От множества различных факторов в. Отношения эквивалентности

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.

Пусть (X, £) – частично упорядоченное множество, A Í X – подмножество. Отношение на А, состоящее из пар (a, b) элементов a, b Î A, для которых a £ b, будет отношением порядка на А. Это отношение обозначают тем же символом: £. Таким образом, (A, £) – частично упорядоченное множество. Если оно является линейно упорядоченным, то будем говорить, что А – цепь в (X, £).

Принцип максимальности

Некоторые математические утверждения невозможно доказать без аксиомы выбора. Про эти утверждения говорят, что они зависят от аксиомы выбора или справедливы в теории ZFC , на практике вместо аксиомы выбора для доказательства используют обычно либо аксиому Цермело, либо лемму Куратовского-Цорна, либо любое другое утверждение, равносильное аксиоме выбора.

Лемма Куратовского-Цорна . Если каждая цепь в частично упорядоченном множестве (X, £) ограничена сверху, то в X есть по крайней мере один максимальный элемент.

Эта лемма равносильна аксиоме выбора, и поэтому её можно принять в качестве аксиомы.

Теорема. Для любого частично упорядоченного множества (X, £) существует отношение, содержащее отношение £ и превращающее X в линейно упорядоченное множество.

Доказательство . Множество всех отношений порядка, содержащих отношение £, упорядочено отношением включения Í. Поскольку объединение цепи отношений порядка будет отношением порядка, то по лемме Куратовского-Цорна существует максимальное отношение R, такое, что x £ y влечет x R y. Докажем, что R – отношение, линейно упорядочивающее X. Предположим противное: пусть существуют a, b Î X такие, что ни (a, b), ни (b, a) не принадлежат R. Рассмотрим отношение:

R¢ = R È {(x, y): x R a и b R y}.

Оно получается добавлением пары (a, b) к R и пар (x, y), которые должны быть добавлены к R¢ из условия, что R¢ – отношение порядка. Легко видеть, что R¢ рефлексивно, антисимметрично и транзитивно. Получаем R Ì R¢, противоречащее максимальности R, следовательно, R – искомое отношение линейного порядка.

Линейно упорядоченное множество X называется вполне упорядоченным, если всякое его непустое подмножество A Í X содержит наименьший элемент a Î A. Лемма Куратовского-Цорна и аксиома выбора эквивалентны также следующему утверждению:

Аксиома Цермело . Для каждого множества существует отношение порядка, превращающее его во вполне упорядоченное множество.

Например, множество w натуральных чисел является вполне упорядоченным. Принцип индуктивности обобщается следующим образом:

Трансфинитная индукция . Если (X, £) – вполне упорядоченное множество и F(x) – свойство его элементов, верное для наименьшего элемента x 0 Î X и такое, что из истинности F(y) для всех y < z следует истинность F(z), то F(x) верно для всех x Î X.

Здесь y < z означает, что у £ z, но y ¹ z. Действительно, в противном случае среди x Î X, не обладающих свойством F(x), можно выбрать наименьший элемент x 1 , и выполнение F(y) для всех y < x 1 приводит к выполнению F(x 1), противоречащему предположению.

Понятие мощности

Пусть f: X à Y и g: Y à Z – отображения множеств. Поскольку f и g – отношения, то определена их композиция g ° f(x) = g(f(x)). Если h: Z à T – отображение множеств, то h ° (g ° f) = (h ° g) ° f. Отношения Id X и Id Y – функции, стало быть, определены композиции Id Y ° f = f ° Id x = f. При X = Y определим f 2 = f ° f, f 3 = f 2 ° f, …, f n+1 = f n ° f.

Отображение f: X àY называется инъекцей , если для любых элементов x 1 ¹ x 2 множества X справедливо f(x 1) ¹ f(x 2). Отображение f называется сюръекцией , если для каждого y ÎY существует такой x Î X, что f(x) = y. Если f является и сюръекцией, и инъекцией, то f называется биекцией . Легко видеть, что f – биекция тогда и только тогда, когда обратное отношение f -1 Í Y ´ X является функцией.

Будем говорить, что справедливо равенство |X| = |Y|, если существует биекция между X и Y. Положим |X| £ |Y|, если существует инъекция f: X à Y.

Теорема Кантора-Шредера-Бернштейна . Если |X| £ |Y| и |Y| £ |X| , то |X| = |Y|.

