Основные уравнения равновесия произвольной пространственной системы сил. Условия равновесия пространственной системы сил

Совмещаем начало координат с точкой пересечения линий дей­ствия сил системы. Проецируем все силы на оси координат и сум­мируем соответствующие проекции (рис. 7.4). Получим проекции равнодействующей на оси координат:

Модуль равнодействующей системы сходящихся сил определим по формуле

Направление вектора равнодействующей определяется углами

Произвольная пространственная система сил

Приведение произвольной пространственной системы сил к центру О.

Дана пространственная система сил (рис. 7.5, а). Приведем ее к центру О.

Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.

В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) F ГЛ (рис. 7.5, б).

Моменты пар сил можно сложить, получив суммарный момент системы М гл (главный момент).

Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.

Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 7.5, в).

Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.

Абсолютное значение главного вектора (рис. 7.5б) равно

Абсолютное значение главного момента определяется по форму­ле.

Уравнения равновесия пространственной системы сил

При равновесии F гл = 0; М гл = 0. Получаем шесть уравнений равновесия:

Шесть уравнений равновесия пространственной системы сил со­ответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.

Примеры решения задач

Пример 1. На тело в форме куба с ребром а = 10 см действуют три силы (рис. 7.6). Определить моменты сил относительно осей координат, совпадающих с ребрами куба.

Решение

1. Моменты сил относительно оси Ох:

2. Моменты сил относительно оси Оу.

Пример 2. На горизонтальном валу закреплены два колеса, г 1 = 0,4 м; г 2 = 0,8 м. Остальные размеры - на рис. 7.7. К коле­су 1 приложена сила F 1 , к колесу 2 - силы F 2 = 12 кН, F 3 = 4кН.

Определить силу F 1 и реакции в шарнирах А и В в состоянии равновесия.

Напомним:

1. При равновесии выполняются шесть урав­нений равновесия.

Уравнения моментов следует составлять относи­тельно опор А и В.

2. Силы F 2 \\Ox ; F 2 \\Oy; F 3 \\Oy.

Моменты этих сил относительно соответству­ющих осей равны нулю.

3. Расчет следует завершить проверкой, использовав дополнительные уравнения равновесия.

Решение

1. Определяем силу F\, составив уравнение моментов сил отно­сительно оси Oz:

2. Определяем реакции в опоре А. На опоре действуют две со­ставляющие реакции (Y A ; X A ).

Составляем уравнение моментов сил относительно оси Ох" (в опоре В).

Поворот вокруг оси Ох" не происходит:

Знак «минус» означает, что реакция направлена в противополож­ную сторону.

Поворот вокруг оси Оу" не происходит, составляем уравнение моментов сил относительно оси Оу" (в опоре В):

3.Определяем реакции в опоре В. На опоре действуют две со­ставляющие реакции (X B , Y B ). Составляем уравнение моментов сил относительно оси Ох (опора А):

Составляем уравнение моментов относительно оси Оу (опора А):

4.Проверка. Используем уравнения проекций:

Расчёт выполнен верно.

Пример 3. Определить численное значение силы P 1 , при котором вал ВС (рис. 1.21, а) будет находиться в равновесии. При найденном значении силы Р 1 определить опорные реакции.

Действующие на зубчатые колеса силы Р и Р 1 направлены по касательным к на­чальным окружно­стям колес; силы Т и Т 1 - по радиусам колес; силы А 1 па­раллельны оси вала. Т = 0,36Р, 7Т 1 = Р 1 ; А 1 = 0,12P 1 .

Решение

Опоры вала, изображенные на рис. 1.21, а, надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемеще­ниям в направлениях осей и и v (выбранная система координат показана на рис. 1.21, б ).

Освобождаем вал от связей и заменяем их действие реакциями V В, Н В, V C , Н С (рис. 1.21, б ). Получили прост­ранственную систему сил, для которой составляем урав­нения равновесия, пользуясь выбранной системой коор­динат (рис. 1.21,6):

где А 1 *1,25D/2 - момент относительно оси и силы A 1 , приложенной к правому зубчатому колесу.

