Параметрические и непараметрические методы оценивания. Параметрические методы оценки

Приступая к статистической обработке своих исследований, психо-лог должен решить, какие методы ему более подходят по особенностям его материала -- параметрические или непараметрические. Раз-личие между ними легко понять.

Ранее уже говорилось об измерении двигательной скорости детей-шес-тиклассников.

Как обработать эти данные?

Нужно записать все произведенные измерения -- в данном случае это будет число точек, поставленных каждым испытуемым, -- затем вычис-лить для каждого испытуемого среднее арифметическое по его резуль-татам. После этого расположить все данные в их последовательности, например начиная с наименьших к наибольшим. Для облегчения обозри-мости этих данных их обычно объединяют в группы; в этом случае можно объединить по 5-9 измерений в группе. Вообще же при таком объеди-нении желательно, если общее число случаев не более ста, чтобы общее число групп было порядка двенадцати.

Далее нужно установить, сколько раз в опытах встретились числовые значения, соответствующие каждой группе. Сделав это, для каждой группы записать ее численность. Полученные в такой таблице данные носят назва-ние распределения численностей или частот. Рекомендуется предста-вить это распределение в виде диаграммы, на которой изображается по-лигон распределения, или гистограмма распределения. Контуры этого полигона помогут решить вопрос о статистических методах обработки.

Нередко эти контуры напоминают контуры колокола, с наивысшей точкой в центре полигона и с симметричными ветвями, отходящими в ту и другую сторону. Такой контур соответствует кривой нормально-го распределения. Это понятие было введено в математическую ста-тистику К. Ф. Гауссом (1777-1855), поэтому кривую именуют также кривой Гаусса . Он же дал математическое описание этой кривой. Для построения кривой Гаусса (или кривой нормального распределения) теоретически требуется бесчисленное количество случаев. Практиче-ски же приходится довольствоваться тем фактическим материалом, который накоплен в исследовании. Если данные, которыми распола-гает исследователь, при их внимательном рассмотрении или после пе-реноса их на диаграмму лишь в незначительной степени расходятся с кривой нормального распределения, то это дает право исследователю применять в статистической обработке параметрические методы, ис-ходные положения которых основываются на нормальной кривой рас-пределения Гаусса.

Нормальное распределение называют параметрическим потому, что для построения и анализа кривой Гаусса достаточно иметь всего два параметра: среднее значение, которое должно соответствовать высоте перпендикуляра, восстановленного в центре кривой, и так называемое среднее квадратическое, или стандартное, отклонение величины, ха-рактеризующей рассеивание значений вокруг среднего значения; о спо-собах вычисления той и другой величины будет рассказано ниже.

Параметрические методы обладают для исследователя многими преимуществами, но нельзя забывать о том, что применение их право-мерно только тогда, когда обрабатываемые данные показывают рас-пределение, лишь несущественно отличающееся от гауссовского.

При невозможности применить параметрические надлежит обра-титься к непараметрическим методам . Эти методы успешно разраба-тывались в последние 3-4 десятилетия, и их разработка была вызвана прежде всего потребностями ряда наук, в частности психологии. Они показали свою высокую эффективность. Вместе с тем они не требуют сложной вычислительной работы.

Современному психологу-исследователю нужно исходить из того, что «...имеется большое количество данных, которые либо вообще не поддаются анализу с помощью кривой нормального распределения, либо не удовлетворяют основным предпосылкам, необходимым для ее использования».

Генеральная совокупность и выборка . Психологу постоянно при-ходится иметь дело с этими двумя понятиями.

Все параметрические методы статистики работают с интервальной шкалой, в отличие от непараметрических методов, ориентированных прежде всего на первые две шкалы. Поясним отличия этих методов.