Доказательство . По условию, существуют инъекции f: X à Y и g: Y à X. Пусть A = g¢¢Y = Img – образ множества Y относительно отображения g. Тогда

(X \ A) Ç (gf)¢¢(X \ A) = Æ,

(gf)¢¢(X \ A) Ç (gf) 2 ¢¢(X \ A) = Æ, …,

(gf) n ¢¢(X \ A) Ç (gf) n+1 ¢¢(X \ A) = Æ, …

Рассмотрим отображение j: X à A, заданное как j(x) = gf(x), при

x Î (X \ A) È (gf)¢¢(X \ A) È (gf) 2 ¢¢(X \ A) È …, и j(x) = x в остальных случаях. Легко видеть, что j – биекция. Искомая биекция между X и Y будет равна g -1 ° j.

Антиномия Кантора

Положим |X| < |Y|, если |X| £ |Y| и не существует биекции между X и Y.

Теорема Кантора . Для любого множества X справедливо |X| < |P(X)|, где P(X) – множество всех подмножеств множества X.


Фактор множества

Множества.


Отношением частичного порядка на множестве x называется бинарное отношение, которое является антисимметричным, рефлексивным и транзитивным и обозначается в
виде пары:


Бинарное отношение называется толерантностью, если оно рефлексивно и симметрично.


Бинарное отношение называется квазипорядком, если оно иррефлексивно, антисимметрично и транзитивно (предпорядок).


Бинарное отношение называется строгим порядком, если оно рефлексивно и транзитивно.


Энарной алгебраической операцией на множестве М называется функция



– унарная операция;


– бинарная операция;


– триарная операция.


Бинарная алгебраическая операция –

– операция, ставящая в соответствие каждой упорядоченной паре из множества М некоторые элемент множества М.


Свойства:


1) Коммутативность:


2) Ассоциативность:


Нейтральный элемент

Множества М для бинарной алгебраической операции

Называется элемент:




  • Фактор множества – совокупность классов эквивалентности этого множества . Отношением частичного порядка на множестве x называется бинарное отношение...


  • Следующий вопрос ». Фактор множества . Фактор множества – совокупност. Мультипликативные и аддитивные формы.


  • Фактор множества – совокупност.
    Множество – совокупность определённых и различных между собой объектов мыслимых как единое целое.


  • Мультипликативная функция ― а... подробнее ». Фактор множества . Фактор множества – совокупность классов эквивалентности этого множества .


  • В реальной действительности процесс производства протекает сложнее, а его продукт результат использования множества факторов .


  • Качество управленческих решений зависит от множества факторов , наиболее значимыми из которых можно н.


  • Оптимизация решений по привлечению капитала – это процесс исследования множества факторов , воздействующих на ожидаемые результаты...

Теория множеств. Основные понятия

Теория множеств является основополагающим определением современной математики. Она была создана Георгом Кантором в 1860-х гг. Он писал: «Множество есть многое, мыслимое как единое целое». Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить. Таким образом, множество – объединение в одно целое объектов, хорошо различимых нашей интуицией или нашей мыслью; совокупность некоторых объектов, определенных общим признаком.

Например,

1. Множество жителей г. Воронежа

2. Множество точек плоскости

3. Множество натуральных чисел ℕи др.

Множества обычно обозначаются большими латинскими буквами(A, B, C и т.д.). Объекты, составляющие данное множество, называются его элементами. Элементы множества обозначаются малыми латинскими буквами(a, b, c и т.д.). Если Х – множество, то запись х∈Х означает, что х есть элемент множества Х или что х принадлежит множеству Х , а запись х∉Х , что элемент х не принадлежит множеству Х . Например, пусть ℕ–множество натуральных чисел. Тогда 5 ℕ , а 0,5∉ℕ .

Если множество Y состоит из элементов множества Х , то говорят, что Y является подмножеством множества Х и обозначают Y⊂Х (или Y⊆Х ). Например, множество целых чисел является подмножеством рациональных чисел .

Если для двух множеств Х и Y одновременно имеют место два включения Х Y и Y Х , т.е. Х есть подмножество множества Y и Y есть подмножество множества Х , то множества Х и Y состоят из одних и тех же элементов. Такие множества Х и Y называют равными и пишут: Х=Y .

Часто используется термин пустое множество - Ø - множество, не содержащее ни одного элемента. Оно является подмножеством любого множества.

Для описания множеств могут использоваться следующие способы.

Способы задания множеств

1. Перечисление объектов. Используется только для конечных множеств.

Например, Х={x1, x2, x3… x n } . Запись Y={1, 4, 7, 5} означает, что множество состоит из четырех чисел 1, 4, 7, 5 .

2. Указание характеристического свойства элементов множества.

