Полная отраженная волна в волноводе. Волны в круглом волноводе


Отметим также, что индексам m и n , которые определяют тип волны, можно придать четкий физический смысл. Именно, индекс m (n ) определяет число стоячих полуволн, укладывающихся вдоль широкой (узкой) стенки волновода.

2. Критическая длина волны как для волн Е mn , так и для волн H mn , зависит от размеров поперечного сечения волновода, типа волны и может быть определена по формуле

, (3.8)

где a и b – размеры широкой и узкой стенок волновода.

3. Из формулы (3.8) следует, что в случае a > b величина l кр принимает наибольшее значение при m = 1, n = 0. Отсюда следует, что основным типом волны в прямоугольном волноводе является волна H 10 . При этом критическая длина волны H 10 равна удвоенному размеру широкой стенки волновода, т.е.

l кр = 2а . (3.9)

4. Векторы и волны H 10 в волноводе без потерь определяются следующими формулами:

, (3.10)

где Н 0 – любая постоянная, которая определяется мощностью источников, возбудивших волну,

. (3.12)

5. Из формул (3.10) и (3.11) видно, что в поперечном сечении волновода вектор направлен перпендикулярно широкой стенке волновода, вектор – параллельно. При этом амплитуда вектора меняется по закону . Она максимальна в точках посреди широкой стенки, и убывает до нуля при приближении к узким стенкам.

Поперечные составляющие векторов и имеют одинаковые фазы, а продольная составляющая вектора опережает их на 90 0 .



На рис. 3.8 показана структура поля волны H 10 (поведение силовых линий векторов и в фиксированный момент времени). При этом пунктирными линиями обозначены силовые линии вектора напряженности магнитного поля, а сплошными – вектора напряженности электрического поля.

6. Подставим формулу (3.9) в соотношения (3.5), (3.6) и (3.7), тогда получим, что для основного типа волны прямоугольного волновода:

, , .

7. Коэффициент затухания волны Н 10 в стенках волновода можно рассчитать по формуле:

,

гдеR S поверхностное сопротивление материала, из которого выполнен волновод, может быть определено по формуле:

.

8. Условие одноволнового режима в прямоугольном волноводе при а ³ 2b имеет вид

9. На поверхности стенок волновода протекают поверхностные токи, которые связаны с вектором магнитного поля следующей формулой:



где – орт внутренней нормали к стенкам волновода; – значение магнитного поля волны на поверхности стенок волновода.

На рис. 3.9. в качестве примера представлена структура токов (силовые линии вектора ) для волны Н 10 .

Рисунок 3.9 – Структура токов на стенках волновода для волны Н 10

Распределение тока по стенкам волновода важно знать как при конструировании самого волновода, так и при конструировании волноводных устройств. Большая плотность токов через ребро прямоугольного волновода требует хорошей проводимости этих участков. При создании на базе волноводов устройств различного назначения приходится прорезать в нем узкие щели. Щели не вызывают заметных потерь на излучение и не искажают структуру поля волны, если они расположены вдоль линий тока. Для волны Н 10 такими щелями являются поперечные щели на узких стенках и продольная щель, расположенная посредине широкой стенки волновода. На практике часто возникает задача создания излучающей щели, которая является элементом щелевой антенны или используется для ввода энергии в волновод. Излучающая щель хотя бы часть периода пересекается линиями тока.

10. Как отмечалось, в прямоугольном волноводе могут распространяться также высшие типы волн, которые могут быть использованы в тех или других волноводных устройствах. Структура поля высших типов волн имеет более сложный характер. В качестве примера на рис. 3.10 и рис. 3.11 представлены в поперечном сечении волновода структуры поля волн Н 11 и Е 11 .



3.5. Волны в круглом волноводе

Распространение волн в круглом волноводе удобно изучать в цилиндрической системе координат. В этой системе положение вектора в пространстве определяется координатами и соответствующими ортами . На рис. 3.12 представлено сечение круглого волновода радиуса .

Рассмотрим особенности распростране­ния волн в круглом волноводе.

1. В круглом волноводе, как и в прямо­угольном, могут распространяться волны электрического (Е mn ) и магнитного (Н mn ) типов. Для круглого волновода критические длины волн зависят от радиуса поперечного сечения волновода, типа волны и могут быть определены по следующим формулам:

где v mn – значение n -го корня функции Бесселя m -го порядка; – значение n -гокорня производной функции Бесселя m -гo порядка, – радиус волновода.

Отметим также, что для круглого волновода индексам m и n , которые определяют тип волны, также можно придать четкий физический смысл. Именно, индекс n определяет число полуволн, укладывающихся от оси волновода до его стенки, а индекс m определяет периодичность поля по полярному углу j.