При рассмотрении большинства статистических методов предполагается, что наблюдения, о которых идет речь, выражены в интервальной шкале и являются реализациями случайной величины, распределение которой принадлежит некоторому параметрическому семейству распределений. Например, случайная величина имеет нормальное, или пуассоновское, или другое распределение. То есть, мы предполагаем, что известна форма распределения, например, мы можем предполагать нормальную N (μ, δ ) модель, но с неизвестными параметрами μ и δ . Методы оценивания и проверки гипотез позволяют делать выводы о неизвестных параметрах, при этом ценность любых заключений до некоторой степени должна зависеть от адекватности исходного предположения о параметрическом семействе, то есть о форме распределения. Однако существуют случайные величины, которые не подчиняются одной из распространенных форм распределения. Следовательно, к ним нельзя применить те математические методы, которые разработаны для параметрических распределений. Поэтому для таких признаков разработаны специальные математические модели, которые получили название непараметрических или свободных от распределения.

Таким образом, можно выделить две группы методов статистики: параметрические и непараметрические.

Преимущество параметрических методов состоит в том, что для них существует хорошо разработанный математический аппарат. Однако применение этих методов, кроме прочего, предполагает большой объем выборки. Параметрические методы используют для количественных признаков.

Для анализа номинальных и ранговых переменных используются только непараметрические методы, которые не требуют предварительных предположений относительно вида исходного распределения. В этом их достоинство. Но есть и недостаток – снижение т.н. мощности (чувствительности к различиям объектов). Поясним это.

Напомним, что прежде чем приступить к анализу результатов эксперимента, исследователь выдвигает две взаимоисключающие гипотезы. Одна из них - статистическая гипотеза, которую исследователь обычно предполагает отклонить (т.н. нулевая гипотеза Н 0 : например, изучаемые сорта не отличаются по урожайности). Альтернативная гипотеза (Н 1 ) фактически отрицает нулевую гипотезу. В альтернативной гипотезе обычно содержатся выдвигаемые исследователем предположения (есть отличия).

Выделяют два типа статистических ошибок анализа. Ошибка первого рода (ошибка α – типа): отклоняется нулевая гипотеза, которая в действительности верна. Ошибка второго рода (ошибка β – типа): принимаем нулевую гипотезу, которая в действительности ложная.

Мощностью или чувствительностью статистического критерия (метода) называется вероятность того, что в результате его применения будет принято правильное решение (Н 1 ) при действительно ложной нулевой гипотезе. Мощность критерия зависит от объема выборки, уровня значимости, направленности нулевой и альтернативной гипотез, надежности экспериментальных данных, приборов и от самого статистического метода. При равных условиях параметрические методы более мощные, чем непараметрические. Но мощность непараметрических методов возрастает с увеличением объема выборки.

Каждому типу шкалы соответствует своя статистическая техника. Для номинальных шкал часто используется критерий χ 2 (хи-квадрат). Для порядковых шкал – ранговые статистики. Для интервальных шкал – весь арсенал статистических критериев.

Алгоритмы и примеры вычисления непараметрических критериев.

Основные методы математической статистики - оценка параметров распределения, проверка статистических гипотез, дисперсионный анализ - применяются в предположении, что распределение генеральной совокупности известно. В частности, t - критерий для сравнения средних двух генеральных совокупностей и однофакторный дисперсионный анализ для сравнения средних нескольких совокупностей пригодны только в случае нормального распределения последних. Однако нередко встречаются данные, для которых эти предположения не выполняются. Например, результаты социологических опросов обычно имеют форму ответов типа "да" или "нет" и представляются в виде таблиц, содержащих частоты положительных и отрицательных ответов. Традиционные методы математической статистики не могут использоваться для обработки таких данных. В этих случаях обращаются к непараметрическим методам, т.е. методам, не зависящим от распределения генеральной совокупности.

Непараметрические методы применяются для качественных данных, представленных в номинальной шкале, данных, измеряемых в порядковой шкале (т.е. представленных в виде рангов), а также количественных данных в том случае, когда распределение генеральной совокупности нельзя определить, так как выборка мала, либо когда распределение не следует

нормальному закону и параметрические методы не применимы.

В пакете STATISTICA непараметрические

Рис .4.1. Стартовая панель модуля Nonpametrics/Distrib

процедуры выполняются в модуле

Nonpametrics/Distrib. Стартовая панель модуля приведена на рис.4.1.

Опишем последовательно соответствующие методы

и приведем примеры выполнения процедур.