Моменты относительно оси и сил Т 1 и А 1 (приложен­ных к среднему зубчатому колесу), Р 1 (приложенной к правому зубчатому колесу) и Р равны нулю, так как силы Р, T 1 , Р 1 параллельны оси и, а сила А 1 пересекает ось и.

откуда V С = 0,37P;

откуда V B =0,37P.

следовательно, реакции V B и V С определены верно;

где А 1 * 1,25D/2 - момент относительно оси v силы А 1 , приложенной к среднему зубчатому колесу.

Моменты относительно оси v сил Т, Р 1 (приложенной к среднему зубчатому колесу), А 1 и Т 1 (приложенных к правому зубчатому колесу) равны нулю, так как силы Т, Р 1 , Т 1 параллельны оси v, сила А 1 пересекает ось v.

откуда H C = 0,81Р;

откуда H С = 1,274Р

Составим проверочное уравнение:

следовательно, реакции Н В и Н С определены верно.

В заключение отметим, что опорные реакции получи­лись со знаком плюс. Это указывает на то, что выбран­ные направления V B , Н В, V C и Н С совпадают с действи­тельными направлениями реакций связей.

Пример 4. Сила давления шатуна парового дви­гателя Р = 25 кН передается на середину шейки колен­чатого вала в точке D под углом α = 30° к горизонту при вертикальном расположении щек колена (рис. 1.22). На конец вала насажен шкив ременной передачи. Натя­жение ведущей ветви ремня в два раза больше, чем ведомой, т.е. S 1 = 2S 2 . Сила тяжести маховика G = 10 кН.

Определить натяжения ветвей ременной передачи и реакции подшипников А и В, пренебрегая массой вала.

Решение

Рассматриваем равновесие горизонтального коленчатого вала со шкивом. Прикладываем в соответ­ствии с условием задачи заданные силы Р, S 1 , S 2 иG . Освобождаем вал от опорных закреплений и заменяем их действие реакциями V A , Н А, V B и Н В. Координатные оси выбираем так, как показано на рис. 1.22. В шарнирах А и В не возникает реакций вдоль оси w, так как натя­жение ветвей ремня и все остальные силы действуют в плоскостях, перпендикулярных этой оси.

Составим уравнения равновесия:

Кроме того, по условию задачи имеем еще одно уравне­ние

Таким образом, здесь имеется шесть неизвестных уси­лий S 1, S 2 , Н А, V A , Н В иV B и шесть связывающих их уравнений.

Уравнение проекций на ось w в рассматриваемом примере обращается в тождество 0 = 0, так как все силы лежат в плоскостях, перпендикулярных оси w.

Подставляя в уравнения равновесия S 1 =2S 2 и решая их, находим:

Значение реакции Н В получилось со знаком минус. Это значит, что в действительности ее направление про­тивоположно принятому на рис. 1.22.

Контрольные вопросы и задания

1. Запишите формулы для расчета главного вектора пространственной системы сходящихся сил.

2. Запишите формулу для расчета главного вектора простран­ственной системы произвольно расположенных сил.

3. Запишите формулу для расчета главного момента простран­ственной системы сил.

4. Запишите систему уравнений равновесия пространственной системы сил.

5. Какое из уравнений равновесия нужно использовать для опре­деления реакции стержня R 1 (рис. 7.8)?

6. Определите главный момент системы сил (рис. 7.9). Точка приведения - начало координат. Координатные оси совпадают с реб­рами куба, ребро куба равно 20 см;F 1 - 20кН;F 2 - 30кН.

7. Определите реакцию Хв (рис. 7.10). Вертикальная ось со шки­вом нагружена двумя горизонтальными силами. Силы F 1 и F 2 па­раллельны осиОх. АО = 0,3 м; ОВ = 0,5 м; F 1 = 2кН; F 2 = 3,5 кН.



Рекомендация. Составить уравнение моментов относительно оси Оу" в точке А.

8. Ответьте на вопросы тестового задания.

Существуют три вида уравнений равновесия плоской системы сил. Первый, основной вид вытекает непосредственно из условий равновесия:

;

и записывается так:

;
;
.

Два других вида уравнений равновесия также могут быть получены из условий равновесия:

;
;
,

где прямая AB не перпендикулярна осиx ;

;
;
.

Точки A , B и C не лежат на одной прямой.

