Переходные формы. Происхождение и эволюция наземных растений


В основе доказательств животного происхождения человека лежат доказательства эволюции органического мира.

I. Палеонтологические доказательства

1. Ископаемые формы.

2. Переходные формы.

3. Филогенетические ряды.

Палеонтологические находки позволяют восстановить внешний облик вымерших животных, их строение, черты сходства и различия с современными видами. Это дает возможность проследить развитие органического мира во времени. Например, в древних геологических пластах обнаружены остатки лишь представителей беспозвоночных, в более поздних - хордовых животных, а в молодых отложениях - животных, сходных с современными.

Палеонтологические находки подтверждают наличие преемственности между различными систематическими группами. В одних случаях удалось найти ископаемые формы(напр. синантроп),в других переходные формы, сочетающие признаки древних и исторически более молодых представителей.

В антропологии такими формами являются: дриопитеки, австралопитеки и др.

В животном мире такими формами являются: археоптерикс - переходная форма между рептилиями и птицами; иностранцевия - переходная форма между рептилиями и млекопитающими; псилофиты - между водорослями и наземными растениями.

На основании таких находок удается установить филогенетические (палеонтологические) ряды -формы, последовательно сменяющие друг друга в процессе эволюции.

Таким образом, палеонтологические находки четко свидетельствуют о том, что по мере перехода от более древних земных слоев к современным происходит постепенное повышение уровня организации животных и растений, приближение их к современным.

II. Биогеографические доказательства

1. Сопоставление видового состава с историей территорий.

2. Островные формы.

3. Реликты.

Биогеография изучает закономерности распределения растительного (флоры) и животного (фауны) мира на Земле.

Установлено: чем раньше произошла изоляция отдельных частей планеты, тем сильнее различия организмов, населяющих эти территории - островные формы.

Так, животный мир Австралии весьма своеобразен: здесь отсутствуют многие группы-животных Евразид,зато сохранились такие, которых нет в других районах Земли, например яйцекладущими сумчатые млекопитающие (утконос, кенгуру и др.). В то же время животный мир некоторых островов сходен с материковым (например. Британские острова, Сахалин), что говорит об их недавней изоляции от континента. Следовательно, распределение видов животных и растений по по-верхности планеты отражает процесс исторического развития Земли и эволюции живого.

Реликты -ныне живущие виды с комплексом признаков, характерных для давно вымерших групп прошлых эпох. Реликтовые формы свидетельствуют о флоре и фауне далекого прошлого Земли.

Примерами реликтовых форм являются:

1. Гаттерия - рептилия, обитающая в Новой Зеландии. Этот вид является единственным ныне живущим представителем подкласса Первоящеров в классе Рептилий.

2. Латимерия (целокант) - кистеперая рыба, обитающая в глубоководных участках у берегов Восточной Африки. Единственный представитель отряда Кистеперых рыб, наиболее близкий к наземным позвоночным.

3. Гинкго двулопастный - реликтовое растение. В настоящее время распространено в Китае и Японии только как декоративное растение. Облик гинкго позволяет представить древесные формы, вымершие в юрском периоде.

В антропологи под реликтовым гоминидом подразумевается мифологический «Снежный человек».

III. Сравнительно-эмбриологические

1. Закон зародышевого сходства К. Бэра.

2. Биогенетический закон Геккеля-Мюллера.

3. Принцип рекапитуляции.

Эмбриология - наука, изучающая зародышевое развитие организмов. Данные сравнительной эмбриологии указывают на сходство зародышевого развития всех позвоночных.

Закон зародышевого сходства Карла Бэра (1828) (такое название закону дал Дарвин), свидетельствует об общности происхождения: эмбрионы разных систематических групп имеют между собой гораздо больше сходства, чем взрослые формы тех же видов.

В процессе онтогенеза вначале появляются признаки типа, затем класса, отряда и последними появляются признаки вида.

Основные положения закона:

1) В эмбриональном развитии эмбрионы животных одного типа последовательно проходят стадии - зигота, бластула, га-струла, гистогенез, органогенез;

2) эмбрионы в своем развитии переходят от

более общих признаков к более частным;

3) эмбрионы разных видов постепенно обособляются друг от друга, приобретая индивидуальные черты.

Немецкие ученые Ф. Мюллер (1864) и Э. Геккель (1866) независимо друг от друга сформулировали биогенетический закон, который был назван Законом Геккеля-Мюллера: зародыш в процессе индивидуального развития (онтогенеза) кратко повторяет историю развития вида (филогенез).

Повторение структур, характерных для предков, в эмбриогенезе потомков было названо - рекапитуляпиями .

Примерами рекапитуляции являются: хорда, пять пар сосков, большое количество волосяных зачатков, хрящевой позвоночник, жаберные дуги, 6-7 зачатков пальцев, общие стадии развития кишечника, наличие клоаки, единство пищеварительной и дыхательной систем, филогенетическое развитие сердца и основных сосудов, жаберные щели, все стадии развития кишечной трубки, рекапитуляции в развитии почки (предпочка, первичная, вторичная), недифференцированные половые железы, половые железы в брюшной полости, парный мюллеров канал из которого образуется яйцевод, матка, влагалище; основные этапы филогенеза нервной системы (три мозговых пузыря).

Рекапитулируют не только морфологические признаки, но и биохимические и физиологические - выделение зародышем аммиака, а на поздних стадиях развития - мочевой кислоты.

Согласно сравнительно-эмбриологических данных на ранних стадиях эмбрионального развития у зародыша человека появляются признаки, характерные для типа Хордовые, позже формируются признаки подтипа Позвоночные, затем класса Млекопитающие, подкласса Плацентарные, отряда Приматы.

IV. Сравнительно-анатомические

1. Общий план строения тела.

2. Гомологичные органы.

3. Рудименты и атавизмы.

Сравнительная анатомия изучает общность и различия в строении организмов. Первым убедительным доказательством единства органического мира явилось создание клеточной теории.

Единый план строения : для всех хордовых характерно наличие осевого скелета - хорды, над хордой располагается нервная трубка, под хордой - пищеварительная трубка, на брюшной стороне - центральный кровеносный сосуд.

Наличие гомологичных органов - органов, которые имеют общее происхождение и сходный план строения, но выполняющие разные функции.