В табл. 3.1 приведены корни функций Бесселя и ее производной, а также критические частоты волн в круглом волноводе с воздушным заполнением.

Таблица 3.1 – Корни функций Бесселя и ее производной

Н -волны Е -волны
m n n ¢ f кр, ГГц см m n n f кр, ГГц см
1–1 1,8412 8,7849 0–1 2,4048 11,4743
2–1 3,0542 14,5728
0–1 3,8317 18,2824 1–1 3,8317 18,2824
3–1 4,2012 20,045
4–1 5,3176 25,372 2–1 5,1356 24,504
1–2 5,3314 25,438 0–2 5,5201 26,338
5–1 6,4156 30,611 3–1 6,3802 30,442
2–2 6,7061 31,997
0–2 7,0156 33,474 1–2 7,0156 33,474

2. Из табл. 3.1 и формул (3.13) видно, что критическая частота принимает наименьшее значение (l кр – наибольшее) при m = 1, n = 1. Отсюда следует, что основным типом волны в круглом волноводе является волна H 11 . При этом критическая длина волны H 11 определяется по формуле

3. Проекции векторов и волны Н 11 на орты цилиндричес­кой системы координат для случая волновода без потерь имеют вид

Структуру ЭМП волны любого типа в волноводе удобнее всего представлять путем построения силовых линий. На рис.1.3 показана структура ЭМП волны в прямоугольном волноводе. Волна - это поперечно-электрическая волна. Электрическое поле имеем в поперечном сечении, а магнитное поле, как в поперечном, так и в продольном.

Вдоль стороны " " волновода электрическое поле изменяется по синусоидальному закону, имеет место одна вариация (индекс m =1) поля. Вдоль OX на отрезке 0-a электрические силовые линии везде нормальны к плоскости широкой стенки волновода. Густота линий отражает величину напряженности электрического поля.

Вдоль узкой стенки волновода распределение амплитуды электрического поля равномерное, при изменении координаты Y поле не изменяется, нет вариаций поля (n =0).

Порядок построения электромагнитного поля волны следующий:

* Нанести электрические силовые линии.

* Построить линии тока смещения, сдвинув структуру электрических силовых линий вдоль оси волновода на .

* Построить магнитные силовые линии, замкнув их по правилу буравчика вокруг токов смещения.

* По примыкающим к поверхности магнитным силовым линиям, пользуясь граничным условием, построить структуру поверхностных токов проводимости .

Помнить: электрические и магнитные силовые линии перпендикулярны друг другу.

Подключим ко входу двухпроводной длинной линии генератор синусоидальных колебаний. Вдоль линии будет распространяться бегущая волна, зависимость напряженности поля Е U которой от координаты Z представлена на рис.1.3.

Перейдем от длинной линии к волноводу, навесив на одну и вторую стороны линии четвертьволновые короткозамкнутые отрезки. В отрезках будет возбуждаться стоячая волна с максимумом напряженности в центре волновода. Зависимость Е U от координаты C представлена на рис.1.3.

Структура токов смещения (они протекают в диэлектрике (в воздухе) между двумя широкими стенками волновода) повторяет структуру электрических силовых линий, но вдоль оси z они сдвинуты на , так как ток смещения прямо пропорционален скорости изменения напряженности электрического поля. Зависимость d см от координаты Z показана на рис.1.3. Магнитные силовые линии охватывают токи смещения и располагаются в плоскости XOZ (рис.1.5). Графическим способом, используя формулу , находим направление поверхностных токов проводимости на всех стенках волновода (рис.1.5).

Рис. 1.5 Структура поля и токов на стенках прямоугольного волновода для основной волны .

Электрическое поле основной волны в любой точке поперечного сечения поляризовано линейно, а плоскость поляризации параллельна плоскости YOZ. Иногда ее называют электрической плоскостью.



Магнитное поле основной волны лежит в плоскости || XOZ. Иногда ее называют магнитной плоскостью.

В отличие от поляризации электрического поля магнитное поле в разных точках поперечного сечения поляризовано по-разному. Поясним это с помощью рис.1.6.

Рис. 1.6 К пояснению поляризационных свойств магнитного поля волны .

Точки A, B и C являются точками наблюдения, по направлению к которым движется волна (постепенно передвигаем к точкам A, B и C силовые линии вектора H). В точке В () магнитное поле будет поляризовано линейно. В точке A поляризация будет левой эллиптической. В точке С поляризация будет правой эллиптической.

Поэтому можно сформулировать такое правило. Справа от осевой линии прямоугольного волновода магнитное поле основной волны имеет правую эллиптическую поляризацию, а слева от осевой линии левую эллиптическую. Это различие в поляризации используется при создании невзаимных устройств с ферритами.