В модуле Nonpametrics/Distrib содержится большое количество процедур. При решении конкретной задачи необходимо выбрать определенный метод. Помощь в таком выборе может оказать следующая классификация непараметрических методов, используемых для проверки гипотезы о том, что анализируемые данные - это выборки из однородных генеральных совокупностей. Заметим, что понятие однородности генеральных совокупностей понимается достаточно широко: это могут быть генеральные совокупности, имеющие одну и ту же

4) меры статистической зависимости: ранговый коэффициент корреляции Спирмена, коэффициент корреляции τ Кендалла.

2. Исходные данные: k независимых выборок объемами

n 1 ,n 2 , …,n k .

1) однофакторный дисперсионный анализ Краскела

Уоллиса.

2) медианный критерий.

3. Исходные данные: две связанные выборки объемами n .

Проверяемая гипотеза H 0 : выборки принадлежат однородным генеральным совокупностям.

1) критерий знаков;

2) критерий Вилкоксона.

4. Исходные данные: k связанных выборок объемамиn .

Проверяемая гипотеза H 0 : выборки принадлежат однородным генеральным совокупностям.

1) однофакторный анализ Фридмана;

2) меры связи - коэффициент конкордации Кендалла.

5. Связанные выборки, измеряемые в номинальной шкале.

5а) Исходные данные: две связанные выборки объемов n переменных X иY , каждая из которых

принимает

значения

Метод: критерий Макнимара.

5б) Исходные данные: две связанные выборки объемов n переменных X 1 ,X 2 , ...,X k , каждая из которых принимает два значения.

Проверяемая гипотеза H 0 : эффект воздействия отсутствует.

Метод : критерий Кокрена.

6. Независимые выборки, измеряемые в номинальной шкале.

6а) Исходные данные: выборки двух случайных переменных

X и Y , каждая из которых принимает два значения.

Проверяемая гипотеза H 0 :X иY независимы.Метод: анализ таблицы сопряженности2× 2

(точный критерий Фишера, критерий χ 2 ).

6б) Исходные данные: выборки k случайных переменных, каждая из которых принимаетr значений.

Проверяемая гипотеза H 0 : выборки получены из одной генеральной совокупности.

Метод: анализ таблицы сопряженностиk × r (критерийχ 2 ). Анализ таких таблиц проводится в

4.1. Таблицы сопряженности 2 × 2, статистикиχ 2 , φ, критерий Макнимара, точный критерий Фишера (2× 2 Tables

Xi/Vi/Phi, McNemar, Fisher exact)

В таблице сопряженности 2× 2 записываются частоты для двух случайных переменныхX иY , каждая из которых принимает два значения: 0 и 1, "да" и "нет" и т.д.

Пример 4.1. Чтобы определить отношение телезрителей разного пола к телевизионной передаче опросили 60 человек: 35 мужчин и 25 женщин. Оказалось, что 25 мужчин одобряют, а 10 - не одобряют передачу. В то же время 16 женщин высказывают свое отрицательное отношение к передаче, а 9 - положительное.

Выяснить, зависит ли отношение к передаче от пола телезрителей.

Решение. Данные можно записать в виде таблицы сопряженности2× 2 :

Отношение к передаче

Формально задача состоит в определении независимости двух рассматриваемых признаков X (пол) иY (отношение к передаче) или в проверке нулевой гипотезыH 0 : отношение к передаче не зависит

от пола при альтернативной гипотезе Н 1 : отношение к

передаче зависит от пола.

Эквивалентная формулировка такова. Рассмотрим две выборки: 35 мужчин и 25 женщин. Проверяется нулевая гипотеза H 0 : доля мужчин, одобряющих передачу (р 1 ), равна доле женщин, одобряющих

передачу (р 2 ), при альтернативной гипотезеН 1 : доли

мужчин и женщин, одобряющих передачу не равны. Нулевая гипотеза есть гипотеза о равенстве параметров р 1 ир 2 двух генеральных совокупностей, имеющих

биноминальное распределение.

Для проверки гипотезы H 0 применяется критерий Фишера , позволяющий рассчитать точные значения вероятностей наблюдаемых результатов и результатов с более крайними распределениями (см. , с. 345). Односторонние (one-tailed ) и двусторонние (twotailed ) уровни значимости p для критерия Фишера (Fisher exact p ) вычисляются и приводятся в таблице результатов выполнения процедуры для таблицы сопряженности 2× 2.