Гомологичными являются передние конечности крота и лягушки, крылья птиц, ласты тюленей, передние ноги лошади и руки человека.

У человека, как у всех хордовых, органы и системы органов имеют сходное строение и выполняют сходные функции. Как и все млекопитающие человек имеет левую дугу аорты, постоянную температуру тела, диафрагму и др.

Органы, которые имеют разное строение и происхождение, но выполняют одинаковые функции, называются аналогичными (напр., крыло бабочки и птицы). Для установления родства между организмами и доказательства эволюции аналогичные органы значения не имеют.

Рудименты - неразвившиеся органы, которые в процессе эволюции утратили свое значение, но были у предков. Наличие рудиментов можно объяснить только

тем, что у предков эти органы функционировали и были хорошо развиты, но в процессе эволюции утратили свое значение.

У человека их насчитывается около 100: зуб мудрости, слабо развитый волосяной покров, мышцы, двигающие ушную раковину, копчик, ушные раковины, аппендикс, мужская маточка, мышцы, поднимающие волосы; рудименты голосовых мешков в области гортани; надбровные дуги; 12-пара ребер; зубы мудрости, эпикант, непостоянное количество копчиковых позвонков, плечеголовной ствол.

Многие рудименты существуют только в эмбриональном периоде, а затем исчезают.

Для рудиментов характерна вариабельность: от полного отсутствия до значительного развития, что имеет практическое значение для врача, особенно хирурга.

Атавизмы - проявление у потомков признаков, свойственных отдаленным предкам. В отличие от рудиментов они являются отклонениями от нормы.

Возможные причины формирования атавизмов: мутации регуляторных генов морфогенеза.

Существуют три варианта атавизмов:

1) недоразвитие органов, когда они были на этапе рекапитуляции - трех камерное сердце, «волчья пасть»;

2) сохранение и дальнейшее развитие рекапитуляции, характерных для предков -сохранение правой дуги аорты;

3) нарушение перемещения органов в онтогенезе - сердце в шейном отделе, неопущение яичек.

Атавизмы могут быть нейтральные: сильное выступание клыков, сильное развитие мышц, двигающих ушной раковиной; а могут проявляться в виде аномалий развития или уродств: гипертрихоз (повышенная волосатость), шейная фистула, диафрагмальная грыжа, незаращение боталлова протока, отверстие в межжелудочковой перегородке. Многососковость, полимастия - увеличение количества молочных желез, несрастание остистых отростков позвонков (спиномозговая грыжа), хвостовой отдел позвоночника, полидактилия, плоскостопие, узкая грудная клетка, косолапость, высокое стояние лопатки, незаращение твердого неба -«волчья пасть», атавизмы зубной системы, раздвоенный язык, свищи шеи, укорочение кишки, сохранение клоаки (общее отверстие для прямой кишки и мочеполового отверстия), свищи между пищеводом и трахеей, недоразвитие и даже аплазия диафрагмы, двух камерное сердце, дефекты перегородок сердца, сохранение обеих дуг, сохранение боталлова протока, транспозиция сосудов (от правого желудочка отходит левая дуга, а от левого желудочка отходит правая дуга аорты), тазовое расположение почки, гермафродитизм, крипторхизм, двурогая матка, удвоение матки, неразвитая кора мозга (проэнцефалия), агирия (отсутствие извилин мозга).

Сравнительно-анатомическое изучение организмов позволило выявить современные переходные форм. Например, первозвери (ехидна, утконос) имеют клоаку, откладывают яйца подобно пресмыкающимся, но вскармливают детенышей молоком, как млекопитающие. Изучение переходных форм позволяет установить родство между представителями разных систематических групп.

V. Молекулярно-генетические доказательства

1. Универсальность генетического кода.

2. Сходство побелкам и нуклеотидным последовательностям.

Сходства человека с человекообразными обезьянами (сходство понгид и гоминид) Имеется много доказательств родства человека и современных человекообразных обезьян. Наибольшую близость человек обнаруживает к горилле и Шимпанзе

I. Общие анатомические признаки

У человека и гориллы 385 общих анатомических признаков, у человека и шимпанзе -369, у человека и орангутана - 359: - бинокулярное зрение, прогрессивное развитие зрения и осязания при ослаблении обоняния, развитие мимической мускулатуры, конечности хватательного типа, противопоставление большого пальца остальным, редукция хвостового отдела позвоночника, наличие аппендикса, большое число извилин полушариям головного мозга, наличие папиллярных узоров на пальцах, ладонях и стопах, ногтей на пальцах, развитые ключицы, широкая плоская грудная клетка, ногти вместо когтей, плечевой сустав, допускающий движение с размахом до 180°.

II Сходство кариотипов

■ У всех человекообразных обезьян диплоидное число хромосом 2/n = 48. У человека 2n = 46.

В настоящее время установлено, что 2-ая пара человеческих хромосом представляет собой продукт слияния двух обезьяньих (межхромосомная абберация - транслокация).

■ Выявлена гомология 13 пар хромосом понгид и человека, что проявляется в одинаковом рисунке исчерченности хромосом (одинаковое расположение генов).

■ Поперечная исчерченность всех хромосом очень близка. Процент сходства генов у человека и шимпанзе достигает 91, а у человека и мартышкообразных-66.

■ Анализ аминокислотных последовательностей в белках человека и шимпанзе показывает, что они идентичны на 99%.

III. Морфологические сходства

Близка структура белков: например, гемоглобина. Группы крови гориллы и шимпанзе очень близки к группа^ Система АВО человекообразных обезьян и человека^ кровь карликового шимпанзе Бонобо соответствующей вать человеку.

Антиген резус-фактор обнаружен как у человека, так и у низшей обезьяны - макаки резус.

Наблюдается сходство в течение различных заболеваний, что особенно ценно при биологических и медицинских исследованиях.

В основе сходства - закон гомологичных рядов Вавилова. В экспериментах у человекообразных обезьян удалось получить такие заболевания, как сифилис, брюшной тиф, холера, туберкулез и др.

Человекообразные обезьяны близки к человеку по продолжительности беременности, ограниченной плодовитостью, срокам полового созревания.