Свойства волны . Как уже отмечалось, при а > b основной волной прямоугольного волновода является волна Н 10. Она имеет наибольшую критическую длину волны, равную 2а . На заданной частоте размеры поперечного сечения волновода, при которых возможна передача энергии по прямоугольному волноводу, для этой волны можно выбрать наименьшими. При этом волновод будет иметь наименьшие массу, габариты и стоимость.

Полагая в (1.17) m =1 и n = 0 и учитывая формулы (1.16), получаем следующие выражения для составляющих комплексных амплитуд векторов Е и Н в случае волны Н 10:

где: - скорость света в среде, заполняющей волновод.

Структура поля волны Н 10, построенная в соответствии с формулами (1.18), показана на рис. 1.3 и 1.6. Остановимся на картине распределения поля волны Н 10 в плоскостях, параллельных широким стенкам волновода.

Согласно уравнениям Максвелла, замкнутые линии магнитного поля должны охватывать токи проводимости или токи смещения. В волноводе замкнутые линии магнитного поля пронизываются токами смещения. В случае волны Н 10 (см. рис.1.6) линии магнитного поля охватывают токи смещения, текущие между широкими стенками параллельно оси Y. В распространяющейся волне максимальная плотность тока смещения получается в центре замкнутых магнитных силовых линий, где напряженность электрического поля равна нулю. Это следует из того, что вектор

Рис. 1.6. Структура поля волны H10

плотности тока смещения и, следовательно, сдвинут по фазе относительно вектора напряженности электрического поля на угол π/2, т.е. расстояние между максимумом плотности тока смещения и максимумом напряженности электрического поля вдоль оси Z в фиксированный момент времени равно

Фазовая скорость vф,скорость распространения энергии vэ,длина волны в волноводе Λ и характеристическое сопротивление Zcв случае волны Н 10 вычисляются по формулам:

(1.19)

В соответствии с концепцией Бриллюэна (см. раздел 5 пособия 2) представим волну Н 10 в виде суперпозиции парциальных ТЕМ-волн.

Поле волны Н 10 не зависит от переменной у. Следовательно, поля парциальных волн также не должны зависеть от у , т.е. парциальные ТЕМ-волны должны распространяться, отражаясь от боковых (х = 0 и х = а ) стенок волновода.

Пусть парциальная волна распространяется под углом φ к оси Z (волна 1на рис. 1.7). Комплексная амплитуда вектора напряженности электрического поля этой волны определяется выражением:

где А - некоторая (в общем случае комплексная) постоянная. Электрическое поле волны Н 10 имеет пучность на плоскости х = а/2 и симметрично относительно этой плоскости. Поэтому кроме волны (1.20) должна существовать еще одна парциальная ТЕМ-волна (волна 2), распространяющаяся, как показано на рис. 1.7.

Рис. 1.7. Распространение парциальной волны под углом φ к оси Z

Комплексная амплитуда напряженности электрического поля этой волны равна , причем . Для образования пучности электрического поля в плоскости х = а /2 необходимо, чтобы векторы и при х = а /2 складывались синфазно. Для этого достаточно, например, чтобы фаза вектора в точке (а , 0, 0) совпадала с фазой вектора в точке (0, 0, 0). С учетом данного условия вектор:

Рис. 1.8. К определению угла φ

Для определения угла φ учтем, что на поперечном размере а широкой стенки волновода должна укладываться половина длины волны λх, а на отрезке ОА - половина длины волны ТЕМ (λ/2). Из треугольника ОАВ (см. рис. 1.8) следует равенство.

Волны типа Н характепизуются тем, что здесь магнитное поле имеет продольную составляющую , в то время как электрическое поле поперечно, т.е. .

Будем предполагать, что геометрия и физические параметры волновода остаются такими же, как при рассмотрении волн типа Е. Все составляющие электромагнитного поля могут быть выражены через составляющую с помощью формул перехода:

По аналогии с рассмотрением волны типа Е, составляющая должна удовлетворять уравнению Гельмгольца, решение которого должно искаться в виде

Здесь амплитудная функция является решением двумерного поперечного уравнения

.

Как и ранее, − поперечное волновое число.

