Отличие ферментативного катализа от неорганического. Отличия ферментов от небиологических катализаторов

Отличия:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.

2. Ферменты обладают высокой специфичностью к субстрату.

3. Ферменты по своей химической природе белки, катализаторы - неорганика.

4. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.

5. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.

6. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

Общие свойства ферментов:

1. Не расходуются в процессе катализа ;

2. Имеют высокую активность по сравнению с катализаторами др. природы;

3. Обладают высокой специфичностью;

4. Лабильность (неустойчивость);

5. Ускоряют только те реакции, которые не противоречат законам термодинамики .

Общие свойства неорганических катализаторов:

1. Химическая природа - низкомолекулярные вещества;

2. В ходе реакции структура катализатора изменяется незначительно, или не изменяется вовсе;

3. Оптимум pH - сильнокислая или щелочная;

4. Увеличение скорости реакции намного меньше, чем при действии ферментов.

Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра. За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности: абсолютную, относительную, стереохимическую.

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу , лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д.

Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения. Амилаза гидролизует α-гликозидную связь в крахмале, декстринах и гликогене. Алкогольдегидрогеназа окисляет спирты (метанол , этанол и др.).

Стереохимическая специфичность - это способность фермента действовать только на один стереоизомер. Например: 1) L, B-изомерия: L- амилаза слюны и сока поджелудочной железы расщепляет только L-глюкозидные связи в крахмале и не расщепляет D-глюкозидные связи клетчатки; 2) L и В-изомерия: В нашем организме превращения подвергаются только L-аминокислоты, т.к. эти превращения осуществляются ферментами L-оксидазами, способными реагировать только с L-формой аминокислот; 3) Цис-, транс-изомерия: Фумаратгидратаза может превращать только транс-изомер (фумаровую кислоту) в яблочную. Цис-изомер (малеиновая кислота) таким превращениям в нашем организме не подвергается.


Локализация ферментов зависит от их функций. Одни ферменты просто растворены в цитоплазме, другие связаны с определенными органоидами. Например, окислительно-восстановительные ферменты сосредоточены в митохондриях.

Эктоферменты - ферменты, локализующиеся в плазматической мембране и действующие снаружи от нее

Эндоферменты - функционируют внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена.

Экзоферменты - выделяются клеткой в окружающую среду, за пределами клетки расщепляют крупные молекулы на более мелкие осколки и тем самым способствуют проникновению их в клетку. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Ферменты –это белковые молекулы, которые катализируют химические реакции в живых системах. Относительная молекулярная масса ферментов от 10 в 5 степени до 10 в 7 степени

Все биохимические реакции являются каталитическими. Катализаторы биохимических реакций имеют белковую природу и называются ферментами.

Ферменты отличаются от обычных катализаторов:

1)Они обладают более высокой каталитической эффективностью. Эффективность работы ферментов выражается молярной активностью – числом молекул субстрата, превращающихся в продукты реакции за единицу времени при условии полного насыщения фермента субстратом.

2)Ферменты высокоспецифичны, т.е. избирательность действия. Различают субстратную и групповую специфичность. Субстратная специфичность включает в себя и стереоспецифичность – проявление каталитической активности только в отношении одного из стереоизомеров данного вещества.

Ферменты с групповой специфичностью обеспечивают превращения разных субстратов, но имеющих определенные структурные фрагменты.

3)Ферменты проявляют максимальную эффективность только в мягких условиях температура (36*-38*), характеризующихся небольшим интервалом температур и значений рН

Ферменты катализируют превращение аминокислот; пищеварительные ферменты расщепляют пептидные связи самих белков; все биохимические реакции осуществимы в присутствии ферментов

Каждый фермент катализирует только определенную химическую реакцию.

Другой случай представляет собой ферменты с широкой специфичностью в отношении субстрата.

Вследствие высокой специфичности ферментов в обратимых процессах при определенных условиях они обычно увеличивают скорость только реакции, идущей в нужном направлении. В этом заключается одно из отличий ферментативного катализа от простого.

В организме для регуляции ферментативных процессов используются активаторы и ингибиторы .

Ингибиторы тормозят действие ферментов. Бывает обратимое и необратимое ингибирование фермента.

Обратимое наблюдается при взаимодействии с катионами металлов-токсикантов:Hg , Pb,Cd или с ингибиторами белковой природы.