Отличия человека от человекообразных обезьян

1. Наиболее характерной особенностью, отличающей человека от человекообразных обезьян, является прогрессивное развитие головного мозга. Кроме большей массы, головной мозг человека имеет и другие важные особенности:

Более развиты лобная и теменные доли, где сосредоточены важнейшие центры психической деятельности, речи (вторая сигнальная система);

Значительно увеличена численность мелких борозд;

Значительная часть коры больших полушарий головного мозга у человека связана с речью. Возникли новые свойства - звуковой и письменный язык, абстрактное мышление.

2. Прямохождение (бипедия) с постановкой стопы с пятки на носок и трудовая деятельность потребовали перестройки многих органов.

Люди - единственные современные млекопитающие, ходящие на двух конечностях. Некоторые обезьяны также способны к прямохождению, однако лишь в течение короткого времени.

Адаптации к двуногому передвижению.

Более или менее выпрямленное положение тела и перенос центра также в основном на задние конечности резко изменило соотношение между всеми нами животного:

Грудная клетка становилась шире и короче,

Позвоночный столб постепенно терял форму дуги, свойственную всем животным, передвигающимся на четырех ногах, и приобретал 3-образную форму, что придавало ему гибкость (два лордоза и два кифоза),

Смещение затылочного отверстия,

Таз расширен, так как принимает на себя давление внутренних органов, уплощенная грудная клетка, у более мощные нижние конечности (кости и мышцы нижних конечное (бедренная кость может выдержать нагрузку до 1650 кг), сводчатая стопа (в отличие от плоской стопы обезьян),

Малоподвижный первый палец стопы,

Верхние конечности, переставшие выполнять функцию опоры при передвижении, стали короче и менее массивными. Стали совершать разнообразные движения. Это оказалось очень полезным, так как облегчило добывание пищи.

3. Комплекс «трудовой руки» -

Лучше развита мускулатура большого пальца кисти,

Увеличена подвижность и прочность кисти,

Высокая степень противопоставления большого пальца на руке,

Хорошо развиты отделы мозга, обеспечивающих тонкие движения кисти.

4. Изменения в структуре черепа связаны с формированием сознания и развитием второй сигнальной системы.

В черепе мозговой отдел преобладает над лицевым,

Слабее развиты надбровные дуги,

Уменьшена масса нижней челюсти,

Выпрямлен профиль лица,

Небольшие размеры зубов (особенно клыков по сравнению с животными),

Для человека характерно наличие подбородочного выступа на нижней челюсти.

5. Речевая функция

Развитие хрящей и связок гортани,

Выражен подбородочный выступ. Образование подбородка связывают с возникновением речи и сопутствующими изменениями костей лицевого черепа.

Развитие речи стало возможным благодаря развитию двух отделов нервной системы: зоны Брока, давшей возможность быстро и сравнительно точно описывать накопленный опыт упорядоченными наборами слов и зоны Вернике, позволяющей столь же быстро понимать и перенимать этот опыт передаваемый речью - результатом чего явилось ускорение речевого обмена информацией и упрощение усвоения новых понятий.

6. У человека произошла редукция волосяного покрова.

7. Коренным отличием человека разумного от всех животных является способность к целенаправленному изготовлению орудий труда (целенаправленная трудовая деятельность), что позволяет современному человеку переходить от подчинения себе природы к разумному управлению ею.

Такие признаки, как:

1- прямохождение (бипедия),

2- рука, приспособленная к трудовой деятельности и

3- высокоразвитый головной мозг - называются гоминидная триада. Именно в направлении ее формирования шла эволюция гоминидной линии человека.

Все вышеприведенные примеры свидетельствуют о том, что, несмотря на наличие ряда сходных признаков, человек в значительной степени отличается от со временных обезьян.



II. Эмбриологические доказательства (эмбриология изучает зародышевое развитие организма).

1. Сходство зародышей .

а) Строение зародыша хордовых последовательно напоминает тело животных других типов:

· яйцеклетка – простейших;

· гаструла – кишечнополостных;

· круглых червей;

· представителей подтипа Бесчерепные.

б) Это свидетельствует об общности происхождения всех хордовых.

2. Расхождение признаков зародышей (эмбриональная дивергенция) .

а) По мере развития черты сходства между зародышами разных видов ослабевают.

б) Сначала появляются признаки рода, а затем вида.

· Первоначальное сходство в строении головы у ребенка и детеныша обезьян постепенно исчезает.

3. Биогенетический закон Геккеля-Мюллера : каждая особь в индивидуальном развитии (онтогенезе) кратко и сжато повторяет историю развития своего вида (филогенез).

а) Примеры у животных:

· Сосуды зародышей сухопутных позвоночных похожи на сосуды рыб;

· У человеческого зародыша есть жаберные щели.

· Гусеницы бабочки и личинки жуков сходны по строению с кольчатыми червями.

· Головастики земноводных сходны с рыбами.

б) Примеры у растений:

· Почечные чешуйки в почке растений развиваются как листья.



· Лепестки бутонов сначала зеленые, а затем приобретают свойственную им окраску.

· Из споры мха сначала появляется зеленая нить, похожая на нитчатую водоросль (предросток).

в) Поправки к биогенетическому закону.

· У зародышей повторение филогенеза может нарушаться в связи с приспособлениями к условиям жизни в онтогенезе. Появляются: зародышевые оболочки, желточный мешок у икринки рыб, наружные жабры у головастика, кокон у шелкопряда.

· Онтогенез не полностью отражает филогенез за счет появления мутаций, изменяющих ход развития зародыша (у зародыша змеи закладываются сразу все позвонки, т.е. их количество не увеличивается постепенно; у птиц выпала пятипалая стадия развития конечности, у зародыша закладываются 4 пальца, а не 5, вырастают же в крыле только 3 пальца).

· В онтогенезе происходит повторение зародышевых стадий развития, а не взрослых форм (Ланцетник повторяет в онтогенезе общие стадии со свободно плавающей личинкой асцидии, а не с ее взрослой, закрепленной формой).

г) Современные представления о биогенетическом законе.

· Северцов показал, что за счет изменений в развитии могут: выпадать некоторые стадии развития зародыша; возникать изменения органов зародыша, которых не было у предков; возникать новые виды; выявляться новые признаки (например, хвостатые (тритоны) и бесхвостые (лягушки) амфибии произошли от одного предка: личинка тритона длинная, т.к. имеет много позвонков, у личинки лягушки число позвонков уменьшилось за счет мутации; у эмбриона ящерицы меньше число позвонков, чем у эмбриона змеи, за счет мутаций развития).