При объеме выборки n ³ 30 менее трудоемкой процедурой являетсякритерий χ 2 . Чтобы пояснить

необходимые расчеты, запишем таблицу сопряженности 2× 2 в следующем виде:

Отношение к передаче

n 11= a

n1* = a+ b

n 21= c

n2* = c+ d

n = a+ c

n = b+ d

n = a+ b+ c+ d

столбцам

В рассматриваемом примере эта таблица имеет вид:

Отношение к передаче

столбцам

Статистика критерия c 2

использует разности между

наблюдаемыми частотами a ,b ,c ,d и ожидаемыми частотамиa 0 , b 0 , c 0 , d 0 , вычисляемыми при условии, что гипотезаH 0 верна:

a 0 =(a + b ) (a + c ) =35 × 34 »19,83; n 60

b 0 = (a+ b) n (b+ d) = 35 60 × 26 » 15,17;

c 0 = (c + d ) (a + c ) = 25 × 34 » 14,17; n60

d 0 = (c+ d) n (b+ d) = 25 60 × 26 » 10,83.

Выборочное значение статистики c в 2 вычисляется по формуле:

(a - a

(b - b

(c - c

(d - d

n(ad - bc) 2

(a+ b)(c+ d)(a+ c)(b+ d)

При n → ∞ статистикаc в 2 имеет распределениеc 2 с одной степенью свободы. Если ожидаемые частоты≤ 5 , то выборочное значение статистикиc в 2 вычисляют с поправкой Йетса на непрерывность:

c2 =(

a - a0

0,5) 2

b - b0

0,5) 2

c - c0

0,5) 2

d - d0

0,5)

nç ad- bc-

(a+ b) (c+ d) (a+ c)(b+ d)

Гипотеза H 0 принимается на уровне значимостиα ,

если c 2 < c 2

(1 ) , гдеc 2

Квантиль распределения c 2

с одной степенью свободы порядка 1 – α.

выборочное

значение

c в 2 = 7,45,

с поправкой

Йетса c в 2 = 6,08 .

c 0,95 2 (1) = 3,84

(проверьте,

используя

статистический

калькулятор!) и c в 2 < 3,84 , то гипотезаH 0 отклоняется: на

значимости

отношение к передаче зависит от пола.

Эти же результаты получим, введя данные в соответствующую процедуру пакета STATISTICA. Таблица результатов приведена на рис.4.2.

Рис .4.2. Результаты процедуры2× 2 Tables…

Р -значения для статистикиχ 2 , статистикиχ 2 ,

скорректированной по Йетсу, и точного критерия Фишера для двусторонней проверки соответственно равны 0,0063; 0,0137 и 0,0087. Таким образом, на уровне значимости α = 0,05 гипотеза H 0 отклоняется. В таблице результатов приводится мера связи между переменными

X и Y - коэффициент фи- квадрат (средний коэффициент сопряженности):

ϕ2 =χ в 2 = 0,124. n

Значение ϕ 2 изменяется от 0 (между переменными

нет зависимости) до 1 (между переменными имеется абсолютная зависимость, т.е. все частоты расположены на диагонали таблицы 2× 2 ).

Критерий значимости изменений Макнимара

применяется, если исходные данные - две связанные выборки. Над одним и тем же объектом или индивидуумом проводятся два наблюдения: одно до, другое после некоторого воздействия (приема лекарства, обучения, рекламной компании и т.д.).

Критерий t-Стьюдента для независимых и
зависимых выборок.
Критерий F-Фишера.
Критерий U-Манна-Уитни.
Критерий T-Вилкоксона и др.

Статистические критерии – это
ПРАВИЛО, обеспечивающее принятие
истинной и отклонение ложной гипотезы с
высокой вероятностью.
Статистические критерии – это МЕТОД
расчета определенного числа.
Статистические критерии – это ЧИСЛО.

Параметрические критерии – это
критерии, включающие в формулу расчета
параметры распределения (среднее и
дисперсии).
Непараметрические критерии – это
критерии, не включающие в формулу
расчета параметров распределения и
основанные на оперировании частотами
или рангами.

