Относительность покоя и движения. Демо-версия курса "подготовка к егэ по физике"

Повседневный опыт показывает, что все макротела находятся в движении по отношению друг к другу. Говорить о движении или покое данного тела просто так, не уточняя по отношению к чему оно происходит, - бессмысленно. Предварительно следует договориться о теле отсчета. За него принимают любой объект, который условно считается неподвижным на весь период наблюдений. С телом отсчета связывают систему координат и хронометр для измерения интервалов времени.

Если движение прямолинейное, то путь и перемещение совпадают. В любом случае скорость движения и ускорение определяются формулами:

Значение скорости относится к той системе отсчета, в которой ее измерили. Пусть мы выбрали телом отсчета светофор и знаем значения скоростей автомобилей в этой системе для наблюдателя №1.

Для наблюдателя в движущейся системе отсчета (колобок №2) величина и направление вектора скорости обгоняющего автомобиля будут совсем другими. Если движение происходит в одном направлении, то скорости вычитаются:U 12 = V 1 - V 2 . Привстречном движении необходимо суммировать значения скоростей. Так преобразуются скорости при переходе из одной системы отсчета в другую.

Найдем связь координат для рассматриваемых двух систем. Пусть один автомобиль остановился на расстоянии Y от начала координат (от светофора). Примем, что при t = 0 Y 0 = Y 0 * = 0, то есть начала координат систем совпадают. Для всех последующих значений времени второй наблюдатель уедет от начального положения на расстояние Ut (заменим V 2 на U - на скорость движения подвижной системы). Тогда можно записать соотношение: Y*=Y-Ut . (Минус - так как второй наблюдатель подъезжает к остановившемуся автомобилю).
Если же известно расстояние Y*, то Y = Y* + Ut.

Таким образом, скорости и координаты объектов относительны. Более того, относительны и координаты событий

Итак, в классической физике относительность движения проявляется в том, что относительны координаты, скорости и места событий. Но всегда сохраняется одномоментность событий, где бы в пространстве они ни происходили.

Зажигается и гаснет желтый свет светофора для всех наблюдателей (пешехода и водителей) одновременно, во всех системах отсчета .

Билет №1

1.Механическое движение – это изменение положения тела в пространстве с течением времени относительно других тел.

Из всех многообразных форм движения материи этот вид движения является самым простым.

Например: перемещение стрелки часов по циферблату, идут люди, колышутся ветки деревьев, порхают бабочки, летит самолет и т.д.

Определение положения тела в любой момент времени является основной задачей механики.

Движение тела, при котором все точки движутся одинаково, называется поступательным.

 Материальная точка – это физическое тело, размерами которого в данных условиях движения можно пренебречь, считая, что вся его масса сосредоточенны в одной точке.

 Траектория – это линия которую описывает материальная точка при своем движении.

 Путь – это длина траектории движения материальной точки.

 Перемещение – это направленный отрезок прямой (вектор), соединяющий начальное положение тела с его последующим положением.

 Система отсчета – это: тело отсчета, связанная с ним система координат, а также прибор для отсчета времени.

Важная особенность мех. движения – его относительность.

Относительность движения – это перемещение и скорость тела относительно разных систем отсчета различны (например, человек и поезд). Скорость тела относительно неподвижной системы координат равна геометрической сумме скоростей тела относительно подвижной системы и скорости подвижной системы координат относительно неподвижной. (V 1 – скорость человека в поезде, V 0 - скорость поезда, то V=V 1 +V 0).

Классический закон сложения скоростей формулируется следующим образом: скорость движения материальной точки по отношению к системе отсчета, принимаемой за неподвижную, равна векторной сумме скоростей движения точки в подвижной системе и скорости движения подвижной системы относительно неподвижной.

Характеристики механического движения свя­заны между собой основными кинематическими уравнениями.

s = v 0 t + at 2 / 2;

v = v 0 + at .

Предположим, что тело движется без уско­рения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: v = const , s = vt .

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

Во время старта скорость ракеты быстро воз­растает, т. е. ускорение а > О , а == const.