III. Биогеографические доказательства (Биогеография изучает распределение животных и растений на Земле).

1. Существует 5 зоогеографических зон, которые не различаются по классам и типам животных:

а) Голарктическая;

б) Индо-Малазийская;

в) Эфиопская;

г) Австралийская;

д) Неотропическая зона.

2. Зоны различаются по семействам, отрядам и родам.

а) В Австралии все млекопитающие сумчатые.

б) В Новой Зеландии обитает единственный представитель отряда клювоголовых ящеров – гаттерия.

в) Существуют американские и европейские виды клена, ясеня, сосны.

3. Причины сходства и различия фауны и флоры.

а) Изоляция ареалов.

· Если изоляция произошла недавно, то сходства больше, чем различий: Беренгов пролив образовался недавно, поэтому фауна Азии мало отличается от фауны Америки; Северная и Южная Америки объединились недавно, поэтому их фауны различны; Австралия отделилась от остальных континентов давно, поэтому имеет своеобразную флору и фауну, эволюция шла медленно, так как Австралия относительно невелика; своеобразны фауна и флора островов и замкнутых водоемов.

4. Современное географическое распределение животных и растений можно объяснить только с эволюционной точки зрения.

IV. Палеонтологические (Палеонтология изучает ископаемые организмы, условия их жизни и захоронения).

1. Смена фауны и флоры на Земле .

а) В самых древних пластах обнаружены только беспозвоночные.

б) Чем моложе пласт, тем ближе остатки к современным видам.

в) С помощью палеонтологических находок удалось установить филогенетические ряды и переходные формы.

2. Ископаемые переходные формы – формы организмов, сочетающие признаки более древних и молодых форм.

а) Зверозубые рептилии обнаружены на Северной Двине (род Иностранцевия). Имели сходство с млекопитающими в строении следующих органов: черепа; позвоночника; конечностей расположенных не по бокам туловища, как у рептилий, а под туловищем, как у млекопитающих; зубов, дифференцированных на клыки, резцы и коренные.

б) Археоптерикс – переходная форма между птицами и рептилиями, обнаруженная в слоях Юрского периода (150 млн. лет назад).

· Признаки птиц: задние конечности с цевкой, крылья и перья, внешнее сходство.

· Признаки рептилий: длинный хвост, состоящий из позвонков; брюшные ребра; наличие зубов; когти на передней конечности.

· Плохо летал по следующим причинам: грудина была без киля, т.е. грудные мышцы были слабыми; позвоночник и ребра не были жесткой опорой, как у птиц.

в) Псилофиты – переходная форма между водорослями и наземными растениями.

· Произошли от зеленых водорослей.

· От псилофитов произошли высшие споровые сосудистые растения – плауны, хвощи, папоротники.

· Появились в силуре, а распространились в девоне.

· Отличия от водорослей и высших споровых: псилофиты – травянистые и деревянистые растения, растущие по берегам морей; имели разветвленный стебель с чешуйками; кожица имела устьица; подземный стебель напоминал корневища с ризоидами; стебель был дифференцирован на проводящие, покровные и механические ткани.

3. Филогенетические ряды – ряды некоторых форм, последовательно сменявших друг друга в ходе эволюции (филогенеза).

а) В.О. Ковалевский восстановил эволюцию лошади, построив ее филогенетический ряд.

· Эогиппус, живший в палеоген, был размером с лисицу, имел четырехпалую переднюю конечность и трехпалую заднюю. Зубы были бугорчатые (признак всеядности).

· В неогене климат стал более засушливым, изменилась растительность, эогиппус эволюционировал через ряд форм: эогиппус, меригиппус, гиппарион, современная лошадь.

· Признаки эогиппуса изменились: ноги удлинились; коготь превратился в копыто; сократилась поверхность опоры, поэтому число пальцев уменьшилось до одного; быстрый бег привел к упрочнению позвоночника; переход на грубые корма привел к образованию складчатых зубов.

Переходные (промежуточные) формы — организмы, которые сочетают в своем строении признаки двух больших систематических групп.

Переходные формы характеризуются наличием более древних и примитивных (в смысле первичных) черт, чем более поздние формы, но, в то же время, наличием более прогрессивных (в смысле более поздних) черт, чем их предки. Как правило, термин «переходные формы» употребляют по отношению к ископаемых форм, хотя промежуточные виды совсем не обязательно должны умирать.

Переходные формы используют как одно из доказательств существования биологической эволюции.

История понятия

В 1859 г.., Когда была издана работа Ч. Дарвина «Происхождение видов», количество ископаемых остатков была крайне малой, науке не были известны переходные формы. Дарвин описал отсутствие промежуточных форм «как наиболее очевидное и тяжелое возражение, которое может быть против теории», но объяснил это крайней неполнотой геологической летописи. Он отмечал ограниченное количество доступных коллекций в то время, в то же время описал имеющуюся информацию об имеющихся ископаемые образцы с точки зрения эволюции и действия естественного отбора. Только два года спустя, в 1961 году. Был найден археоптерикс, который представлял классическую переходную форму между пресмыкающимися и птицами. Его находках, стала не только подтверждением теории Дарвина, а также знаковым фактом, подтверждающий реальность существования биологической эволюции. С тех пор было найдено большое количество ископаемых форм, которые показывают, что все классы позвоночных животных являются родственными между собой, причем большинство из них — через переходные формы.

С увеличением сведений о таксономическое разнообразие сосудистых растений в начале ХХ в., Начались исследования по поиску их возможного предка. В 1917 г.. Роберт Кидстон и Уильям Генри Ленд обнаружили остатки очень примитивной растения возле поселка Rhynia в Шотландии. Это растение было названо Rhynia. Она сочетает в себе признаки зеленых водорослей и сосудистых растений.

Трактовка понятия

Переходные формы между двумя группами организмов не обязательно потомками одной группы и предком другой. По ископаемыми, как правило, невозможно точно установить является ли определенный организм предком другого. Кроме того, вероятность найти в палеонтологической летописи прямого предка определенной формы чрезвычайно мала. Гораздо больше вероятность обнаружить относительно близких родственников этого предка, которые сходны с ним по строению. Поэтому любая переходная форма автоматически интерпретируется как боковая ветвь эволюции, а не «участок филогенетического ствола».