Позволяют прямо оценить различия в средних,
полученных в двух выборках (t-критерий
Стьюдента)
Позволяют прямо оценить различия в дисперсиях
(критерий F-Фишера)
Позволяют выявить тенденции изменения признака
при переходе от условия к условию (дисперсионный
однофакторный анализ)
Позволяют оценить взаимодействие двух и более
факторов и их влияние на изменение признака
(двухфакторный дисперсионный анализ)

Возможности и ограничения параметрических критериев

Экспериментальные данные должны отвечать двум, а
иногда трем, условиям:
а) значения признака измерены по интервальной
шкале;
б) распределение признака является нормальным;
в) в дисперсионном анализе должно соблюдаться
требование равенства дисперсий в ячейке комплекса.
Если перечисленные условия выполняются, то
параметрические критерии оказываются более
мощными, чем непараметрические.

Позволяют оценить лишь средние тенденции, например,
ответить на вопрос, чаще ли в выборке А встречаются
более высокие, а в выборке Б – более низкие значения
признака (критерии Розенбаума, Манна-Уитни,
угловое преобразование Фишера и др.).
Позволяют оценить лишь различия в диапазонах
вариативности признака (критерий угловое
преобразование Фишера).
Позволяют выявить тенденции изменения признака при
переходе от условия к условию при любом
распределении признака (критерии тенденций
Пейджа, Джонкира).

Возможности и ограничения непараметрических критериев

Отсутствует возможность оценить взаимодействие
двух и более факторов.
Экспериментальные данные могут НЕ ОТВЕЧАТЬ
ни одному из условий параметрической статистики:
а) значения признака могут быть представлены в
любой шкале, начиная от шкалы наименований;
б) распределение признака может быть любым и
совпадение его с каким-либо теоретическим законом
распределения необязательно и не нуждается в
проверке;
в) требование равенства дисперсий отсутствует.

Статистический критерий имеет эмпирическое и
критическое значение.
Эмпирическое значение критерия – это число, полученное
по правилу расчета критерия.
Критическое значение критерия – это число, которое
определено для данного критерия при заданных переменных
(например, количества человек в выборке), выделяющее
зону значимости и незначимости для признака. См.
Таблицы критических значений критерия.
По соотношению эмпирического и критического значений
критерия выявляется уровень статистической значимости и
делается вывод о том, подтверждается или опровергается
нулевая гипотеза.

Правило принятия статистического вывода

1) на основе полученных экспериментальных
данных вычислить эмпирическое значение
критерия Кэмп
2) по соответствующим критерию таблицам
найти критические значения К1кр и К2кр, которые
отвечают уровням значимости в 5% и 1%
3) записать критическое значение в виде:
К1кр для p ≤ 0 05 и К2кр для p ≤ 0 01

10. 4) расположить эмпирическое значение критерия Кэмп и критические значения К1кр и К2кр на оси значимости (ось абсцисс Ох

декартовой системы координат, на
которой выделено три зоны: левая (незначимости),
средняя (неопределенности, р ≤ 0,05), правая
(значимости, р ≤ 0,01)

11. Правило принятия статистического вывода

5) сформулировать принятие решения:
если Кэмп находится в зоне незначимости, то
принимается гипотеза Н0 об отсутствии различий;
если Кэмп находится в зоне неопределенности, то
есть вероятность принятия ложного решения
(необходимо увеличить выборку или воспользоваться
другим критерием);
если Кэмп находится в зоне значимости, то гипотеза
об отсутствии различий Н0 отклоняется и
принимается гипотеза Н1 о наличии различий

12. Правило признания значимости различий

В большинстве случаев для признания различий
значимыми ЭМПИРИЧЕСКОЕ (полученное)
ЗНАЧЕНИЕ КРИТЕРИЯ должно ПРЕВЫШАТЬ
КРИТИЧЕСКОЕ (табличное) в соответствии с
числом степеней свободы для двух независимых
выборок df = (n1 + n2) – 2, для двух зависимых
выборок df = (n1 + n2) – 1 или объемом выборки
(n).
Исключение: критерий U-Манна-Уитни, критерий
G-знаков, критерий T-Вилкоксона, в которых нужно
придерживаться противоположного правила.