В отличие от плоской системы сил условиями равновесия произвольной пространственной системы сил являются два векторных равенства:


.

Если эти соотношения спроецировать на прямоугольную систему координат, то получим уравнения равновесия пространственной системы сил:

Задание 1. Определение реакций опор составной конструкции (Система двух тел)

Конструкция состоит из двух ломаных стержней ABC иCDE , соединенных в точкеC неподвижным цилиндрическим шарниром и прикрепленных к неподвижной плоскостиxOy либо с помощью неподвижных цилиндрических шарниров (НШ), либо подвижным цилиндрическим шарниром (ПШ) и жесткой заделкой (ЖЗ). Плоскость качения подвижного цилиндрического шарнира составляет уголс осьюOx. Координаты точкиA , B , C ,D иE , а также способ крепления конструкции приведены в табл. 1. Конструкция загружена равномерно распределенной нагрузкой интенсивностиq , перпендикулярной участку ее приложения, парой сил с моментомM и двумя сосредоточенными силами и . Равномерно распределенная нагрузка приложена таким образом, что ее равнодействующая стремится повернуть конструкцию вокруг точкиO против хода часовой стрелки. Участки приложенияq иM , а также точки приложения и , их модули и направления указаны в табл. 2. Единицы задаваемых величин: q – килоньютон на метр (кН/м);M – килоньютон-метр (кНм); и – килоньютон (кН);ипредставлены в градусах, а координаты точек – в метрах. Углы,иследует откладывать от положительного направления осиOx против хода часовой стрелки, если они положительны, и по ходу часовой стрелки – если отрицательны.

Определите реакции внешних и внутренней связей конструкции.

Указания к выполнению задания

На координатной плоскости xOy в соответствии с условием варианта задания (табл. 1) необходимо построить точкиA ,B, C ,D ,E ; изобразить ломаные стержниABC ,CDE ; указать способы крепления этих тел между собой и с неподвижной плоскостьюxOy . Затем, взяв данные из табл. 2, загрузить конструкцию двумя сосредоточенными силами и , равномерно распределенной нагрузкой интенсивностиq и парой сил с алгебраическим моментом M . Так как в задании исследуется равновесие составного тела, далее нужно построить еще один рисунок, изобразив на нем отдельно телаABC и CDE . Внешние (точкиA ,E ) и внутреннюю (точкаС ) связи на обоих рисунках следует заменить на соответствующие реакции, а равномерно распределенную нагрузку – на равнодействующую
(l – длина участка приложения нагрузки), направленную в сторону нагрузки и приложенную к середине участка. Поскольку рассматриваемая конструкция состоит из двух тел, то для нахождения реакций связей нужно составить шесть уравнений равновесия. Существуют три варианта решения этой задачи:

а) составить три уравнения равновесия для составного тела и три – для тела ABC ;

б) составить три уравнения равновесия для составного тела и три – для тела CDE ;

в) составить по три уравнения равновесия для тел АВС иCDE .

Пример

Дано: A (0;0,2);В (0,3:0,2);С (0,3:0,3);D (0,7:0,4);E (0,7:0);
кН/м,
кН, β = - 45˚, и
кН, γ = - 60˚,
кНм.

Определить реакции внешних и внутренней связей конструкции.

Решение. Разобьем конструкцию (рис. 7,а ) в точкеС на составные частиABC иCDE (рис. 7,б ,в ). Заменим шарнирыA иB соответствующими реакциями, составляющие которых укажем на рис. 7. В точкеC изобразим составляющие
- сил взаимодействия между частями конструкции, причем.

Таблица 1

Варианты задания 1

A

Способ крепления

конструкции

x A

y A

x B

y B

x C

y C

x D

y D

x E

y E

т. E

Таблица 2

Данные к заданию 1

Сила

Сила

Момент M

Значение

Значение

Значение

Значение

Равномерно распределенную нагрузку интенсивности q заменим равнодействующей, кН:

Вектор образует с положительным направлением осиy угол φ, который несложно найти по координатам точекC иD (см. рис. 7,а ):

Для решения задачи воспользуемся первым видом уравнений равновесия, записав их отдельно для левой и правой частей конструкции. При составлении уравнений моментов выберем в качестве моментных точек точки A – для левой иE – для правой частей конструкции, что позволит решить эти два уравнения совместно и определить неизвестные
и .