Переходные формы и таксономия

Эволюционная таксономия оставалась доминирующей формой таксономии течение ХХ в. Выделение таксонов базируется на различных признаках, вследствие чего таксоны изображают в виде ветвей разветвленного эволюционного дерева. Переходные формы рассматриваются как «падающие» между различными группами в плане анатомии, они смесь характеристик от внутренней и внешней клади, что недавно разделилась.

С развитием кладистики в 1990-х гг. Взаимосвязи обычно изображают в виде кладограмы, иллюстрирующую дихотомическое ветвление эволюционных линий. Поэтому в кладистици переходные формы рассматриваются как более ранние ветви дерева, где еще не развились не все черты, характерные для ранее известных потомков на этой ветке. Такие ранние представители группы обычно называют основным таксоном (англ. Basal taxa) или сестринским таксоном (англ. Sister taxa), в зависимости от того, принадлежит ли ископаемый организм к данной клади или нет.

Проблемы выявления и интерпретации

Отсутствие переходных форм между многими группами организмов является предметом критики со стороны креационистов. Однако далеко не каждая переходная форма существует в виде окаменелостей из-за принципиальной неполноты палеонтологической летописи. Неполнота вызвана особенностями процесса фосилизации, то есть перехода в окаменевший состояние. Для образования окаменелости необходимо, чтобы организм, который погиб, был погребен под большим слоем осадочных пород. Из-за очень медленную скорость осадконакопления на суше, сухопутные виды редко переходят в окаменевший состояние и сохраняются. Кроме того, редко удается выявить виды, которые живут в глубинах океана через редкие случаи поднятия на поверхность больших массивов дна. Таким образом, большинство известных ископаемых (а, соответственно, и переходных форм) — это либо виды, обитающие на мелководье, в морях и реках, или наземные виды, которые ведут полуводный образ жизни, или живут у береговой линии. К упомянутым выше проблемам следует добавить чрезвычайно малую (в масштабах планеты) количество палеонтологов, которые осуществляют раскопки.

Переходные формы, как правило, не живут на больших территориях и не существуют в течение большого времени, иначе они были бы персистентный. Этот факт также снижает вероятность фосилизации и последующего обнаружения переходных форм.

Поэтому вероятность обнаружения промежуточных форм чрезвычайно мала.

Примеры среди животных

Древнейшими представителями земноводных считают ихтиостеги. Их считают переходным звеном между кистеперых рыбами и земноводными. Несмотря на то, что в ихтиостеги была пятипалая концовка, адаптированная к жизни на суше, значительную часть жизни они проводили как рыбы, имели хвостовой плавник, боковую линию и некоторые другие признаки рыб.

Батрахозавры, существовавшие в каменноугольный и пермский периоды, рассматривают как переходную форму между земноводными и пресмыкающимися. Батрахозавры, хоть и проводили жизнь во взрослой стадии на суше (подобно пресмыкающихся), были тесно связаны с водоемами и сохранили ряд признаков, присущих земноводным, в частности, откладывания икры и развитие личинок в воде, наличие жабр и тому подобное.

Обнаружено большое количество пресмыкающихся, которые выработали способность летать, часть из них имела перья, поэтому их рассматривают как переходные формы между пресмыкающимися и птицами. Наиболее известен археоптерикс. Он был размером примерно с современную ворону. Формой тела, строением конечностей и наличием оперения подобный современных птиц, возможно, летал. Общим с пресмыкающимися была особое строение таза и ребер, наличие клюва с коническими зубами, по три свободные пальцы на крыльях, подвийноувигнути позвонки, длинный хвост с 20-21 позвонка, кости могло не пневматизовани, грудная кость без киля. Другие известные переходные формы между пресмыкающимися и птицами — протоавис, конфуциусорниса.

Большое количество ископаемых форм звероподобных пресмыкающихся (синапсиды, терапсид, пеликозавров, различных динозавровых и др.), Найденных во многих районах земного шара, существовали в юрский и меловой периоды, сочетающие признаки пресмыкающихся и млекопитающих, раскрывают возможные направления и способы становления различных групп четвероногих, в частности млекопитающих. Например, звероподобный пресмыкающееся из группы терапсид — лиценопс (Lycaenops) по развитию костей ротовой полости, дифференцированием зубов на клыки, резцы, по резцовые зубы и рядом других признаков строения тела напоминает хищных млекопитающих, хотя по другим признакам и образом жизни это были настоящие пресмыкающиеся.

Одной из форм, сохранилась в ископаемом состоянии является амбулоцетус Ambulocetus natans («ходячий кит») — переходная форма между наземными млекопитающими и китообразными, которые являются вторинноводнимы формами. Внешне животное напоминало нечто среднее между крокодилом и дельфином. Кожа должна частично редуцированную шерсть. Животное имело лапы с перепонками; хвост и конечности приспособлены как вспомогательные органы передвижения в воде.

Примеры среди растений

Первые наземные растения из класса риниопсид, семей риниевих и псилофитовых, живших в силуре — девоне, сочетали признаки зеленых водорослей и примитивных форм высших растений. Их тело было безлистным, цилиндрический осевой орган — телом в верхней части дихотомически разветвленным на верхушках с спорангиями. Функцию минерального питания риниопсид выполняли ризоиды.

Ископаемые формы семенных папоротников, которые процветали в конце девона, сочетают в себе признаки папоротников и голосеменных. Они образовывали не только споры (как папоротники), но и семена (как семенах растения). Проводящая ткань их стеблей по строению напоминает древесину голосеменных (саговников).

Другой предшественник семенных растений был идентифицирован из отложений среднего девона. Рункария (Runcaria heinzelinii) существовала около 20 млн лет назад. Это была небольшая растение с радиальной симметрией; имела спорангий, окруженный интегументом и плюской. Рункария демонстрирует путь эволюции растений от споровых к семенных.

Переходные формы в эволюции человека

В наше время найдено большое количество ископаемых останков, которые раскрывают эволюционный путь человека разумного от ее человекообразных предков. К формам, которые в большей или меньшей степени можно отнести к переходным, относятся: сахелантропа, ардипитека, австралопитеки (африканский, афарский и другие), человек умелый, человек работающий, человек прямоходящий, человек-предшественник, гейдельбергский человек и кроманьонцы.