При необратимом торможении ингибитор, обладающий структурным сходством с субстратом, блокирует активный центр фермента, надолго выводя его из строя. (отравляющие вещества)

12. Зависимость скорости ферментативной реакции от: а) температуры; б) рН среды; в) концентрации фермента. Ответ поясните с использованием графиков.

При увеличении температуры свыше определенного значения (45*-50*) биохимические реакции резко замедляются, а затем останавливаются, что связано с инактивацией ферментов при высоких температурах. Снижение активности фермента при температуре выше оптимальной связано с тепловой денатурацией белка, которая наступает при 50*-60*,а в некоторых случаях и при 40*



Снижение активности фермента при значенияхрН , отличающихся от оптимального значения, объясняется изменением степени его ионизации изменением характера ион-ионных и других взаимодействий, обеспечивающих стабильность третичной структуры белка. Для большинства ферментов Оптимальное значение рН совпадает с физиологическими значениями (7,3-7,4). Существуют ферменты, для нормального функционирования которых нужна сильно кислая (пепсин 1,5-2,5) или сильно щелочная (аргиназа 9,5-9,9) среда.

При высокой концентрации субстрата, обеспечивающей полное насыщение всех активных центров фермента, скорость реакции перестает зависеть от концентрации субстрата, однако скорость реакции остается зависеть от концентрации фермента

ГРАФИКИ НА СТРАНИЦЕ 227 В КРАСНОМ УЧЕБНИКЕ

Особенности кинетики ферментативной реакции. Графическая зависимость влияния концентрации субстрата на скорость ферментативной реакции (при постоянной концентрации фермента). Уравнение Михаэлиса-Ментен и его анализ.

Для каждой ферментативной реакции промежуточной реакцией является присоединение к активному центру фермента (Е) молекулы субстрата (St) с возникновением фермент-субстратного комплекса () , который в дальнейшем распадается на продукты реакции (Р) и молекулу фермента:

Где k1 , k-1 , k2 - константы скоростей отдельных стадий

Образование фермент-субстратного комплекса приводит к перераспределению электронов в молекуле субстрата. Скорость реакции зависит от концентрации субстрата. При низких концентрациях субстрата реакция имеет по субстрату первый порядок (Nst = 1) , а при высоких – нулевой (Nst = 0) . При этом скорость реакции становится максимальной. Максимальная скорость ферментативной реакции зависит от концентрации фермента в системе.

ГРАФИК СТРАНИЦА 227 КРАСНЫЙ УЧЕБНИК

Впервые кинетическое описание ферментативных процессов сделали Михаэлис и Ментен, которые предположили уравнение:

Км – константа Михаэлиса, учитывающая величины констант скоростей отдельных реакций (К1 , К-1 , К2), численно равна концентрации субстрата, при которой скорость ферментативной реакции равна половине максимальной (U мах /2)

Величина Км для данной ферментативной реакции зависит от типа субстрата, рН реакционной среды, температуры и концентрации фермента в системе. Реакция протекает тем быстрее, чем меньше Км. На скорость ферментативной реакции влияет присутствие активаторов и ингибиторов. Скорость зависит от концентрации субстрата и фермента.

Основу всех жизненных процессов составляют тысячи химических реакций, катализируемых ферментами. Значение ферментов точно и образно определил И.П.Павлов, назвав их "возбудителями жизни" . Нарушения в работе ферментов ведут к возникновению тяжелых заболеваний – фенилкетонурия , гликогенозы , галактоземия , тирозинемия или существенному снижению качества жизни – дислипопротеинемии , гемофилия.

Известно, что для осуществления химической реакции необходимо, чтобы реагирующие вещества имели суммарную энергию выше, чем величина, называемая энергетическим барьером реакции. Для характеристики величины энергетического барьера Аррениус ввел понятие энергии активации . Преодоление энергии активации в химической реакции достигается либо увеличением энергии взаимодействующих молекул, например нагреванием, облучением, повышением давления, либо снижением требуемых для реакции затрат энергии (т.е. энергии активации) при помощи катализаторов.

Величина энергии активации с ферментом и без него

По своей функции ферменты являются биологическими катализаторами. Сущность действия ферментов, так же как неорганических катализаторов, заключается:

  • в активации молекул реагирующих веществ,
  • в разбиении реакции на несколько стадий, энергетический барьер каждой из которых ниже такового общей реакции.

Однако энергетически невозможные реакции ферменты катализировать не будут, они ускоряют только те реакции, которые могут идти в данных условиях.

