Основные характеристики колебаний. Общая характеристика колебаний

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Общая характеристика колебаний

Ритмические процессы любой природы, характеризующиеся повторяемостью во времени, называются колебаниями.

Колебание – процесс, характеризующийся повторяемостью во времени параметров, его описывающих. Единство закономерностей ритмических процессов позволило разработать единый математический аппарат для их описания – теорию колебаний. Существуют множество признаков, по которым могут быть классифицированы колебания.

По физической природе колеблющейся системы различают механические и электромагнитные колебания.

Колебания называются периодическими, если величина, характеризующая состояние системы, повторяется через равные промежутки времени – период колебания.

Период (T ) - минимальное время, через которое повторяется состояние колебательной системы, т.е. время одного полного колебания.

Для таких колебаний

x(t)=x(t+T) ;(3. 1)

Периодическими являются колебания маятника часов, переменный ток, биение сердца, а колебания деревьев под порывом ветра, курсов иностранных валют – не периодические.

Кроме периода в случае периодических колебаний определена их частота.

Частота ()т.е. число колебаний в единицу времени.

Частота -величина, обратная периоду колебания,

Единицей измерения частоты являетсяГерц: 1 Гц = 1 с -1 , частота соответствующая одному колебанию в секунду. При описании периодических колебаний также используется циклическая частота – число колебаний за 2π секунд:

При периодических колебаниях эти параметры постоянны, а при других колебаниях могут изменяться.

Закон колебаний – зависимость колеблющейся величины от времени x(t) - может быть может быть разной. Наиболее простыми являются гармонические колебания (рис3.1), для которых колеблющаяся величина меняется по закону синуса или косинуса, что позволяет использовать одну функцию для описания процесса во времени:

Здесь: x (t) – значение колеблющейся величины в данный момент времени t , А амплитуда – наибольшее отклонение колеблющейся величины от среднего значения., ω – циклическая частота, (ωt+φ ) – фаза колебания , φ – начальная фаза.

Гармоническому закону подчиняются многие известные колебательные процессы. в т.ч. упомянутые выше, но наиболее существенно что с помощью метода Фурье любая периодическая функция раскладывающаяся на гармонические составляющие (гармоники ) с кратными частотами:

f (t )= А + А 1 cos( t + )+ А cos (2 t+ )+…; (3.5)

Здесь основная частота определяется периодом процесса: .

Каждая гармоника характеризуется частотой () и амплитудой (А ). Совокупность гармоник называется спектром . Спектры периодических колебаний дискретные (линейчатые) (рис.3.1а), а не периодических непрерывные (рис.3.1б) .

Рис. 3.1 Дискретные (а) и непрерывные (б) спектры сложных колебательных

Виды колебаний

Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.

Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.

Свободные колебания совершаются в системе, однократно выведенной из положения равновесия и в дальнейшем предоставленной самой себе. При этом колебания происходят с собственной частотой (), которая не зависит от их амплитуды, т.е. определяется свойствами самой системы.

В реальных условиях колебания всегда являются затухающими , т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.

Для создания незатухающих колебаний в реальных системах необходимо периодическое внешнее воздействие – периодическое пополнение энергии, теряемой за счет диссипации. Гармонические колебания, происходящие за счет внешнего периодического воздействия («вынуждающей силы»), называются вынужденными . Их частота совпадает с частотой вынуждающей силы (), а амплитуда оказывается зависящей от соотношения между частотой силы и собственной частотой системы. Важнейшим эффектом, осуществляющимся при вынужденных колебаниях, является резонанс – резкое возрастание амплитуды при приближении частоты вынужденных колебаний к собственной частоте колебательной системы. Резонансная частота тем ближе к собственной, а максимум амплитуды тем больше, чем меньше диссипация.

Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:

колебательную систему (с затуханием),

усилитель колебаний (источник энергии),

нелинейный ограничитель (клапан),

звено обратной связи

При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.

Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.

Колебания. Типы колебаний. Характеристики

Колебания и волны

Колебаниями называются процессы, в той или иной мере повторяющиеся во времени. Колебания бывают механические, электромагнитные, численности животных и т.д. Здесь важно отметить, что независимо от типа колебаний, все они описываются одинаковым образом с математической точки зрения, т.е., одинаковыми уравнениями. Поэтому колеблющуюся величину мы будем часто называть колебательной системой .

Иногда колебания играют отрицательную роль в технике – например, вибрация (что означает колебания со звуковой частотой) корпуса автомобиля, корабля, самолёта…. В других случаях колебания не просто играют положительную роль, но на колебаниях основаны самые различные отрасли техники – например радиовещание, телевидение да и вообще вся инфраструктура передачи информации.