Среди упомянутых форм значительное внимание заслуживают австралопитеки. Австралопитек афарский с точки зрения эволюции находится между современными двуногими людьми и их четвероногими древними предками. Большое количество рис скелета этого австралопитека четко отражают двуногость, причем до такой степени, что некоторые исследователи считают, что это свойство возникла задолго до появления австралопитека афарского. Среди общих черт анатомии, его таз гораздо больше похож на этих костей у человека, чем у обезьян. Края подвздошных костей короче и шире, крестцовая кость широкая и расположена непосредственно позади тазобедренного сустава. Существует явное свидетельство о существовании мест крепления для мышц-разгибателей колена, предусматривает вертикальное положение этого организма. В то время, как таз австралопитека не совсем как у человека (заметно шире, с ориентацией края подвздошных костей наружу), эти особенности указывают на принципиальную перестройку, связанную с хождением на двух ногах. Бедренная кость образует угол в направлении колена. Эта черта позволяет ноге размещаться ближе к средней линии тела и является явным свидетельством привычный характер передвижения на двух ногах. В наше время человек разумный, орангутаны и коаты имеют такие же черты. Ноги австралопитека имели большие пальцы, что делает практически невозможным захват стопой ветвей деревьев. Кроме особенностей локомоции, в австралопитека был также значительно больше мозг, чем у современных шимпанзе и зубы были значительно больше подобными зубов современного человека, чем к обезьянам.

Филогенетические ряды

Филогенетические ряды — ряды ископаемых форм, связанные между собой в процессе эволюции и отражают постепенные изменения их исторического развития.

Были исследованы русским ученым А. Ковалевским и английским Дж. Симпсоном. Они показали, что современные однопалого копытные происходят от древних мелких всеядных животных. Анализ ископаемых лошадей помог установить постепенность процесса эволюции в пределах этой группы животных, в частности, как изменяясь во времени, ископаемые формы приобретали все большего сходства с современными лошадьми. Сравнивая эоценового еогипуса с современным конем, трудно доказать их филогенетическую родство. Однако наличие ряда переходных форм, которые последовательно сменяли друг друга на больших пространствах Евразии и Северной Америки, позволила восстановить филогенетический ряд лошадей и установить направление их эволюционных изменений. Он состоит из ряда следующих форм (в упрощенном виде): Phenacodus Eohippus Miohippus Parahippus Pliohippus Equus.

Гильгендорф (1866) описал палеонтологический ряд брюхоногих моллюсков из миоценовых отложений, накопившихся в течение двух миллионов лет в озерных отложениях Штейнгеймського бассейна (Вюртемберг, Германия). Было обнаружено в последовательных слоях 29 различных форм, принадлежащих к ряду планорбис (Planorbis). Древние моллюски имели раковину в виде спираи, а более поздние — в виде турбоспирали. Ряд имел два ответвление. Предполагается, что изменение формы черепашки была вызвана повышением температуры и увеличением содержания карбоната кальция в результате горячих вулканических источников.

Таким образом, филогенетические ряды представляют собой историческую последовательность переходных форм.

В настоящее время известны филогенетические ряды для аммонитов (Вааген, 1869), брюхоногих моллюсков рода живородок (Viviparus) (Неймайром, 1875), носорогов, слонов, верблюдов, парнокопытных и других животных.

Происхождение и эволюция наземных растений

В протерозое суша была населена прокариотами, одноклеточные эукариоты присоединились к ним позже (около 1 млрд. лет назад). Первыми обитателями суши, вероятно, были циано- и актинобактерии. Гетеротрофные актинобактерии образуют многочисленные ветвящиеся структуры, похожие на грибной мицелий. Они способны объединиться с фототрофными цианобактериями в удивительные симбиотические «сверхорганизмы» (т.н. актинолишайники).

Возможно, самой важной эволюционным событием в фанерозое было освоение суши многоклеточными эукариотами. В результате этого возникли привычные нам ландшафты, в которых преобладают наземные растения, насекомые и четвероногие животные (тетраподы).

Филогенетические реконструкции, основанные на сравнении геномов современных организмов, свидетельствуют о том, что наземные растения произошли от харовых водорослей. К представителям этой группы пресноводных зеленых водорослей относятся как одноклеточные, так и многоклеточные формы. По-видимому, один из переходов к многоклеточности около 1 млрд. лет назад произошел в ходе эволюции харовых водорослей. На сегодняшний момент неизвестны ископаемые остатки переходных форм между наземными растениями и их водными предками.

Основные проблемы, встающие перед водными растениями при выходе на сушу, и их решения. Высыхание (решение - покровные ткани или впадение в анабиоз у мохообразных), необходимость газообмена и испарения (устьица), поглощение веществ (всасывающие ткани, микориза), транспорт веществ (проводящие ткани - кроме мохообразных), конкуренция, сила тяжести (механические ткани).

Среди первых обитателей суши были и грибы, которые тоже вступали в симбиоз с цианобактериями. Генетические и биохимические системы, развившиеся у сухопутных грибов для симбиоза с цианобактериями, позже пригодились им для «налаживания отношений» с первыми наземными растениями. Вся эта наземная микробиота постепенно готовила почву (в прямом и переносном смысле) для заселения суши растениями. Наземные растения с самого начала жили в тесном симбиозе с почвенными грибами, без которых они, скорее всего, вовсе не смогли бы покинуть родную водную стихию.

Самые древние ископаемые наземные растения - это содержащие споры фрагменты печеночного мха (около 460 млн. лет назад). Согласно филогенетическим реконструкциям, эта группа мхов - самые древние наземные растения. Сосудистые растения (все наземные, кроме мохообразных) возникли в ходе эволюции не позже 420 млн. лет назад. В пределах этой группы выделяют две эволюционные линии. У споровых растений (хвощи, плауны и папоротники, возникли не позже 350 млн. лет назад) и спорофит, и гаметофит - самостоятельные организмы. У семенных растений гаплоидный гаметофит утратил свою самостоятельность. Первыми вышли на сушу споровые растения (риниофиты) - это случилось в конце силура . Они росли на прибрежных мелководьях, настоящих корней у них не было, специальные нитевидные отростки служили для прикрепления к субстрату.