В этом случае кинематические уравнения вы­глядят так: v = V 0 + at , s = V 0 t + at 2 / 2.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид: v = v 0 + at , s = v 0 t - at 2 / 2 . Такое движение называют равнозамедленным.

2.Каждый может легко разделить тела на твер­дые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, ка­кими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких темпера­турах - это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на гра­фике (рис. 12). Это и есть кристаллические тела. Та­кое поведение кристаллических тел при нагревании объясняется их внутренним строением.Кристалли­ческие тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое распо­ложение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называютузлами кристаллической решетки. Кристаллические тела бывают монокристал­лами и поликристаллами.Монокристалл обладает единой кристаллической решеткой во всем объеме. Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мел­ких, различным образом ориентированных монокри­сталлов (зерен) и не обладает анизотропией свойств.

Большинство твердых тел имеют поликристалличе­ское строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от поряд­ка расположения атомов, т. е. от типа кристалли­ческой решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кри­сталлических веществ аморфные веществаизотроп­ны. Это значит, что свойства одинаковы по всем на­правлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует опреде­ленная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших дефор­мацию тел. Для упругих деформаций справедлив за­кон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям, где - механическое на­пряжение,

- относительное удлинение, Е - мо­дуль Юнга (модуль упругости). Упругость обусловле­на взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность - свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные де­формации после того, как действие этих сил прекра­тится

Билет№2

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение. Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца. Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчета. Система координат, тело отсчета, с которым она связана, и выбранный способ измерения времени образуют систему отсчета. Положение тела задается координатой. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем (l). Единица пути - метр. Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением. Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр. Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым, если скорость при неравномерном движении в течение этого промежутка не менялась. Определяющая формула скорости имеет вид v = s/t. Единица скорости - м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром. Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле Единица ускорения - . Характеристики механического движения связаны между собой основными кинематическими уравнениями: Предположим, что тело движется без ускорения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид: Движение, при котором скорость тела не меняется, т. е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением. Во время старта скорость ракеты быстро возрастает, т. е. ускорение а > 0, а = const. В этом случае кинематические уравнения выглядят так: При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным. При торможении автомобиля скорость уменьшается одинаково за любые равные промежутки времени, ускорение направлено в сторону, противоположную движению; так как скорость уменьшается, то уравнения принимают вид: Такое движение называют равнозамедленным. Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т. е. характер движения зависит от выбора системы отсчета, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, связанной с Землей, оба самолета находятся в движении. При движении велосипедиста точка колеса в системе отсчета, связанной с осью, имеет траекторию, представленную на рисунке 1. В системе отсчета, связанной с Землей, вид траектории оказывается другим (рис. 2).

Билет№3

Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторо­го начала в данную точку (рис. 2). В этом случае для описания дви­жения необходимо задать:

а) начало отсчета радиус-вектора r ;

б) начало отсчета времени t;

в) закон движения точки r (t).

Поскольку задание одной векторной величины r эквивалентно заданию трех ее проекций x, y, z на оси координат, от век­торного способа легко перейти к коорди­натному. Если ввести единичные векторы i , j , k (i = j = k = 1), направленные соответственно вдоль осей x, y и z (рис. 2), то, очевидно, закон движения может быть представлен в виде*)

r (t) = x(t)i +y(t)j +z(t)k . (1)

Преимущество векторной формы записи перед координатной в компактности (вместо трех величин оперируют с одной) и часто в большей наглядности.

Для решения первой части задачи воспользуемся координатным способом, направив ось х декартовой системы вдоль стержня и выбрав ее начало в точке А. Поскольку вписанный АМС прямой (как опирающийся на диаметр),

x(t) = AM = 2Rcos = 2Rcost,

где R радиус полуокружности. Полученный закон движения назы­вается гармоническим колебанием (колебание это будет продолжаться, очевидно, лишь до того момента, пока колечко не дойдет до точки А).

Вторую часть задачи будем решать, используя естественный спо­соб. Выберем положительное направление отсчета расстояния вдоль траектории (полуокружности АС) против часовой стрелки (рис. 3), а нуль совпадающим с точкой С. Тогда длина дуги СМ как функция времени даст закон движения точки М

S(t) = R2 = 2R t,

т.е. колечко будет равномерно двигаться по окружности радиусом R с угловой скоростью 2 . Как явствует из проведенного рассмотрения,

нуль отсчета времени в обоих случаях соответствовал моменту, когда колечко находилось в точке С.