Для этого задается некоторое свойство Р , позволяющее определить принадлежность элемента множеству. Этот способ является более универсальным.

Х={х: Р(х)}

(множество Х состоит их таких элементов х , для которых выполняется свойство Р (х) ).

Пустое множество можно задать, указав его свойства: Ø={х: х≠х}

Построить новые множества можно с помощью уже заданных, используя операции над множествами.

Операции над множествами

1. Объединением(суммой) называется множество, состоящее из всех тех элементов, каждый из которых принадлежит хотя бы одному из множеств А или В .

А∪ В={х: х А или х В}.

2. Пересечением(произведением) называется множество, состоящее из всех элементов, каждый из которых одновременно принадлежит как множеству А , так и множеству В .

А∩В={х: х А и х В}.

3. Разностью множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат множеству А и не принадлежат множеству В .

А\В={х: х А и х В}

4. Если А – подмножество множества В . То множество В\А называют дополнением множества А до множества В и обозначают А’ .

5. Симметрической разностью двух множеств называют множество А∆В=(А\В) (В\А)

N - множество всех натуральных чисел;
Z - множество всех целых чисел;
Q - множество всех рациональных чисел;
R - множество всех действительных чисел;
C - множество всех комплексных чисел;
Z 0 - множество всех неотрицательных целых чисел.

Свойства операций над множествами:

1. А В=В А (коммутативность объединения)

2. А В=В А (коммутативность пересечения)

3. А(В С)=(А В) С (ассоциативность объединения)

4. А С)=(А В) С (ассоциативность пересечения)

5. А С)=(А В) С) (1 закон дистрибутивности)

6. А С)=(А В) С) (2 закон дистрибутивности)

7. А Ø=А

8. А U= U

9. А Ø= Ø

10. А U=А

11. (А В)’=А’ В’ (закон де Моргана)

12. (А В)’=А’ В’ (закон де Моргана)

13. А В)=А (закон поглощения)

14. А В)=А (закон поглощения)

Докажем свойство №11. В)’=А’ В’

По определению равных множеств, нам необходимо доказать два включения 1) В)’ ⊂А’ В’ ;

2) А’ В’⊂(А В)’ .

Для доказательства первого включения, рассмотрим произвольный элемент х∈(А В)’=Х\(А∪В). Это означает, что х∈Х, х∉ А∪В . Отсюда следует, что х∉А и х∉В , поэтому х∈Х\А и х∈Х\В , а значит х∈А’∩В’ . Таким образом, В)’⊂А’ В’

Обратно, если х∈А’ В’ , то х одновременно принадлежит множествам А’, В’ , а значит х∉А и х∉В . Из этого следует, что х∉ А В , поэтому х∈(А В)’ . Следовательно, А’ В’⊂(А В)’ .

Итак, В)’=А’ В’

Множество, состоящее из двух элементов, в котором определен порядок следования элементов, называется упорядоченной парой. Для ее записи используют круглые скобки. (х 1 , х 2) – двухэлементное множество, в котором х 1 считается первым элементом, а х 2 – вторым. Пары (х 1 , х 2) и (х 2 , х 1), где х 1 ≠ х 2 , считаются различными.

Множество, состоящее из n элементов, в котором определен порядок следования элементов, называется упорядоченным набором из n элементов.

Декартово произведение – произвольное множество X 1 , X 2 ,…,X n упорядоченных наборов из n элементов, где x 1 X 1 , x 2 X 2 ,…, x n X n

Х 1 Х n

Если множества X 1 , X 2 ,…,X n совпадают(X 1 = X 2 =…=X n) , то их произведение обозначается Х n .

Например, 2 – множество упорядоченных пар вещественных чисел.

Отношения эквивалентности. Фактор-множества

По данному множеству можно строить новые множества, рассматривая множество некоторых подмножеств. При этом обычно говорят не о множестве подмножеств, а о семействе или классе подмножеств.

В ряде вопросов рассматривают класс таких подмножеств данного множества А , которые не пересекаются и объединение которых совпадает с А . Если данное множество А можно представить в виде объединения своих попарно не пересекающихся подмножеств, то принято говорить, что А разбито на классы. Разбиение на классы осуществляют на основе какого-либо признака.

Пусть Х – не пустое множество, тогда любое подмножество R из произведения Х Х называется бинарным отношением на множестве Х . Если пара (х,у) входит в R, говорят, что элемент х находится в отношении R с у .

Например, отношения х=у, х≥у являются бинарным отношениями на множестве ℝ.

