подходящими под задачи создания универсальной системы распознавания для мобильных устройств являются методы моделирования изображения лица.
Разработка математической модели изображений движения мимики основана на системе активных контурных моделей бинаризации исследуемого объекта. Так как данная математическая модель позволяет после смены цветового пространства с RGB в цветовую модель YCbCr осуществлять эффективное преобразование интересуемого объекта, для последующего его анализа на основе активных контурных моделей и выявления четких границ мимики после соответствующих итераций изображения.

Список использованных источников

1. Вежневец В., Дягтерева А. Обнаружение и локализация лица на изображении. CGM Journal, 2003
2. Там же.
3. E. Hjelmas and B.K. Low, Face detection: A survey, Journal of Computer vision and image understanding, vol.83, pp. 236-274, 2001.
4. G. Yang and T.S. Huang, Human face detection in complex background, Pattern recognition, vol.27, no.1, pp.53-63, 1994
5. K. Sobottka and I. Pitas, A novel method for automatic face segmentation, facial feature extraction and tracking, Signal processing: Image communication, Vol. 12, №3, pp. 263-281, June, 1998
6. F. Smeraldi, O. Cormona, and J.Big.un., Saccadic search with Gabor features applied to eye detection and real-time head tracking, Image Vision Comput. 18, pp. 323-329, 200
7. Гомозов А.А., Крюков А.Ф. Анализ эмпирических и математических алгоритмов распознавания человеческого лица. Network-journal. Московский энергетический институт (Технический университет). №1 (18), 2011

Продолжение следует

Татьяна Портнова

Я представляю опыт работы ДОУ №17 "Рождественский" г. Петровска по теме метод моделирования как способ обучения дошкольников математики .

Одним из наиболее перспективных методов математического развития дошкольников является моделирование . МОДЕЛИРОВАНИЕ для дошкольников позволяет одновременно решить сразу несколько задач, главные из которых – это привить детям основы логического мышления, научить простому счету, облегчить ребенку познание. В результате знания ребенка поднимаются на более высокий уровень обобщения, приближаются к понятиям.

В своей работе я опиралась на метод моделирования , разработанный Д. Б. Элькониным, Л. А. Венгером, Н. А. Ветлугиной, он заключается в том, что мышление ребенка развивают с помощью специальных схем, моделей , которые в наглядной и доступной для него форме воспроизводят скрытые свойства и связи того или иного объекта.

Использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно :

Позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка;

Улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления;

Повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;

В своей работе я использую четырех ступенчатую последовательность применения метода моделирования .

Первый этап предполагает знакомство со смыслом арифметических действий.

Второй - обучение описанию этих действий на языке математических знаков и символов .

Третий - обучение простейшим приемам арифметических вычислений

Четвертый этап - обучение способам решения задач

Слайд 5 (фото дети модели делают )

Чтобы овладеть моделированием как методом научного познания , необходимо создавать модели . Создавать вместе с детьми и следить, чтобы дети принимали в изготовлении моделей непосредственное и активное участие. Продумывая разнообразные модели вместе с детьми , я придерживалась следующих требований :

Модель должна отображать обобщенный образ и подходить к группе объектов.

Раскрывать существенное в объекте.

Замысел по созданию модели следует обсудить с детьми, чтобы она была им понятна.

Моделирование как новый вид работы дает простор для творчества и фантазии детей, обеспечивая развитие их мышления.

Созданные нами модели многофункциональны . На основе моделей создаем разнообразные дидактические игры. При помощи картинок-моделей организовываем различные виды ориентированной деятельности детей. Модели использую на занятиях, в совместной с воспитателем и самостоятельной детской деятельности.

К созданию моделей подключаю родителей , которым даю задания по изготовлению несложных моделей (родители дома вместе с ребенком создают модель ) .

Таким образом, осуществляется взаимосвязь трех сторон :

родитель

и ребенок.


Хочу познакомить с моделями , которые я использую в работе с детьми.

Наглядная плоскостная модель "От секунды до года"

Цель применения :

Дать детям представления о временных отношениях, их взаимосвязи ;

Закрепить представления детей об отношении целого и части, научить обозначать в пространстве отношения во времени; совершенствовать счет.

Описание работы с моделью :

Знакомлю детей с моделью постепенно . Сначала знакомлю с самими терминами (секунда, минута, час, сутки, неделя, месяц, год) . Что по временным меркам больше, а что меньше, что во что входит.

Далее даю более четкие, узкие представления. Например, секунда - это почти самая маленькая временная единица, но если их 60, то они будут составлять большую временную единицу - минуту, и таким образом провожу работу до тех пор, пока дети не усвоят все термины, все взаимосвязи временных отношений, начиная от секунды и заканчивая годом.

Наглядная плоскостная модель

"Домик, где знаки и числа живут"

Цель применения :

Закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа;

Дать детям представления о неизменности числа, величины при условии различий в суммировании;

Учить или закреплять умение сравнивать числа (больше, меньше, равно) .

Структура модели : модель представляет собой 4-этажный домик, на каждом этаже расположено разное количество окошек, где будут жить знаки и цифры, но так как домик волшебный, то поселяться в домик знаки и цифры могут только с помощью детей. Окна в домике располагаются следующим образом :

Описание работы с моделью :


первый и второй этажи будут использоваться для решения задачи, которая состоит в том, чтобы дать детям представления о неизменности числа, величины при условии различий в суммировании. Например : 4 = 1 + 1 + 1 + 1; 4 = 2 + 2.


Третий этаж будет использоваться, чтобы научить детей (или закрепить умение) составлять числа из двух меньших, а также вычитать числа. Например, 3 + 5 = 8 или 7 - 4 = 3 и т. п.