В зависимости от характера внешнего воздействия на колебательную систему различают свободные и вынужденные колебания.

Свободными, или собственными называются колебания системы, выведенной из положения устойчивого равновесия внешней силой и затем предоставленной самой себе. Колебания при этом совершаются за счёт внутренних сил системы.

Вынужденными называются колебания, происходящие под действием периодически изменяющегося внешнего воздействия на систему.

Периодическими называются такие колебания, при которых значения физических величин (например, некоторой величины S ), характеризующих колебательную систему, повторяются через равные промежутки времени, наименьший из которых называется периодом колебаний:

S(t+T)=S(t) . (4.1)

Частотой колебаний называется число полных колебаний в единицу времени: . Размерность частоты – герц: Гц = 1/с. Циклической , или круговой, частотой называется число полных колебаний за 2p секунд:

Чрезвычайно важными в теории колебаний являются гармонические колебания – это такие колебания, которые происходят по закону синуса или косинуса:

(4.3)

Во-первых, очень многие колебания, особенно малые, в технике имеют гармонический вид (4.3). Во-вторых, любые периодические процессы, которые не являются гармоническими, могут, тем не менее, быть представлены как наложение простых гармонических колебаний. Часто систему, совершающую гармонические колебания, называют гармоническим осциллятором.

В системе (4.3) A º S max максимальное значение колеблющейся величины, называется амплитудой колебаний. Аргумент синуса или косинуса называется фазой колебаний:

(4.4)

а значение фазы в начальный момент времени называется начальной фазой. Отметим, что с изменением начала отсчёта времени изменяется и начальная фаза. Так как функции (4.3) являются периодическими с периодом 2p , то всегда можно выбрать начальную фазу по модулю меньшей p .


Хотя функции синуса и косинуса являются взаимно дополняющими друг друга, по ряду причин чаще для представления гармонических колебаний используют функцию косинуса. Например, математические выражения чаще оказываются более простыми, если представлять гармоническое колебание в комплексном виде.

Колебания периодические

"...периодические колебания - колебания, при которых каждое значение колеблющейся величины повторяется через равные интервалы времени..."

Источник:

" ГОСТ 24346-80 (СТ СЭВ 1926-79). Государственный Союза ССР. . Термины и определения"

(утв. и введен в действие Постановлением Госстандарта СССР от 31.07.1980 N 3942)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Колебания периодические" в других словарях:

    периодические колебания (вибрация) - Колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. Пояснения Термины и определения для близких понятий, различающиеся лишь отдельными словами, совмещены,… …

    КОЛЕБАНИЯ - движения или процессы, обладающие той или иной степенью повторяемости во времени. К. свойственны всем явлениям природы: пульсирует излучение звёзд, внутри к рых происходят циклич. яд. реакции; с высокой степенью периодичности вращаются планеты… … Физическая энциклопедия

    КОЛЕБАНИЯ ВЕКОВЫЕ - периодические и долгопериодические колебания: ур. м., суши (в результате эпейрогенических движений), климата, ур. озер, концов ледников. Термин устарел, так как периодические колебания интенсивности проявления тех или иных процессов могут быть… … Геологическая энциклопедия

    периодические колебания - Механические колебания, при которых состояние механической системы повторяется через равные промежутки времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической терминологии. 1987 … Справочник технического переводчика

    КОЛЕБАНИЯ КЛИМАТИЧЕСКИЕ - устанавливаются как периодические с разл. ритмами колебаний. В основном они синхронные, так как прослеживаются на больших пространствах, лишь местами отклоняясь, в зависимости как от общих (географических и т. п.), так и местных (особенности геол … Геологическая энциклопедия

    КОЛЕБАНИЯ УРОВНЯ МОРЯ ПЕРИОДИЧЕСКИЕ - 1. Колебания ур. м. в виде приливов и отливов. 2. Сезонные понижения и повышения ур. м., а также годовые, многолетние и вековые, обусловливаемые климатическими причинами. Амплитуда сезонных колебаний не превышает 28 см. Во внутренних морях она… … Геологическая энциклопедия

    Периодические колебания (вибрация) - – колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. [ГОСТ 24346 80] Рубрика термина: Виды вибрации Рубрики энциклопедии: Абразивное оборудование,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Периодические колебания уровня - изменения уровня воды в зависимости от приливно отливных явлений, выпадения осадков, изменения атмосферного давления и направления действия ветров в данном районе. Периодичность изменений, как правило, бывает полусуточной, сезонной, годовой.… … Морской словарь