Билет№4

Координатный способ. Будем задавать положение точки с помощью координат (рис.1.7 ). Если точка движется, то ее координаты изменяются с течением времени. Так как координаты точки зависят от времени, то можно сказать, что они являются функциями времени .

Математически это принято записывать в виде

Уравнения (1.1) называют кинематическими уравнениями движения точки , записанными в координатной форме. Если они известны, то для каждого момента времени мы сможем рассчитать координаты точки, а следовательно, и ее положение относительно выбранного тела отсчета. Вид уравнений (1.1) для каждого конкретного движения будет вполне определенным. Линия, по которой движется точка в пространстве, называется траекторией . В зависимости от формы траектории все движения точки делятся на прямолинейные и криволинейные. Если траекторией является прямая линия, движение точки называется прямолинейным , а если кривая -криволинейным .

Можно ли быть неподвижным и при этом двигаться быстрее автомобиля Формулы 1? Оказывается, можно. Любое движение зависит от выбора системы отсчета, то есть любое движение относительно. Тема сегодняшнего урока: «Относительность движения. Закон сложения перемещений и скоростей». Мы узнаем, как выбрать систему отсчета в том или ином случае, как при этом найти перемещение и скорость тела.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета - совокупность системы координат и часов, связанных с телом, относительно которого изучается движение. Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона (рис. 1).

Рис. 1. Выбор системы отсчета

Какие же физические величины и понятия зависят от выбора системы отсчета?

1. Положение или координаты тела

Рассмотрим произвольную точку . В различных системах она имеет разные координаты (рис. 2).

Рис. 2. Координаты точки в разных системах координат

2. Траектория

Рассмотрим траекторию точки, находящейся на пропеллере самолета, в двух системах отсчета: системе отсчета, связанной с пилотом, и системе отсчета, связанной с наблюдателем на Земле. Для пилота данная точка будет совершать круговое вращение (рис. 3).

Рис. 3. Круговое вращение

В то время как для наблюдателя на Земле траекторией данной точки будет винтовая линия (рис. 4). Очевидно, что траектория зависит от выбора системы отсчета.

Рис. 4. Винтовая траектория

Относительность траектории. Траектории движения тела в различных системах отсчета

Рассмотрим, как меняется траектория движения в зависимости от выбора системы отсчета на примере задачи.

Задача

Какой будет траектория точки на конце пропеллера в разных СО?

1. В СО, связанной с летчиком самолета.

2. В СО, связанной с наблюдателем на Земле.

Решение:

1. Относительно самолета ни летчик, ни пропеллер не перемещаются. Для летчика траектория точки будет казаться окружностью (рис. 5).

Рис. 5. Траектория точки относительно летчика

2. Для наблюдателя на Земле точка движется двумя способами: вращаясь и двигаясь вперед. Траектория будет винтовой (рис. 6).

Рис. 6. Траектория точки относительно наблюдателя на Земле

Ответ : 1) окружность; 2) винтовая линия.

На примере данной задачи мы убедились, что траектория - это относительное понятие.

В качестве самостоятельной проверки предлагаем вам решить следующую задачу:

Какой будет траектория точки на конце колеса относительно центра колеса, если это колесо совершает поступательное движение вперед, и относительно точек, находящихся на земле (неподвижный наблюдатель)?

3. Перемещение и путь

Рассмотрим ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег. Перемещение пловца относительно рыбака, сидящего на берегу, и относительно плота будет разным (рис. 7).

Перемещение относительно земли называют абсолютным, а относительно движущегося тела - относительным. Перемещение движущегося тела (плота) относительно неподвижного тела (рыбака) называют переносным.

Рис. 7. Перемещение пловца

Из примера следует, что перемещение и путь являются относительными величинами.

4. Скорость

С помощью предыдущего примера можно легко показать, что скорость тоже относительная величина. Ведь скорость - это отношение перемещения ко времени. Время у нас одно и то же, а перемещение разное. Следовательно, скорость будет разной.