Последний, четвертый, этаж будет использоваться, чтобы научить детей (или закрепить умение) сравнивать числа между собой, с помощью знаков "меньше", "больше" или "равно".


Модель можно использовать в любых видах деятельности : на занятиях, в свободной деятельности детей, при индивидуальной работе с детьми и т. д.

Слайд 11-12

Наглядная плоскостная модель "Солнечная система"

Только для детей старшей и подготовительной группы.

Цели применения :

Дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами) ;

Научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система) ;

Научить (или закрепить) умение детей определять последовательность ряда предметов по размеру ;

Развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других;

Совершенствовать порядковый и количественный счет;

Закрепить умение пользоваться условной меркой для измерения расстояний;

Закрепить умение решать арифметические задачи.

Структура модели :

модель представляет собой наглядную плоскостную схему, на которой изображена солнечная система. В дополнение к схеме имеется специальная карточка, которая предназначается для взрослого, где запечатлена информация о солнечной системе (небольшой рассказ о солнечной системе, размеры планет) . К модели прилагается комплекс смоделированных планет , при этом необходимо соблюдать пропорциональность их размеров друг к другу.

Описание работы с моделью :


Для решения задачи, необходимо объяснить детям, что все планеты солнечной системы и само солнце, конечно, - это одна целая группа (семья) . "У нашей звезды Солнце есть своя семья. В нее входит 9 планет, которые вращаются вокруг Солнца, то есть все эти 10 космических тел объединены в одну группу. Задания для детей :


1. разложить планеты в ряд, по мере увеличения размера планет или, наоборот, от самой большой планеты к самой маленькой.

2. определить местонахождение одной планеты относительно другой, ориентируясь по схеме : планета Земля находится левее планеты Юпитер и т. п.

3. Можно использовать условную мерку, например любую веревочку, линейку и т. д для измерения расстояний между планетами и звездой, между планетами и т. д.

4. Планеты можно пересчитывать как в прямом, так и в обратном порядке, можно составлять разного вида задачи и решать их, в солнечной системе крупных планет только 3, включая звезду, сколько тогда маленьких и т. п.

Слайд 13-14

Наглядная плоскостная модель "Счетный торт"

Цель применения :

Учить детей решать арифметические задачи и развивать познавательные способности ребенка;

Учить выделять математические отношения между величинами, ориентироваться в них.

Структура модели ,

модель включает в себя :

1. Пять наборов "сладких счетных частей", каждый из которых разделен на части (как на равные, так и на разные части) . Каждый счетный торт в виде круга, имеет свой цвет.

2. Овалы, вырезанные из белого картона, которые обозначают "целое" и "часть". В игровой ситуации они будут называться тарелочками, куда дети будут раскладывать куски счетного.

Описание работы с моделью :


в арифметической задаче математические отношения можно рассматривать как "целое" и "часть".

Сначала необходимо дать детям представления о понятии "целое" и "часть".

Положите перед детьми на тарелочку обозначающую "целое", счетный торт (все его части, скажите, что торт целый мама испекла и что мы его кладем строго на тарелочку, которая обозначает "целое". Теперь мы разрежем торт на две части, каждую из них назовем "часть". Объясните, что теперь, когда целое (целый торт) разделили на части (на 2 кусочка) то целого теперь нет, a есть только 2 части. Которые не могут оставаться на чужой тарелочке и их необходимо переложить на свои места - тарелочки, обозначающие "часть". Одну часть на одну тарелку, другую часть на другую тарелку. Затем соедините 2 куска опять вместе и покажите, что опять получилось целое. Таким образом, мы продемонстрировали, что соединение частей дает целое, а вычитание части из целого дает часть.




Слайд 15-16

Наглядная объемная модель "песочные часы"


Цель применения :

научить детей измерять время при помощи модели песочных часов ; активно включаться в процесс экспериментирования.

Структура модели :

модель объемная , трехмерная.

Чтобы можно было измерять время, необходимо открыть крышечку донца одной из бутылок и насыпать туда песка ровно столько, сколько его необходимо, чтобы за 1 минуту песок из одного отсека часов перешел в другой. Сделать это нужно путем экспериментирования.



писание работы с моделью :

с помощью модели песочных часов можно сначала провожу познавательное ознакомительное занятие. Показываю детям картинки с изображением разных песочных часов, потом демонстрирую модель , рассказываю о происхождения песочных часов, зачем они нужны, как ими пользоваться, как они работают. Затем вместе с детьми проводим эксперименты : например, эксперимент, доказывающий точность часов.

Таким образом, моделирование является важным учебным средством и действием, с помощью которого можно осуществлять различные учебные и развивающие цели и задачи,

Все формы использования моделирования дают положительные результаты в практическом применении, активизируя познавательную деятельность детей.

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий , происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности . Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

12.Получение случайных чисел с произвольным законом распределения методом обратных функций. М-д обр ф-ий наиболее общий и универсальный способ получения чисел, подчиненных заданному закону. Стандартный метод моделирования основан на том, что интегральная функция распределения
любой непрерывной случайной величины равномерно распределена в интервале (0;1), т.е. для любой случайной величины X с плотностью распределения f (x ) случайная величина равномерно распределена на интервале (0;1).

Тогда случайную величину X с произвольной плотностью распределения f (x ) можно рассчитать по следующему алгоритму:1. Необходимо сгенерировать случайную величину r (значение случайной величины R), равномерно распределенную в интервале (0;1). 2. Приравнять сгенерированное случайное число известной функции распределения F(X) и получить уравнение
. 3. Решая уравнение X=F -1 (r), находим искомое значение X

Графическое решение

.

Дополнительно к вопросу 11.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

Тогда
=
=
.

С учетом этого модель (1) принимает вид

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование . Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):
.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti - время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n – счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).