13. Зависимые и независимые выборки

Зависимые выборки – это те выборки, в
которых каждому респонденту одной выборки
поставлен в соответствие по определенному
признаку респондент другой выборки.
Независимые выборки – это те выборки, в
которых вероятность отбора любого
респондента одной выборки не зависит от
отбора любого из респондентов другой
выборки.

14. Выбор критерия для сравнения двух выборок

Соответствие
распределений
нормальному закону
(параметрический)
Несоответствие
распределения(й)
нормальному закону
(непараметрический)
Независимые
выборки
t – критерий
Стьюдента
для
независимых
выборок
U-критерий
Манна-Уитни;
Зависимые
выборки
t – критерий
Стьюдента для
зависимых
выборок
Критерий
серий
Критерий знаков
Т-критерий
Вилкоксона;

15. Критерий t-Стьюдента для независимых выборок


генеральных совокупностей из которых извлечены
независимые выборки, отличаются друг от друга.
Исходные предположения:
1.
Одна выборка извлекается из одной генеральной
совокупности, другая – из другой (значения
измеренных признаков гипотетически не должны
коррелировать между собой).
2.
В обеих выборках распределение приблизительно
соответствует нормальному закону.
3.
Дисперсии признаков в двух выборках примерно
одинаковы.

16. Критерий t-Стьюдента для независимых выборок

Структура исходных данных: изучаемый
признак(и) измерен у респондентов, каждый
из которых принадлежит к одной из
сравниваемых выборок.
Ограничения:
1. Распределения существенно не отличаются
от нормального закона в обеих выборках.
2. При разной численности выборок дисперсии
статистически достоверно не различаются
(проверяется по критерию F-Фишера или по
критерию Ливена).

17. Формула для подсчетов

где,
– среднее значение первой выборки
– среднее значение второй выборки
– стандартное отклонение по первой выборке
– стандартное отклонение по второй выборке

18. Критерий t-Стьюдента для зависимых выборок

Проверяет гипотезу о том, что средние значения двух
генеральных совокупностей, их которых извлечены
сравниваемые зависимые выборки, отличаются друг от
друга.
Исходные предположения:
1.
Каждому представителю одной выборки поставлен в
соответствие представитель другой выборки.
2.
Данные двух выборок положительно коррелируют.
3.
Распределение в обеих выборках соответствует
нормальному закону.
Структура исходных данных: имеется по два значения
изучаемого признака(ов).

19. Критерий F-Фишера

Применяется для проверки гипотезы о равенстве
дисперсий двух выборок. Его относят к критериям
рассеяния.
*Имеет смысл перед использованием критерия t-Стьюдента
предварительно проверить гипотезу о равенстве дисперсий.
Если она верна, то для сравнения средних можно
воспользоваться критерием t-Стьюдента (гипотезы о равенстве
средних значений в двух выборках).
Критерий Фишера основан на дополнительных
предположениях о независимости и нормальности
выборок данных. Перед его применением
рекомендуется выполнить проверку нормальности
распределения признака.

20. Критерий F-Фишера

В регрессионном анализе критерий Фишера
позволяет оценивать значимость линейных
регрессионных моделей.
В частности, он используется в шаговой
регрессии для проверки целесообразности
включения или исключения независимых
переменных (признаков) в регрессионную модель.
В дисперсионном анализе критерий Фишера
позволяет оценивать значимость факторов и их
взаимодействия.

21. U-критерий Манна-Уитни для независимых выборок

Показывает насколько совпадают (пересекаются) два ряда
значений измеренного признака (ов).
Условия для применения:
1.
Распределение хотя бы в одной выборке отличается от
нормального вида.
2.
Небольшой объем выборки (больше 100 человек –
используют параметрические критерии, меньше 10
человек – непараметрические, но результаты
считаются предварительными).
3.
Нет гомогенности дисперсий при сравнении средних
значений.