Зависимость характеристик движения от выбора системы отсчета называется относительностью движения .

В истории человечества были и драматичные случаи, связанные как раз с выбором системы отсчета. Казнь Джордано Бруно, отречение Галилео Галилея - все это следствия борьбы между сторонниками геоцентрической системы отсчета и гелиоцентрической системы отсчета. Уж очень сложно было человечеству привыкнуть к мысли о том, что Земля - это вовсе не центр мироздания, а вполне обычная планета. А движение можно рассматривать не только относительно Земли, это движение будет абсолютным и относительно Солнца, звезд или любых других тел. Описывать движение небесных тел в системе отсчета, связанной с Солнцем, намного удобнее и проще, это убедительно показали сначала Кеплер, а потом и Ньютон, который на основании рассмотрения движения Луны вокруг Земли вывел свой знаменитый закон всемирного тяготения.

Если мы говорим, что траектория, путь, перемещение и скорость являются относительными, то есть зависят от выбора системы отсчета, то про время мы этого не говорим. В рамках классической, или Ньютоновой, механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Рассмотрим, как находить перемещение и скорость в одной системе отсчета, если они нам известны в другой системе отсчета.

Рассмотрим предыдущую ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег.

Как же связано перемещение пловца относительно неподвижной СО (связанной с рыбаком) с перемещением относительно подвижной СО (связанной с плотом) (рис. 8)?

Рис. 8. Иллюстрация к задаче

Перемещение в неподвижной системе отсчета мы назвали . Из треугольника векторов следует, что . Теперь перейдем к поиску соотношения между скоростями. Вспомним, что в рамках Ньютоновой механики время является абсолютной величиной (время во всех системах отсчета течет одинаково). Значит, каждое слагаемое из предыдущего равенства можно разделить на время. Получаем:

Это скорость, с которой движется пловец для рыбака;

Это собственная скорость пловца;

Это скорость плота (скорость течения реки).

Задача на закон сложения скоростей

Рассмотрим закон сложения скоростей на примере задачи.

Задача

Два автомобиля движутся навстречу друг другу: первый автомобиль со скоростью , второй - со скоростью . С какой скоростью сближаются автомобили (рис. 9)?

Рис. 9. Иллюстрация к задаче

Решение

Применим закон сложения скоростей. Для этого перейдем от привычной СО, связанной с Землей, к СО, связанной с первым автомобилем. Таким образом, первый автомобиль становится неподвижным, а второй движется к нему со скоростью (относительная скорость). С какой скоростью, если первый автомобиль неподвижен, вращается вокруг первого автомобиля Земля? Она вращается со скоростью и скорость направлена по направлению скорости второго автомобиля (переносная скорость). Два вектора, которые направлены вдоль одной прямой, суммируются. .

Ответ: .

Границы применимости закона сложения скоростей. Закон сложения скоростей в теории относительности

Долгое время считалось, что классический закон сложения скоростей справедлив всегда и применим ко всем системам отсчета. Однако порядка лет назад оказалось, что в некоторых ситуациях данный закон не работает. Рассмотрим такой случай на примере задачи.

Представьте себе, что вы находитесь на космической ракете, которая движется со скоростью . И капитан космической ракеты включает фонарик в направлении движения ракеты (рис. 10). Скорость распространения света в вакууме составляет . Какой же будет скорость света для неподвижного наблюдателя на Земле? Будет ли она равна сумме скоростей света и ракеты?

Рис. 10. Иллюстрация к задаче

Дело в том, что тут физика сталкивается с двумя противоречащими концепциями. С одной стороны, согласно электродинамике Максвелла, максимальная скорость - это скорость света, и она равна . С другой стороны, согласно механике Ньютона, время является абсолютной величиной. Задача решилась, когда Эйнштейн предложил специальную теорию относительности, а точнее ее постулаты. Он первым предположил, что время не является абсолютным. То есть где-то оно течет быстрее, а где-то медленнее. Конечно, в нашем мире небольших скоростей мы не замечаем данный эффект. Для того чтобы почувствовать эту разницу, нам необходимо двигаться со скоростями, близкими к скорости света. На основании заключений Эйнштейна был получен закон сложения скоростей в специальной теории относительности. Он выглядит следующим образом:

Это скорость относительно неподвижной СО;

Это скорость относительно подвижной СО;

Это скорость подвижной СО относительно неподвижной СО.