Сходство и отличия ферментов и неорганических катализаторов

Ускорение реакций при помощи ферментов весьма значительно, например:

А. Уреаза ускоряет реакцию разложения вполне устойчивой мочевины до аммиака и воды в 10 13 раз, поэтому при инфекции мочевых путей (появление бактериальной уреазы) моча приобретает аммиачный запах.

Б. Рассмотрим реакцию разложения пероксида водорода:

2Н 2 О 2 → О 2 + 2Н 2 О

Если скорость реакции без катализатора принять за единицу, то в присутствии платиновой черни скорость реакции увеличивается в 2×10 4 раза и энергия активации снижается с 18 до 12 ккал/моль, в присутствии фермента каталазы скорость реакции возрастает в 2×10 11 раза с энергией активации 2 ккал/моль.


Неорганические катализаторы практически не зависят от реакции среды.  

Неорганические катализаторы, как показывает опыт, могут отлично работать и при более высоких температурах - до нескольких сот градусов.  

От неорганических катализаторов ферменты отличаются рядом характерных особенностей. Прежде всего ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нормального давления и в области близких к нейтральным значениям рН среды.  

Как и неорганические катализаторы, ферменты ускоряют только те реакции, которые протекают самопроизвольно, но с очень малыми скоростями.  


В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 43 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 20 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

Ферменты отличаются от неорганических катализаторов колоссальной активностью, которая вместе с химической специфичностью составляет главную особенность ферментативного катализа. Абсолютная активность ферментов достигает огромных величин, которые на несколько порядков превышают даже самые производительные неорганические катализаторы.  

Ферменты значительно эффективнее обычных неорганических катализаторов. При ферментативном катализе реакции часто идут в 100 000 - 1 000 000 раз быстрее, чем при обычном катализе. Если бы реакции протекали медленнее, то жизнь была бы невозможна. Известно, например, что одна из основных реакций в нервной системе проходит всего за миллионные доли секунды.  

Если сравнить влияние органических и неорганических катализаторов, то первые при горении тротила были более эффективны в области низких давлений, а при горении нитрогуанидина - в области высоких. При горении ВВ с металлооргапическими солями в том случае, когда данный металл не является катализатором, преобладает ингибирующее действие органической части молекулы добавки, являющейся восстановителем.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

По сравнению с неорганическими катализаторами строение ферментов значительно более сложное.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонент-ные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа 2.Селективность 3. Оптимум pH 4. Интервалы температуры 5.Изменение структуры kat в ходе реакции 6. Увеличение скорости реакции.


Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа Низкомолекулярные вещества, образованные 1 или нескольки- ми элементами. Белки – высокомолекуляр- ные полимеры 2.Селективность Низкая, универсальный kat – Pt ускоряет множ. реакций. Высокая. На каждую р-цию нужен свой фермент. 3. Оптимум pH Сильнокислая или щелочнаяНебольшой интервал, у кажд. органа – свой. 4. Интервалы температуры Очень широкие.35 – 42 градуса, затем денатурируют. 5.Изменение структуры kat в ходе реакции Изменяется незначительно, или не изменяется вовсе. Сильно изменяются и восстанавливаются в исходную структуру по окончании реакции. 6. Увеличение скорости реакции. В 100 – раз От 10 в 8 степени до 10 в 12 степени раз.




Общие: способны к растворению в воде и образованию коллоидных растворов; увеличивают скорость реакции; не расходуются в реакции; амфотерны; их присутствие не влияет на свойства продуктов реакции; характерно протекание цветных реакций; изменяют энергию активации, при которой может произойти реакция; не изменяют сколько-нибудь значительно температуру, при которой происходит реакция; способны к денатурации и гидролизу.


Специфические: Сочетание высочайшей активности с соблюдением строгого ряда условий; Специфичность действия по принципу «ключ – замок» или «рука – перчатка»; Стабильность; Обратимость действия: Е + S ES E + P,где Е – энзим; S – субстрат, P – продукт реакции, ES – фермент-субстратный комплекс.


Роль ферментов в жизнедеятельности организмов: Врожденные нарушения обмена; Взаимопревращения веществ; Биохимическая революция; Превращение энергии; Биосинтез; Фармакология; Ультраструктура мембран; Генетический аппарат; Питание; Клеточный метаболизм; Катализ; Физиологическая регуляция; Бактериальное брожение.