22. Т-критерий Вилкоксона для зависимых выборок

В основе лежит упорядочивание величин
разностей (сдвигов) значений признака в
каждой паре его измерений.
Идея критерия заключается в подсчете
вероятности получения минимальной из
положительных и отрицательных
разностей при условии, что распределение
положительных или отрицательных
разностей равновероятно и равно

23. Н-критерий Крускала-Уоллиса для 3 и более независимых выборок

Применяется для оценки различий по степени
выраженности анализируемого признака
одновременно между тремя, четырьмя и
более выборками.
Позволяет выявить степень изменения
признака в выборках, не указывая на
направление этих изменений.

24. Н-критерий Крускала-Уоллиса

Условия для применения:
1. Измерение должно быть проведено в шкале
порядка, интервалов или отношений.
2. Выборки должны быть независимыми.
3. Допускается разное число респондентов в
сопоставляемых выборках.
4. При сопоставлении трех выборок допускается,
чтобы в одной из них было n=3, а в двух других
n=2. Но в этом случае различия могут быть
зафиксированы только на уровне средней
значимости.

25. Критерий Фишера φ* (фи) (Угловое преобразование Фишера)

Критерий φ (фи) предназначен для
сопоставления двух рядов выборочных
значений по частоте встречаемости какоголибо признака.
Этот критерий можно применять на любых
выборках – зависимых и независимых. А
также можно оценивать частоту
встречаемости признака и количественной,
и качественной переменной.

26. Критерий Фишера φ*

Условия для применения:
1. Измерение может быть проведено в любой
шкале.
2. Характеристики выборок могут быть любыми.
3. Нижняя граница – в одной из выборок может
быть только 2 наблюдения, при этом во второй
должно быть не менее 30 наблюдений. Верхняя
граница не определена.
4. При малых объемах выборок, нижние границы
выборок должны содержать не менее 5
наблюдений каждая.

27. Классификация задач и методов их решения

Задачи
Условия
Методы
1. Выявление
а) 2 выборки
Q - критерий Розенбаума;
различий в уровне испытуемых
U - критерий Манна-Уитни;
исследуемого
φ* - критерий (угловое
признака
преобразование Фишера)
б) 3 и более выбоS - критерий тенденций Джонкира;
рок испытуемых
Н - критерий Крускала-Уоллиса.
2. Оценка сдвига а) 2 замера на одной
Т - критерий Вилкоксона;
значений
и той же выборке
G - критерий знаков;
исследуемого
испытуемых
φ* - критерий (угловое
признака
преобразование Фишера).
б) 3 и более замеров
χл2 - критерий Фридмана;
на одной и той же
L - критерий тенденций Пейджа.
выборке испытуемых

28. Классификация задач и методов их решения

Задачи
3. Выявление
различий в
распределении
4.Выявление
степени
согласованности
изменений
Условия
Методы
а) при сопоставлении
эмпирического
признака распределе
ния с теоретическим
χ2 - критерий Пирсона;

m - биномиальный критерий
б) при сопоставлении
двух эмпирических
распределений
χ2 - критерий Пирсона;
λ - критерий КолмогороваСмирнова;
φ* - критерий (угловое
преобразование Фишера).
rs - коэффициент ранговой
корреляции Спирмена.
rs - коэффициент ранговой
корреляции Спирмена
а) двух признаков
б) двух иерархий или
профилей

29. Классификация задач и методов их решения

Задачи
Условия
5. Анализ
а) под влиянием
изменений
одного фактора
признака под
влиянием
контролируемых
условий
б) под влиянием
двух факторов
одновременно
Методы
S - критерий тенденций
Джонкира;
L - критерий тенденций Пейджа;
однофакторный дисперсионный
анализ Фишера.
Двухфакторный дисперсионный
анализ Фишера.

Вопросы по непараметрическим критериям.

Статистический критерий – решающее правило, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью Одновременно с этим статистический критерий – метод расчета определенного числа и само это число.

Параметрические критерии используются в случае, когда выборка является нормальной, при этом в расчет в данных критериях включены признаки вероятностного распределения признака, то есть средние и дисперсия. При этом предполагается, что данные непрерывны. К параметрическим критериям относятся: t-критерий Стьюдента, критерий хи-квадрат. Подходят для шкал интервальных отношений.

Непараметрические критерии используются, когда нельзя говорить о нормальном распределении, критерии основаны на оперировании рангами или частотами. К непараметрическим относятся критерий знаков, критерий Вилкоксона, критерий Манна-Уитни, Джонкхиер. Подходят для шкал, более слабых, чем интервальные.