Если подставить значения из нашей задачи, то получим, что скорость света для неподвижного наблюдателя на Земле будет составлять .

Противоречие было решено. Также можно убедиться, что если скорости очень малы по сравнению со скоростью света, то формула для теории относительности переходит в классическую формулу для сложения скоростей.

В большинстве случаев мы будем пользоваться классическим законом.

Сегодня мы выяснили, что движение зависит от системы отсчета, что скорость, путь, перемещение и траектория - это понятия относительные. А время в рамках классической механики - понятие абсолютное. Научились применять полученные знания, разобрав некоторые типовые примеры.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.ayp.ru ().

Домашнее задание

  1. Дать определение относительности движения.
  2. Какие физические величины зависят от выбора системы отсчета?

Положение тела в пространстве всегда задается относительно какого-то другого тела - тела отсчета. С этим телом связывают систему координат, и положение тела задается его координатами.

Но за тело отсчета можно выбрать любое тело и с каждым из них связать систему координат. Тогда положение одного и того же тела можно рассматривать относительно разных систем отсчета. Координаты одного и того же тела относительно разных тел отсчета могут оказаться различными. Например, положение автомобиля на дороге (рис. 32) можно задать, указав, что он находится на расстоянии l 1 к северу от населенного пункта l. Но можно сказать, что автомобиль расположен на расстоянии 1 2 к востоку от населенного пункта 2. Это и значит, что положение тела относительно: оно различно относительно разных систем координат.

Но относительно не только положение тела. Относительно и его движение. В чем состоит относительность движения?

Ребенок, впервые попавший на берег реки во время ледохода, спросил: «На чем это мы едем?» Очевидно, ребенок «выбрал» в качестве тела отсчета плывущую по реке льдину. Находясь в покое относительно берега, ребенок двигался вместе с берегом относительно «выбранной» им системы отсчета - льдины.

В стихотворении И. А. Бунина «В поезде» есть такие строки:

Вот мост железный над рекой

Промчался с грохотом под нами...

На первый взгляд они кажутся бессмысленными: ведь не мост под поездом, а поезд по мосту мчится «с грохотом». Здесь писатель-пассажир «выбрал» систему отсчета, связанную с поездом. Поэтому поезд условно считается неподвижным. Относительно этой системы отсчета мост в самом деле движется. Относительно же Земли (системы отсчета, связанной с ней), наоборот, покоится мост, а движется поезд.

В двустишии отмечается также, что не только движение тела, но и его положение относительно: мост расположен под поездом, но над рекой.

Еще один всем известный пример относительности движения и покоя. Каждому, наверное, приходилось наблюдать, как иногда трудно, находясь в вагоне поезда и глядяв окно на проходящий мимо по соседнему пути поезд, выяснить, какой из поездов движется, а какой покоится. Строго говоря, если видеть только соседний вагон и не видеть земли, строений, облаков и т. д., то узнать, какой из поездов движется прямолинейно и равномерно, а какой покоится, невозможно. Если пассажир одного из поездов утверждает, что движется «его» поезд, то пассажир другого поезда с таким же правом может сказать, что движется «его» поезд, а соседний неподвижен. Правы оба пассажира - движение и покой относительны.

Движение каждого тела можно рассматривать по отношению к любым другим телам. По отношению к разным телам данное тело будет совершать различные движения : чемодан, лежащий на полке в вагоне идущего поезда, относительно вагона покоится, но относительно Земли движется. Воздушный шар, уносимый ветром, относительно Земли движется, но относительно воздуха покоится. Самолет, летящий в строю эскадрильи, относительно других самолетов строя покоится, но относительно Земли он движется с большой скоростью, например 800 км в час, а относительно такого же встречного самолета он движется со скоростью 1600 км в час.