Бинарное отношение R на множестве Х называется отношением эквивалентности, если:

1. (х,х) R; х Х (свойство рефлексивности)

2. (х,у) R => (у,х) R (свойство симметричности)

3. (х,у) R, (у,z) R, то (x,z) R (свойство транзитивности)

Если пара (х,у) вошла в отношения эквивалентности, то х и у называют эквивалентными(х~у).

1.Пусть – множество целых чисел, m≥1 – целое число. Зададим отношение эквивалентности R на так, чтобы n~k , если n-k делится на m . Проверим, выполняются ли свойства на данном отношении.

1. Рефлексивность.

Для любого n∈ℤ такого, что (p,p)∈R

р-р=0 . Так как 0∈ ℤ , то (p,p)∈ℤ .

2. Симметричность.

Из (n,k) ∈R следует, что существует такое р∈ ℤ , что n-k=mp ;

k-n =m(-p), -p∈ ℤ , следовательно (k,n) ∈R .

3. Транзитивность.

Из того, что (n,k) ∈R , (k,q) ∈R следует, что существуют такие р 1 и р 2 ∈ ℤ , что n-k=mp 1 и k-q=mp 2 . Сложив данные выражения, получаем, что n-q=m(p 1 + p 2), p 1 + p 2 =p, p∈ ℤ . Поэтому (n,q) ∈ ℤ .

2.Рассмотрим множество Х всех направленных отрезков пространства или плоскости. =(А, В) . Введем отношение эквивалентности R на Х .

∼ {\displaystyle \sim } . Тогда множество всех классов эквивалентности называется фактормножеством и обозначается . Разбиение множества на классы эквивалентных элементов называется его факторизацией .

Отображение из X {\displaystyle X} в множество классов эквивалентности X / ∼ {\displaystyle X/\!\sim } называется факторотображением . Благодаря свойствам отношения эквивалентности, разбиение на множества единственно. Это означает, что классы, содержащие ∀ x , y ∈ X {\displaystyle \forall x,\;y\in X} , либо не пересекаются, либо совпадают полностью. Для любого элемента x ∈ X {\displaystyle x\in X} однозначно определён некоторый класс из X / ∼ {\displaystyle X/\!\sim } , иными словами существует сюръективное отображение из X {\displaystyle X} в X / ∼ {\displaystyle X/\!\sim } . Класс, содержащий x {\displaystyle x} , иногда обозначают [ x ] {\displaystyle [x]} .

Если множетво снабжено структурой, то часто отображение X → X / ∼ {\displaystyle X\to X/\!\sim } можно использовать чтобы снабдить фактормножество X / ∼ {\displaystyle X/\!\sim } той же структурой, например топологией. В этом случае множество X / ∼ {\displaystyle X/\!\sim } с индуцированной структурой называется факторпространством .

Энциклопедичный YouTube

    1 / 4

    ✪ 3. Классы эквивалентности

    ✪ Теория множеств Лекция 3 Часть 1

    ✪ Теория множеств Лекция 3 Часть 2

    ✪ Теория множеств Лекция 3 Часть 3

    Субтитры

Факторпространство по подпространству

Часто отношение эквивалентности вводят следующим образом. Пусть X {\displaystyle X} - линейное пространство , а L {\displaystyle L} - некоторое линейное подпространство. Тогда два элемента x , y ∈ X {\displaystyle x,\;y\in X} таких, что x − y ∈ L {\displaystyle x-y\in L} , называются эквивалентными . Это обозначается x ∼ L y {\displaystyle x\,{\overset {L}{\sim }}\,y} . Получаемое в результате факторизации пространство называют факторпространством по подпространству L {\displaystyle L} . Если X {\displaystyle X} разлагается в прямую сумму X = L ⊕ M {\displaystyle X=L\oplus M} , то существует изоморфизм из M {\displaystyle M} в X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} . Если X {\displaystyle X} - конечномерное пространство , то факторпространство X / ∼ L {\displaystyle X/\,{\overset {L}{\sim }}} также является конечномерным и dim ⁡ X / ∼ L = dim ⁡ X − dim ⁡ L {\displaystyle \dim X/\,{\overset {L}{\sim }}=\dim X-\dim L} .

Примеры

. Можно рассмотреть фактормножество X / ∼ {\displaystyle X/\!\sim } . Функция f {\displaystyle f} задаёт естественное взаимноднозначное соответствие между X / ∼ {\displaystyle X/\!\sim } и Y {\displaystyle Y} .