К концу девонского периода стали возникать первые леса. Они состояли из споровых растений - папоротникообразных, плаунов, хвощей. В карбоне (каменноугольном периоде) значительное потепление и увлажнение климата обеспечило широкое распространение тропических лесов (Европа, Северная Америка, Южная Азия - тогда эти территории располагались в экваториальном поясе), образованных древовидными папоротниками, гигантскими древовидными хвощами и плаунами (высотой до 40 м). Эти леса, расположенные в приморских низменностях, не имеют современных аналогов. Это были неглубокие водоемы, переполненные органическими остатками. Корневые системы деревьев располагались ниже торфоподобной органической массы, а стволы прорастали сквозь нее и толстый слой валежника. Именно на месте этих «лесов-водоемов» возникли впоследствии крупные каменноугольные бассейны.

На территории современной Сибири и Дальнего Востока, которые тогда располагались недалеко от северного полярного круга основу растительности составляли хвойные деревья высотой до 20 м (кордаиты). Их древесина имеет четкие годичные кольца, подтверждающие существование там сезонного климата (что-то вроде современной тайги). Территории современных Южной Америки и Африки (их южных половин), Индии и Австралии тогда находились недалеко от южного полярного круга. Там преобладали листопадные леса из гинкговых.

В карбоне появились и первые голосеменные растения (сборная группа под названием «семенные папоротники»). Их семя было покрыто оболочкой, предохранявшей от высыхания. Размножение с помощью семян сделало процесс размножения независимым от водной среды. Этот ароморфоз дал возможность дальнейшего освоения суши, продвижения растений вглубь материков.

В более холодном и сухом пермском периоде голосеменные растения получили широкое распространение. Из них до сегодняшнего времени дожили немногие - гингко, араукарии, саговники.

Древнейшие достоверные находки покрытосеменных (цветковых) растений имеют возраст 140-130 млн. лет, это единичные пыльцевые зерна, найденные на территории Израиля. Самые ранние макроскопические ископаемые остатки (листья, цветки, плоды) покрытосеменных имеют возраст около 125 млн. лет. Поскольку они уже довольно разнообразные, по-видимому, покрытосеменные возникли гораздо раньше (от голосеменных они отделились не позже 300 млн. лет назад). По сравнению с голосеменными растениями у покрытосеменных произошел важный ароморфоз - появилось двойное оплодотворение, что позволило предотвратить напрасную трату питательных веществ (эндосперм развивается только вместе с зародышем), завязь выполняет защитную функцию. Эволюционный успех покрытосеменных растений объясняется сокращенным жизненным циклом, склонностью к насекомоопылению и образованием разнообразных травянистых форм. Некоторые из покрытосеменных растений, возникших в меловом периоде, дожили до наших дней - это пальмы и платаны.

Сейчас на Земле обитают сотни тысяч видов цветковых растений, и филогенетические отношения между ними довольно хорошо изучены. Важную роль в появлении современного разнообразия цветковых растений сыграла их совместная эволюция с насекомыми.

Многоклеточные животные и наземные растения - два единственных известных случая возникновения многотканевости , приведших к появлению сложных крупных организмов. Интересно, что генетические механизмы этих двух независимых событий весьма сходны. Во-первых, возникновение сложного многоклеточного организма не сопровождалось значительным увеличением числа кодирующих белки генов. Вместо этого усложнялись взаимодействия между генами и их регуляторные элементы - особые последовательности ДНК. Во-вторых, у животных и растений есть независимо возникшие особые гены, которые регулируют индивидуальное развитие организма.

Представляет несомненный интерес поближе познакомиться со сравнительно недавно открытыми наукой первенцами наземной флоры.

Их назвали псилофитами . Ископаемые остатки их в отложениях позднего силура и особенно первой половины девона, охватывающих период времени примерно в 20-30 миллионов лет, довольно многочисленны и разнообразны.

Это были мелкие растения сравнительно простого облика. Тело их, подобно водорослям, не было расчленено на обычные для высших растений основные органы. Корней у них еще не было. Наиболее простые из псилофитов не имели также и стебля в обычном понимании как органа, несущего листья, так как у них не было и листьев.

Наиболее ранними среди псилофитов и наиболее простыми по расчленению тела являются риния и хорнея . Действительно, они так просто построены, что многие водоросли выглядят гораздо более сложными. У них имеется подземная часть, похожая на корневище, от которого отходят вертикально стоящие, вильчато ветвящиеся стеблеподобные органы. Вместо корней у этих растений образуются лишь одноклеточные выросты на «корневищах» - ризоиды, подобные корневым волоскам на корнях у цветковых растений. На концах ветвей располагаются спорангии. В них развивались споры, при помощи которых псилофиты размножались. Риния и хорнея были небольшими растениями высотой от 20 до 40 см. Они обитали на болотах.

Более крупным растением был псилофитон , он достигал высоты до 1,5-2 м и имел обильно ветвящуюся надземную часть тела. На ней имелись выросты в виде шипов. На подземных «корневищах» развивались также многоклеточные выросты.

Ещё более сложного расчленения достиг астероксилон . Самое главное отличие этого растения состоит в том, что его надземные органы густо покрыты чешуевидными выростами, похожими на мелкие листья, но отличающимися от настоящих листьев отсутствием жилок. У подземных органов вместо ризоидов отходили в глубь почвы ветви, которые можно рассматривать как зачатки корней. В стенке спорангия астероксилона уже имелось столь характерное для многих ныне живущих папоротников кольцо из клеток с утолщёнными стенками. Благодаря этому кольцу при созревании спорангия стенка его разрывалась и споры освобождались.

При внешней простоте расчленения тела псилофитов внутреннее (анатомическое) строение их было довольно сложным.

Изучить детали анатомического строения у окаменевших остатков растений, как мы уже говорили, удается благодаря умению делать настолько тонкие срезы этих окаменелостей, что их можно изучать под микроскопом, как срезы с живых растений, и видеть отдельные клетки, составляющие те или иные ткани.

В центре их корневищеподобных и стеблеподобных органов уже появилась настоящая древесина, состоящая из водопроводящих клеток (трахеид). Древесина окружена лубом из вытянутых клеток, по которым передвигались вырабатывавшиеся растением органические вещества. С поверхности тело одето типичной кожицей (эпидермисом). Среди клеток кожицы встречаются типичные для высших растений устьица, через которые осуществлялся газообмен. Всё заставляет предполагать, что у псилофитов газообмен протекал так же, как и у современных растений: через устьица из атмосферы поступал внутрь растения углекислый газ, потреблявшийся в процессе фотосинтеза, и уже накопившийся в атмосфере кислород, необходимый для дыхания, а из тела растения выделялись в атмосферу водяные пары, углекислый газ, образовавшийся в процессе дыхания, и кислород, освобождённый из воды в процессе фотосинтеза. У спорангия имеется толстая стенка, хорошо защищавшая нежные в молодом состоянии споры.