Уравнения равновесия для тела ABC :

Представим силу как сумму составляющих:
, где. Тогда уравнения равновесия для телаCDE могут быть записаны в виде

.

Решим совместно уравнения моментов, предварительно подставив в них известные значения.

Учитывая, что по аксиоме о равенстве сил действия и противодействия
, из полученной системы найдем, кН:

Тогда из оставшихся уравнений равновесия тел ABC и CDE несложно определить реакции внутренней и внешних связей, кН:

Результаты вычислений представим таблицей:

Рассмотрены методы решения задач на равновесие с произвольной пространственной системой сил. Приводится пример решения задачи на равновесие плиты, поддерживаемой стержнями в трехмерном пространстве. Показано, как за счет выбора осей при составлении уравнений равновесия, можно упростить решение задачи.

Содержание

Порядок решения задач на равновесие с произвольной пространственной системой сил

Чтобы решить задачу на равновесие твердого тела с произвольной пространственной системой сил, надо выбрать прямоугольную систему координат и, относительно нее, составить уравнения равновесия.

Уравнения равновесия, для произвольной системы сил, распределенных в трехмерном пространстве, представляют собой два векторных уравнения:
векторная сумма сил, действующих на тело, равна нулю
(1) ;
векторная сумма моментов сил, относительно начала координат, равна нулю
(2) .

Пусть Oxyz - выбранная нами система координат. Спроектировав уравнения (1) и (2) на оси этой системы, получим шесть уравнений:
суммы проекций сил на оси xyz равны нулю
(1.x) ;
(1.y) ;
(1.z) ;
суммы моментов сил относительно осей координат равны нулю
(2.x) ;
(2.y) ;
(2.z) .
Здесь мы считаем, что на тело действуют n сил, включая силы реакций опор.

Пусть произвольная сила , с компонентами , приложена к телу в точке . Тогда моменты этой силы относительно осей координат определяются по формулам:
(3.x) ;
(3.y) ;
(3.z) .

Таким образом, порядок решения задачи, на равновесие с произвольной пространственной системой сил, следующий.

  1. Отбрасываем опоры и заменяем их силами реакций. Если опорой является стержень или нить, то сила реакции направлена вдоль стержня или нити.
  2. Выбираем прямоугольную систему координат Oxyz .
  3. Находим проекции векторов сил на оси координат, , и точек их приложения, . Точку приложения силы можно перемещать вдоль прямой, проведенной через вектор силы. От такого перемещения значения моментов не изменятся. Поэтому выбираем наиболее удобные для расчета точки приложения сил.
  4. Составляем три уравнения равновесия для сил (1.x,y,z).
  5. Для каждой силы, по формулам (3.x,y,z), находим проекции моментов силы на оси координат.
  6. Составляем три уравнения равновесия для моментов сил (2.x,y,z).
  7. Если число переменных больше числа уравнений, то задача статически неопределима. Методами статики ее решить нельзя. Нужно использовать методы сопротивления материалов.
  8. Решаем полученные уравнения.

Упрощение расчетов

В некоторых случаях удается упростить вычисления, если вместо уравнения (2) использовать эквивалентное условие равновесия.
Сумма моментов сил относительно произвольной оси AA′ равна нулю :
(4) .

То есть можно выбрать несколько дополнительных осей, не совпадающих с осями координат. И относительно этих осей составить уравнения (4).

Пример решения задачи на равновесие произвольной пространственной системы сил

Равновесие плиты, в трехмерном пространстве, поддерживается системой стержней.

Найти реакции стержней, поддерживающих тонкую однородную горизонтальную плиту в трехмерном пространстве. Система крепления стержней показана на рисунке. На плиту действуют: сила тяжести G; и сила P, приложенная в точке A, направленная вдоль стороны AB.

Дано:
G = 28 kН ; P = 35 kН ; a = 7,5 м ; b = 6,0 м ; c = 3,5 м .

Решение задачи

Сначала мы решим эту задачу стандартным способом, применимым для произвольной пространственной системы сил. А затем получим более простое решение, основываясь на конкретной геометрии системы, за счет выбора осей при составлении уравнений равновесия.