Факторизацию множества разумно применять для получения нормированных пространств из полунормированных, пространств со скалярным произведением из пространств с почти скалярным произведением и пр. Для этого вводится соответственно норма класса, равная норме произвольного его элемента, и скалярное произведение классов как скалярное произведение произвольных элементов классов. В свою очередь отношение эквивалентности вводится следующим образом (например для образования нормированного факторпространства): вводится подмножество исходного полунормированного пространства, состоящее из элементов с нулевой полунормой (кстати, оно линейно, то есть является подпространством) и считается, что два элемента эквивалентны, если разность их принадлежит этому самому подпространству.

Если для факторизации линейного пространства вводится некоторое его подпространство и считается, что если разность двух элементов исходного пространства принадлежит этому подпространству, то эти элементы эквивалентны, то фактормножество является линейным пространством и называется факторпространством.

Пусть R – бинарное отношение на множестве X. Отношение R называется рефлексивным , если (x, x) Î R для всех x Î X; симметричным – если из (x, y) Î R следует (y, x) Î R; транзитивным числу 23 соответствует вариант 24 если (x, y) Î R и (y, z) Î R влекут (x, z) Î R.

Пример 1

Будем говорить, что x Î X имеет общее с элементом y Î X, если множество
x Ç y не пусто. Отношение иметь общее будет рефлексивным и симметричным, но не транзитивным.

Отношением эквивалентности на X называется рефлексивное, транзитивное и симметричное отношение. Легко видеть, что R Í X ´ X будет отношением эквивалентности тогда и только тогда, когда имеют место включения:

Id X Í R (рефлексивность),

R -1 Í R (симметричность),

R ° R Í R (транзитивность).

В действительности эти три условия равносильны следующим:

Id X Í R, R -1 = R, R ° R = R.

Разбиением множества X называется множество А попарно непересекающихся подмножеств a Í X таких, что UA = X. С каждым разбиением А можно связать отношение эквивалентности ~ на X, полагая x ~ y, если x и y являются элементами некоторого a Î A.

Каждому отношению эквивалентности ~ на X соответствует разбиение А, элементами которого являются подмножества, каждое из которых состоит из находящихся в отношении ~. Эти подмножества называются классами эквивалентности . Это разбиение А называется фактор-множеством множества X по отношению ~ и обозначается: X/~.

Определим отношение ~ на множестве w натуральных чисел, полагая x ~ y, если остатки от деления x и y на 3 равны между собой. Тогда w/~ состоит из трёх классов эквивалентности, соответствующих остаткам 0, 1 и 2.

Отношение порядка

Бинарное отношение R на множестве X называется антисимметричным , если из x R y и y R x следует: x = y. Бинарное отношение R на множестве X называется отношением порядка , если оно рефлексивно, антисимметрично и транзитивно. Легко видеть, что это равносильно выполнению следующих условий:

1) Id X Í R (рефлексивность),

2) R Ç R -1 (антисимметричность),

3) R ° R Í R (транзитивность).

Упорядоченная пара (X, R), состоящая из множества X и отношения порядка R на X, называется частично упорядоченным множеством .

Пример 1

Пусть X = {0, 1, 2, 3}, R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}.

Поскольку R удовлетворяет условиям 1 – 3, то (X, R) – частично упорядоченное множество. Для элементов x = 2, y = 3, неверно ни x R y, ни y R x. Такие элементы называют несравнимыми . Обычно отношение порядка обозначают £. В приведенном примере 0 £ 1 и 2 £ 2, но неверно, что 2 £ 3.


Пример 2

Пусть < – бинарное отношение строгого неравенства на множестве w натуральных чисел, рассмотренное в разд. 1.2. Тогда объединение отношений = и < является отношением порядка £ на w и превращает w в частично упорядоченное множество.

Элементы x, y Î X частично упорядоченного множества (X, £) называются сравнимыми , если x £ y либо y £ x.

Частично упорядоченное множество (X, £) называется линейно упорядоченным или цепью , если любые два его элемента сравнимы. Множество из примера 2 будет линейно упорядоченным, а из примера 1 – нет.

Подмножество A Í X частично упорядоченного множества (X, £) называется ограниченным сверху , если существует такой элемент x Î X, что a £ x для всех a Î A. Элемент x Î X называется наибольшим в X, если y £ x для всех y Î X. Элемент x Î X называется максимальным, если нет отличных от x элементов y Î X, для которых x £ y. В примере 1 элементы 2 и 3 будут максимальными, но не наибольшими. Аналогично определяются ограничение снизу подмножества, наименьший и минимальный элементы. В примере 1 элемент 0 будет и наименьшим и минимальным. В примере 2 этими свойствами также обладает 0, но в (w, £) нет ни наибольшего, ни максимального элемента.