В кинофильмах часто показывают одно и то же движение относительно разных тел: например, показывают поезд, движущийся на фоне пейзажа (движение относительно Земли), а затем - купе вагона, за окном которого видны мелькающие деревья (движение относительно вагона).

Сядем в автомобиль и выедем на автостраду, ведущую на север. Оглянемся вокруг. Со встречными автомобилями все просто: они всегда приближаются к нам с севера, проезжают мимо и удаляются на юг (голубой автомобиль). С попутными автомобилями сложнее.

Те автомобили, которые едут быстрее нас, приближаются к нам сзади, обгоняют нас и удаляются на север (серая машина). Но те автомобили, которых обгоняем мы, приближаются к нам спереди и удаляются на юг (красная машина).

Итак, с точки зрения водителя нашей (синей) машины обгоняемый красный автомобиль удаляется на юг, хотя с точки зрения мальчика на обочине дороги этот же автомобиль едет на север! Кроме того, мимо мальчика красный автомобиль "пролетит со свистом", а мимо нашей машины – медленно "уплывет" назад.

Обобщим сказанное. Движение одного и того же тела может выглядеть по-разному с точки зрения различных наблюдателей. Это явление называют относительностью механического движения . Оно проявляется в том, что скорость, направление движения и вид траектории тела будут различными для различных наблюдателей.

Проиллюстрируем теперь для различных наблюдателей различие вида траектории движущегося тела. Находясь на Земле, на ночном небе легко можно видеть яркие быстро летящие точки – спутники. Они движутся по круговым орбитам вокруг Земли, то есть вокруг нас. Сядем теперь в космический корабль, летящий к Солнцу. Мы увидим, что теперь каждый спутник движется не по окружности вокруг Земли, а по спирали вокруг Солнца (см. рисунок).

Всякое движение, а также покой тела (как частный случай движения) относительны. Отвечая на вопрос, покоится тело или движется и как именно движется, необходимо указать, относительно каких тел рассматривается движение данного тела. Иначе никакое высказывание о его движении не может иметь смысла.

Тела, относительно которых рассматривается данное движение, называют системой отсчета. Выбор системы отсчета при изучении данного движения делают в зависимости от условий задачи. Так, чтобы попасть во вражеский самолет с земной поверхности, нужно установить прицел, исходя из скорости самолета в системе отсчета «Земля» (в нашем примере - 800 км в час), а чтобы попасть в этот же самолет со встречного самолета, надо исходить из скорости цели в системе отсчета «встречный самолет» (1600 км в час). При изучении движений на поверхности Земли обычно принимают за систему отсчета Землю (хотя, как сказано, можно выбрать за систему отсчета и поезд, и самолет, и любое другое тело). Изучая движение Земли в целом или движение планет, принимают за систему отсчета Солнце и звезды.

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными . Пусть имеются две системы отсчета. Система XOY условно считается неподвижной, а система X"O"Y" движется поступательно по отношению к системе XOY со скоростью Система XOY может быть, например, связана с Землей, а система X"O"Y" – с движущейся по рельсам платформой (рис. 1.2.1). Пусть человек перешел по платформе за некоторое время из точки A в точку B . Тогда его перемещение относительно платформы соответствует вектору а перемещение платформы относительно Земли соответствует вектору Из рис. 1.2.1 видно, что перемещение человека относительно Земли будет соответствовать вектору и
представляющему собой сумму векторов
Если рассмотреть перемещение за малый промежуток времени Δt , то, разделив обе части этого уравнения на Δt и затем перейдя к пределу при Δt → 0 , получим:

(*)
Здесь – скорость тела в «неподвижной» системе отсчета XOY , – скорость тела в «движущейся» системе отсчета X"O"Y" . Скорости и называют переносной скоростью. Соотношение (*) выражает классический закон сложения скоростей .:
В этом случае все движения происходят вдоль одной прямой линии (например, оси OX ). Скорости υ , υ 0 и υ" нужно рассматривать как проекции абсолютной, переносной и относительной скоростей на ось OX . Они являются величинами алгебраическими, и, следовательно, им нужно приписывать определенные знаки (плюс или минус) в зависимости от направления движения.