Решение задачи стандартным способом

Этот метод хоть и приведет нас к довольно громоздким вычислениям, но он применим для произвольной пространственной системы сил, и может применяться в расчетах на ЭВМ.

Отбросим связи и заменим их силами реакций. Связями здесь являются стержни 1-6. Вводим вместо них силы , направленные вдоль стержней. Направления сил выбираем наугад. Если мы не угадаем с направлением какой-либо силы, то получим для нее отрицательное значение.

Проводим систему координат Oxyz с началом в точке O .

Находим проекции сил на оси координат.

Для силы имеем:
.
Здесь α 1 - угол между LQ и BQ . Из прямоугольного треугольника LQB :
м ;
;
.

Силы , и параллельны оси z . Их компоненты:
;
;
.

Для силы находим:
.
Здесь α 3 - угол между QT и DT . Из прямоугольного треугольника QTD :
м ;
;
.

Для силы :
.
Здесь α 5 - угол между LO и LA . Из прямоугольного треугольника LOA :
м ;
;
.

Сила направлена по диагонали прямоугольного параллелепипеда. Она имеет следующие проекции на оси координат:
.
Здесь - направляющие косинусы диагонали AQ :
м ;
;
;
.

Выбираем точки приложения сил. Воспользуемся тем, что их можно перемещать вдоль линий, проведенных через векторы сил. Так, в качестве точки приложения силы можно взять любую точку на прямой TD . Возьмем точку T , поскольку для нее x и z - координаты равны нулю:
.
Аналогичным способом выбираем точки приложения остальных сил.

В результате получаем следующие значения компонентов сил и точек их приложений:
; (точка B );
; (точка Q );
; (точка T );
; (точка O );
; (точка A );
; (точка A );
; (точка A );
; (точка K ).

Составляем уравнения равновесия для сил. Суммы проекций сил на оси координат равны нулю.

;

;

.

Находим проекции моментов сил на оси координат.
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

Составляем уравнения равновесия для моментов сил. Суммы моментов сил относительно осей координат равны нулю.


;


;


;

Итак, мы получили следующую систему уравнений:
(П1) ;
(П2) ;
(П3) ;
(П4) ;
(П5) ;
(П6) .

В этой системе шесть уравнений и шесть неизвестных. Далее сюда можно подставить численные значения и получить решение системы, используя математическую программу вычисления системы линейных уравнений.

Но, для этой задачи, можно получить решение без использования средств вычислительной техники.

Эффективный способ решения задачи

Мы воспользуемся тем, что уравнения равновесия можно составлять не единственным способом. Можно произвольным образом выбирать систему координат и оси, относительно которых вычисляются моменты. Иногда, за счет выбора осей, можно получить уравнения, которые решаются более просто.

Воспользуемся тем, что, в равновесии, сумма моментов сил относительно любой оси равна нулю . Возьмем ось AD . Сумма моментов сил относительно этой оси равна нулю:
(П7) .
Далее заметим, что все силы, кроме пересекают эту ось. Поэтому их моменты равны нулю. Не пересекает ось AD только одна сила . Она также не параллельна этой оси. Поэтому, чтобы выполнялось уравнение (П7), сила N 1 должна равняться нулю:
N 1 = 0 .

Теперь возьмем ось AQ . Сумма моментов сил относительно нее равна нулю:
(П8) .
Эту ось пересекают все силы, кроме . Поскольку сила не параллельна этой оси, то для выполнения уравнения (П8) необходимо, чтобы
N 3 = 0 .

Теперь возьмем ось AB . Сумма моментов сил относительно нее равна нулю:
(П9) .
Эту ось пересекают все силы, кроме , и . Но N 3 = 0 . Поэтому
.
Момент от силы относительно оси равен произведению плеча силы на величину проекции силы на плоскость, перпендикулярную оси. Плечо равно минимальному расстоянию между осью и прямой, проведенной через вектор силы. Если закручивание происходит в положительном направлении, то момент положителен. Если в отрицательном - то отрицательный. Тогда
.
Отсюда
.