По данным геологии, суша на Земле в описываемое время (в девонскую эпоху) была представлена двумя крупными материками: экваториальным, располагавшимся от современной Южной Америки через Африку до Австралии, и северным, простирающимся от северо-атлантической окраины через Гренландию до Центральной Европы. Были еще крупные острова к востоку и западу от северного материка. В прибрежных отложениях этой суши и были погребены описываемые нами растения. Многие из них были еще тесно связаны с водной средой и являлись болотными растениями, у которых лишь верхняя часть тела возвышалась над поверхностью воды. Но среди псилофитов были и настоящие сухопутные представители более крупных размеров - до 3 м в высоту.

На основе знаний об изменениях, происходящих на нашей планете на тех или иных этапах её истории, и на основе восстановления облика населявших Землю организмов по их ископаемым остаткам можно с той или иной степенью достоверности нарисовать картину ландшафтов Земли в соответственный период.

Предками псилофитов, по общему признанию, являются водоросли. Какие именно из знакомых нам типов водорослей породили псилофитов, определённо сказать затруднительно. Вернее всего, это были зелёные водоросли, так как для всей наземной растительности характерна именно зелёная окраска надземных органов. Но разница даже между самыми простыми из псилофитов и любым представителем водорослей весьма большая.

На пути от водоросли до псилофита жизнь сделала огромный шаг вперёд. Взять хотя бы наличие у псилофитов устьиц со сложным способом расширения или сужения щели между замыкающими устьице клетками. Или наличие у псилофитов древесины, связанное с появлением в природе нового химического вещества лигнина , вызывающего одревеснение клеточной стенки. Наконец, нужно учитывать, что едва ли псилофиты могли поселиться прямо на материнских породах, а не на почве. Почва же, как известно, создаётся благодаря деятельности организмов. Поэтому естественно предположить, что псилофиты составили не первый авангард поселенцев на суше, а формы, завершающие собой цепь организмов еще более простых и более близких к низшим растениям - водорослям. Нужно допустить, что задолго до псилофитов на сушу перебрались обитатели водоёмов и не только водоросли, но вместе с ними и другие организмы - грибы, бактерии, возможно, и простейшие животные. Они обитали в увлажненных местах, образуя своеобразные группировки, в которых роль кормильца принадлежала, естественно, водорослям и автотрофным бактериям. Могло устанавливаться тесное сожительство между автотрофными и гетеротрофными организмами, например между водорослями и грибами, при котором и тот и другой сожитель получал выгоду: гриб добывал воду из почвы, водоросль доставляла органические вещества.

Интересно отметить, что у псилофитов установлено явление сожительства (симбиоза) с грибами: в клетках подземных органов были обнаружены нити - гифы грибов, т. е. уже на заре наземного существования в растительном мире были микоризы - «грибокорни», получившие широчайшее распространение в дальнейшей истории наземной флоры.

Жизнедеятельность низших организмов и могла привести к созданию первичных почв на месте материнских пород. Почвообразовательные процессы, по учению академика В. Р. Вильямса, играли и играют огромную роль в смене растительных формаций. Обитая хотя и во влажной, но всё же наземной среде, водоросли подвергались воздействиям этой гораздо более изменчивой среды. Эти изменения, главным образом подсыхание почвы, естественно, должны были вызывать соответственные реакции организмов и определять собою изменения у самих организмов. Происходили изменения как биохимических процессов, так и морфологических структур. Цепь таких направленных изменений и привела к тому, что на арене жизни появились организмы, уже в какой-то мере приспособленные к существованию на суше, - псилофиты. Но и среди них нет единообразия форм: одни из них ещё стоят «ногами в воде», другие целиком вышли на сушу.

Геологическая летопись ещё далеко не прочитана. Всего лишь около 30 лет назад были обнаружены и изучены псилофиты, и это в корне изменило прежние представления об истоках наземной флоры. Возможно, в более древних слоях будут открыты наземные предшественники псилофитов, и это ещё более расширит наш кругозор. Но не нужно закрывать глаза и на то, что большинство когда-то живших организмов, особенно таких нежных, как водоросли и грибы, не могли сохраниться в ископаемом состоянии, и следы их утрачены навсегда. Поэтому нам остаётся путь косвенных доказательств той или иной стороны в развитии органического мира, о чём мы уже говорили на первых страницах.

Среди ископаемых остатков псилофитов совершенно отсутствуют какие-либо следы половых органов, и тем не менее мы с уверенностью говорим, что у псилофитов был половой процесс, что из спор у них развивались заростки, на которых возникали половые органы, а после оплодотворения развивалось знакомое нам тело псилофита. Заросток, нужно думать, был небольшим и построенным из тонкостенных клеток, поэтому он и не сохранился. Почему мы так уверенно говорим о том, чего никто не видел? Потому, что сохранившиеся в окаменелом состоянии споры псилофитов по своим особенностям подобны спорам папоротникообразных, для которых хорошо известно, что у них из споры сначала вырастает заросток с половыми органами на нём.

Так, у ныне живущих папоротников из споры вырастает небольшое (2-4 мм в диаметре) зелёное, пластинчатое тельце сердцевидной формы. Это и будет заросток. На нижней стороне его, обращённой к почве, развиваются ризоиды. Здесь образуются и половые органы: женские, называемые архегониями, и мужские - антеридии. Сперматозоиды, выходящие из антеридия, проникают через шейки архегониев к яйцеклеткам и оплодотворяют их. Из оплодотворённой яйцеклетки развивается сначала зародыш, из него - проросток, а из проростка формируется само растение - папоротник. На листьях (ваях) папоротника возникают спорангии, собранные кучками. В спорангиях же, как мы знаем, развиваются споры. Такой цикл развития характерен для всех вообще папоротникообразных, и псилофиты, начинающие собой линию папоротникообразных в истории растительного мира, не являются исключением из этого правила.