Перед выбором критерия мы должны проверить выборку на нормальность.

Я понятия не имею, что написать по мерам среднего и мерам разброса, ибо судя по всему там все те же понятия дисперсии и бла бла прочего *_*

2. Методы проверки статистических гипотез: t-критерий,критерий Вилкоксона, критерий Манна-Уитни,Краскал-Уоллеса(условия применения, формулировка гипотез, распределения статистик, идея расчета)

t-критерий (Стьюдент) – применяется если выборка нормальная. Гипотезы формулируются таким образом:

1. формулируется H0

2. формулируется H1, альтернативная H0 (обычно она свидетельствует о взаимодействии признаков).

3. Выбирается статистика для выбора между двумя гипотезами

4. Для каждого уровня значимости α устанавливается критическая область, где а) попадание результата в эту область свидетельствует скорее об H1, чем об H0 б) вероятность попадания результата в эту область при H0 истинной равна α.

Вероятность допустимой ошибки первого рода α=0,05, если значение критерия по нашей выборке окажется больше t 0,05 , то мы принимает гипотезу H0, отвергаем гипотезу H1.

Для одной выборки

Для независимых выборок.

Критерий знаковых рангов Вилкоксона – рассматривает не значения чисел в выборке, а лишь их знаки. Критерий учитывает абсолютные величины членов выборки. Применяется в случае, когда выборка может не быть нормальной и когда требуется решить, имеет ли выборка существенно отличное от нуля среднее значение. Для применения требуется:

1) Установить уровень значимости α и найти соответствующий нижний квантиль Вилкоксона.


2) Расположить все члены выборки в порядке возрастания абсолютной величины, подписать под ними ранги.

3) Вычислить статистику Вилкоксона, для чего подсчитать сумму рангов, приписанных отрицательным членам выборки.

4) Сравнить полученную статистику с найденным ранее квантилем. Если эта сумма рангов меньше нижнего квантиля, мы отвергаем гипотезу H0, принимает гипотезу H1. Точно так же если сумма рангов всех положительных членов выборки больше верхнего квантиля, мы принимаем H1 и отвергаем H0.

Критерий Манна-Уитни (U) – критерий для независимых выборок, аналог t-критерия Стьюдента. Его эмпирическое значение показывает, насколько совпадают два ряда значений признака. Применяется когда выборка может не быть нормальной, сохраняется лишь требование подобия распределений, но они не обязаны быть нормальными + когда требуется решить проблему, можно ли утверждать о том. Что среднее значение экспериментальной выборки существенно выше среднего значения контрольной группы.

1) Записываем члены обеих выборок в порядке возрастания, выделяя при этом члены различных выборок по-разному.

2) Для каждого числа первой (контрольной) выборки подсчитываем, сколько чисел второй (экспериментальной) выборки расположено левее него. Если число первой выборки равно числу второй, то прибавляем 0,5. Получаем последовательной результатов и складываем ее.

3) Смотрим на выбранном нами уровне значимости нижний квантиль по Манну-Уитни. Если полученная нами сумма меньше нижнего квантиля, то отвергаем гипотезу H0, принимаем гипотезу H1.

Распределение Манна-Уитни симметрично (т.е. можно подсчитывает по обратной схеме и использовать верхнюю квантиль).

Критерий Краскал-Уоллеса – является непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок. Сходен с критерием Манна-Уитни. Оценивает степень совпадения нескольких рядов значений измененного признака. Основная идея – представление всех значений сравниваемых выборок в виде общей последовательности ранжированных значений с последующим вычислением среднего ранга для каждой из выборок.

Вычисляется после ранжирования.

N – суммарная численность всех выборок.

k – количество сравниваемых выборок.

R i – сумма рангов для конкретной выборки.

n i – численность выборки i.

Чем сильнее различаются выборки, тем больше вычислительное значение H, меньше p-уровень значимости. При отклонении нулевой статистической гипотезы принимается альтернативная о статистически достоверных различиях по данному признаку без конкретизации направления различий. (для направления необходим критерий Манна-Уитни, т.к. он для двух выборок, а этот для больше двух).