Остальные силы найдем из уравнений (П1), (П2) и (П3). Из уравнения (П2):
N 6 = 0 .
Из уравнений (П1) и (П3):
;

Таким образом, решая задачу вторым способом, мы использовали следующие уравнения равновесия:
;
;
;
;
;
.
В результате мы избежали громоздких расчетов, связанных с вычислениями моментов сил относительно осей координат и получили линейную систему уравнений с диагональной матрицей коэффициентов, которая сразу разрешилась.

N 1 = 0 ; N 2 = 14,0 kН ; N 3 = 0 ; N 4 = -2,3 kН ; N 5 = 38,6 kН ; N 6 = 0 ;

Знак минус указывает на то, что сила N 4 направлена в сторону, противоположную той, которая указана на рисунке.

Аналитическая запись условий равновесия произвольной пространственной системы сил представляет систему шести уравнений (5.3).

С механической точки зрения первые три уравнения устанавливают отсутствие поступательного, а последние три − углового перемещения тела. В случае ССС условия равновесия будут представлены системой первых трех уравнений. В случае системы параллельных сил система будет состоять также из трех уравнений: из одного уравнения суммы проекций сил на ту ось, параллельно которой ориентированы силы системы, и двух уравнений моментов относительно осей, непараллельных линиям действия сил системы.

ЦЕНТР ТЯЖЕСТИ ТЕЛА

Центром тяжести твердого тела называется точка, через которую проходит линия действия равнодействующей сил тяжести частиц данного тела, при любом его расположении в пространстве.

Координаты центра тяжести, точки C (рис. 6.3) можно определить по следующим формулам:

Ясно, что чем мельче разбиение, тем точнее будет проведен расчет по формулам (6.7), (6.8). Однако при этом трудоемкость вычислений может быть достаточно большой. В инженерной практике применяются формулы определения центра тяжести тел правильной формы.

КИНЕМАТИКА

ЛЕКЦИЯ 6.

Кинематикой называют раздел механики, в котором рассматривают движение тел и

Точек без учета сил, приложенных к ним.

6.1. Способы задания движения точки

Рассматривать движение тел или точек можно только относительно какой- либо системы отсчета – реального или условного тела, относительно которого определяют положение и движение других тел.

Рассмотрим три, наиболее используемые при решении задач, системы отсчета и, соответствующие им, три способа задания движения точки. Их характеристика сводится к: а) описанию самой системы отсчета; б) определению положения точки в пространстве; в) указанию уравнений движения точки; г) установлению формул, по которым могут быть найдены кинематические характеристики движения точки.

Векторный способ

Данный способ используют, как правило, при выводе теорем и других теоретических положений. Его преимущество перед другими способами – компактность записи. В качестве системы отсчета в этом способе выступает центр О с тройкой единичных векторов – i, j, k (рис. 8.1). Положение в пространстве произвольной точки М определяется посредством радиуса-вектора, r. Таким образом, уравнением движения точки M будет однозначная функция радиуса-вектора от времени, t :

Сравнивая последние два определения, можно заключить, что траектория точки является одновременно годографом ее радиуса-вектора.

Введем понятие средней скорости, V ср (рис. 8.1):

и истинной (мгновенной) скорости, V:

Направление V совпадает с касательной, к траектории точки (рис. 8.1).

Ускорение точки – это векторная величина, характеризующая изменение скорости точки:


Естественный способ

ная зависимость между S и временем, t , представляет собой уравнение движения точки в естественном способе задания движения:

Скорость точки, направленная по оси t , определяется как:

Ускорение точки, а, находится в плоскости nt и может быть разложено на составляющие:

Физический смысл этого разложения заключается в следующем: линия действия касательной составляющей, а t , совпадает с линией действия вектора скорости, V , и отражает изменение только модуля скорости; нормальная составляющая ускорения, а n , характеризует изменение направления линии действия вектора скорости. Их численные значения могут быть найдены по следующим формулам:

где – радиус кривизны траектории в данной точке.

Координатный способ

Этот способ наиболее часто используют при решении задач. Системой отсчета является тройка взаимно перпендикулярных осей x , y , z (рис. 8.3). Положение точки М определяется ее координатами x М , y М , z М .