    колебания - Движения или процессы, обладающие той или иной степенью повторяемости во времени [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] колебания Элемент временного ряда, отражающий происходящие в экономике периодические … Справочник технического переводчика

    Колебания - элемент временного ряда, отражающий происходящие в экономике периодические изменения, например, подъемы и спады производства продукции и потребления тех или иных товаров. В экономико математических моделях для приближенного… … Экономико-математический словарь

Книги

Многое из физики иногда остаётся непонятным. И дело не всегда в том, что человек просто мало прочитал по этой теме. Иногда материал дан так, что понять его человеку, не знакомому с основами физики, просто невозможно. Одним довольно интересным разделом, который не всегда люди понимают с первого раза и способны осмыслить, являются периодические колебания. Прежде чем объяснить теорию периодических колебаний, поговорим немного об истории обнаружения этого явления.

История

Теоретические основы периодических колебаний были известны ещё в древнем мире. Люди видели, как равномерно двигаются волны, как вращаются колёса, проходя через определённый промежуток времени через одну и ту же точку. Именно из этих простых, на первый взгляд, явлений пошло понятие колебаний.

Первых свидетельств описания колебаний не сохранилось, однако доподлинно известно, что один из самых распространённых их видов (а именно электромагнитные) теоретически предсказал Максвелл в 1862 году. Через 20 лет его теория получила подтверждение. Тогда провёл серию опытов, доказывающих существование электромагнитных волн и наличие определённых свойств, присущих только им. Как оказалось, свет также является электромагнитной волной и подчиняется всем соответствующим законам. За несколько лет до Герца нашёлся человек, который продемонстрировал научному обществу генерацию электромагнитных волн, но в силу того, что он не был силён в теории так же, как Герц, не смог доказать, что успех опыта объясняется именно колебаниями.

Мы немного отошли от темы. В следующем разделе рассмотрим основные примеры периодических колебаний, которые мы можем встретить в повседневной жизни и в природе.

Виды

Эти явления происходят везде и постоянно. И кроме уже приведённых в пример волн и вращения колёс, мы можем заметить периодические колебания в нашем организме: сокращения сердца, движение лёгких и так далее. Если увеличивать масштаб и переходить к более крупным объектам, чем наши органы, можно увидеть колебания и в такой науке, как биология.

Примером могут служить периодические колебания численности популяций. В чём смысл этого явления? В любой популяции всегда происходит то её увеличение, то уменьшение. И связано это бывает с разными факторами. В силу ограниченности пространства и многих других факторов популяция не может бесконечно расти, поэтому с помощью естественных механизмов природа научилась уменьшать численность. При этом и происходят периодические колебания численности. То же самое происходит и с человеческим обществом.

Теперь обсудим теорию этого понятия и разберём немного формул, касающихся такого понятия, как периодические колебания.

Теория

Периодические колебания - очень интересная тема. Но, как и в любой другой, чем дальше погружаешься - тем больше непонятного, нового и сложного. В этой статье мы не будем углубляться, лишь расскажем кратко об основных свойствах колебаний.

Основными характеристиками периодических колебаний являются период и частота показывает, какое время требуется волне, чтобы вернуться в исходное положение. Фактически это время, за которое волна проходит расстояние между её соседними гребнями. Есть ещё одна величина, которая тесно связана с предыдущей. Это частота. Частота обратна периоду и имеет такой физический смысл: это количество гребней волн, которые прошли через определённую область пространства за единицу времени. Частота периодических колебаний, если представить её в математическом виде, имеет формулу: v=1/T, где T - период колебаний.

Перед тем как перейти к заключению, расскажем немного о том, где наблюдаются периодические колебания и как знания о них могут быть полезны в жизни.

Применение

Выше мы уже рассмотрели виды периодических колебаний. Если даже руководствоваться перечнем того, где они встречаются, легко понять, что они окружают нас везде. излучают все наши электроприборы. Более того, связь телефона с телефоном или прослушивание радио были бы невозможны без них.

Звуковые волны также представляют собой колебания. Под действием электрического напряжения специальная мембрана в каком-либо генераторе звука начинает вибрировать, создавая волны определённой частоты. Вслед за мембраной начинают колебаться молекулы воздуха, которые в конце концов и доходят до нашего уха и воспринимаются как звук.

Заключение

Физика - очень интересная наука. И даже если кажется, что вы вроде как знаете в ней всё, что может пригодится в повседневной жизни, всё равно найдётся такая вещь, в которой будет нелишним разобраться получше. Мы надеемся, что эта статья помогла вам понять или вспомнить материал по физике колебаний. Это действительно очень важная тема, практическое применение теории из которой сегодня встречается повсеместно.