Уравнения движения точки представляют собой однозначные функции этих координат от

а ее модуль:

Направление вектора скорости в пространстве можно аналитически определить с помощью направляющих косинусов:

Ускорение точки М можно установить по его проекциям на координатные оси:

Направление вектора ускорения в пространстве определяется направляющими косинусами.

Произвольную простран-ственную систему сил, как и плос-кую, можно привести к какому-нибудь центру О и заменить од-ной результирующей силой и парой с моментом . Рассуждая так, что для равновесия этой системы сил необходимо и достаточно, чтобы одновременно было R = 0 и M о = 0. Но векторы и могут обратиться в нуль только тогда, когда равны нулю все их проекции на оси координат, т. е. когда R x = R y = R z = 0 и M x = M y = M z = 0 или, когда дей-ствующие силы удовлетворяют условиям:

ΣX i = 0; ΣM x (P i ) = 0;

ΣY i = 0; ΣM y (P i ) = 0;

ΣZ i = 0; ΣM z (P i ) = 0.

Таким образом, для равновесия пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил системы на каждую из координатных осей, а также суммы моментов всех сил системы относительно каждой из этих осей равнялись нулю.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были к ним перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно осей координат.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекоменду-ется изобразить на вспомогательном чертеже проекцию рассматри-ваемого тела (вместе с силой) на плоскость, перпендикулярную к этой оси.

В тех случаях, когда при вычислении момента возникают затруд-нения в определении проекции силы на соответствующую плоскость или плеча этой проекции, реко-мендуется разложить силу на две взаимно перпендикулярные состав-ляющие (из которых одна парал-лельна какой-нибудь координат-ной оси), а затем воспользоваться теоремой Вариньона .

Пример 5. Рама АВ (рис.45) удерживается в равновесии шарниром А и стержнем ВС . На краю рамы находится груз весом Р . Опреде-лим реакции шарнира и усилие в стержне.


Рис.45

Рассматриваем равновесие рамы вместе с грузом.

Строим расчётную схему, изобразив раму свободным телом и показав все силы, действующие на неё: реакции связей и вес груза Р . Эти силы образуют систему сил, произвольно расположенных на плоскости.

Жела-тельно составить такие уравнения, чтобы в каждом было по одной неиз-вестной силе.

В нашей задаче это точка А , где приложены неизвестные и ; точка С , где пересекаются линии действия неизвестных сил и ; точка D - точка пересечения линий действия сил и . Со-ставим уравнение проекций сил на ось у (на ось х проектировать нельзя, т.к. она перпендикулярна прямой АС ).

И, прежде чем составлять уравнения, сделаем еще одно полезное заме-чание. Если на расчётной схеме имеется сила, расположенная так, что плечо её находится непросто, то при определении момента рекоменду-ется предварительно разложить вектор этой силы на две, более удобно направленные. В данной задаче разложим силу на две: и (рис.37) такие, что модули их

Составляем уравнения:

Из второго уравнения находим:

Из третьего

И из первого

Так как получилось S <0, то стержень ВС будет сжат.

Пример 6. Прямоугольная полка весом Р удерживается в гори-зонтальном положении двумя стержнями СЕ и СD , прикреплён-ными к стене в точке Е . Стержни одинаковой длины, AB = 2a , EO = a . Определим усилия в стержнях и ре-акции петель А и В .

Рис.46

Рассматриваем равновесие плиты. Строим расчётную схему (рис.46). Реакции петель принято показывать двумя силами перпенди-кулярными оси петли: .

Силы образуют систему сил, произвольно расположенных в про-странстве. Можем составить 6 уравнений. Неизвестных - тоже шесть.

Какие уравнения составлять - надо подумать. Желательно такие, чтобы они были попроще и чтобы в них было поменьше неизвестных.

Составим такие уравнения:

Из уравнения (1) получим: S 1 =S 2 . Тогда из (4): .

Из (3): Y A =Y B и, по (5), . Значит Из уравнения (6), т.к. S 1 =S 2 , следует Z A =Z B . Тогда по (2) Z A =Z B =P/4.

Из треугольника , где , следует ,

Поэтому Y A =Y B =0,25P, Z A =Z B 0,25P.

Для проверки решения можно составить ещё одно уравнение и по-смотреть, удовлетворяется ли оно при найденных значениях реакций:

Задача решена правильно.