Волновое уравнение должно быть дополнено граничными условиями, обеспечивающими обращение в нуль тангенциальных составляющих электрического поля на идеально проводящих стенках волновода. Эти условия записываются следующим образом:

Формулы перехода позволяют записать данные условия через искомую функцию :

Таким образом, исследование распространения волн типа Н в прямоугольном металлическом волноводе сводится к решению краевой задачи, описанной предыдущими формулами. Данная краевая задача отличается от задачи, которая описывала распространение волн типа Е, тем, что здесь на границе области, т. е. на контуре сечения волновода, обращается в нуль не сама искомая функция, а ее производная по направлению нормали. В математической физике такие краевые задачи носят название однородных краевых задач Неймана. В частности, задача, полностью подобная рассматриваемой, встречается в механике при рассмотрении колебаний упругой мембраны прямоугольной формы с незакрепленными краями. Равенство нулю нормальной производной ка краях означает отсутсвие в этих точках мембраны внутренних натяжений.

Рассматриваемая краевая задача решается методом разделения переменных. Аналогично рассмотрению волны типа Е, запишем общее решение уравнения Гельмгольца в виде

Граничные условия при , могут быть удовлетворены тогда, когда . Далее, обозначая произведение как , будем иметь

Из граничных условий при , ледует, что

Здесь , − целые положительные числа, не равные нулю одновременно. Как и раньше, поперечное волновое число определяется соотношением

.

Каждой паре индексов , соответствует магнитный тип волны, обозначаемый как . Критическая длина волны для этого типа колебаний находится по общей формуле для критической длины волны:

Аналогично общему рассмотрению критической длины волны, для волн Н-типов справедливы выражения

,

.

Выясним вопрос о том, какой тип волны в прямоугольном волноводе является низшим, т. е. обладает наибольшей критической длиной волны. Из анализа формулы критической длины волны следует, что наибольшей критической длиной волны будет характеризоваться тот тип колебаний, которому соответствуют наименьшие индексы. Поскольку для волн Н-типов


,

в данном случае один из индексов, но не оба вместе, может равняться нулю, так как при и все составляющие напряженностей поля равны нулю. В то же время известно, что для волн Е-типа такая ситуация невозможна. Это значит, что низший тип колебаний в прямоугольном волноводе принадлежит к классу волн Н-типа.

Наименьшими значениями и , при которых напряженность и отличаются от нуля, будут , и , , то есть волны типа и соответственно. Критические длины волн для этих типов волн в соответствии с общим выражением будут:

При обсуждении постановки задачи условились считать, что размер сечения волновода по координате больше, чем по координате , т. е. . Отсюда следует, что , то есть из двух колебаний с наименьшими из возможных индексов, наибольшей критической длиной волны будет обладать тип колебаний .

1.12.2. Волна типа

Рассмотрим этот тип колебаний в прямоугольном волноводе более подробно как из-за большей наглядности, так и из-за широкого практического использования этого типа колебаний.

Начнем с построения качественной картины поля. При этом в качестве исходной можно использовать структуру поля волны в волноводе, образованиом двумя идеально проводящими плоскостями.

Рисунок 20 − Построение картины распределения электромагнитного поля типа

Обращаясь к рисунку 20, заметим, что поскольку силовые линии электрического вектора здесь параллельны поперечной координате , во внутреннем пространстве волновода можно установить две идеально проводяшие перегородки. отстоящие друг от друга на расстояние . В силу перпендикулярности векторов поля Е к этим перегородкам граничные условия на последних будут выполняться автоматически. Таким образом, можно рассматривать лишь поля, существующие в замкнутой области с прямоугольной формой сечения, то есть перейти к прямоугольному волноводу.

Чрезвычайно важно отметить, что данная картина поля останется справедливой при любом расстоянии между перегородками или, согласно принятой здесь терминологии, при любом размере узкой стенки волновода. Отсюда следует, что величина не должна входить в выражение, определяющее критическую длину волны для данного типа колебаний. Действительно, при , будем иметь

Поскольку волна типа в рассматриваемом волноводе является низшим типом колебаний, можно сформулировать полученный результат следующим образом: по прямоугольному волноводу могут передаваться лишь колебания с длинами волн, меньшими, чем удвоенный размер широкой стенки; более длинноволновые колебания по волноводу принципиально распространяться не могут.

Передачу электромагнитной энергии от генератора к нагрузке по волноводу следует вести на основном типе колебаний , так как анализ показывает, что при этом потери энергии в волноводе минимальны. Для того, чтобы в волноводе имели место только колебания типа , необходимо выбрать рабочую длину волны менее , но более , , и других критических длин волн. Практически необходимо соблюдать условие

Запишем сводку аналитических выражений для составляющих электромагнитного поля волны :

,

где − продольное волновое число, − постоянная распространения (волновое число) в свободном пространстве..

Данные формулы получены с помощью правил перехода от продольных компонет к поперечным. Как видно, в векторах поля волны типа присутствуют всего три составляющие. Рассмотрим их распределение внутри волновода подробнее.

Воспользовавшись методом комплексных амплитуд, определим мгновенные значения каждой компоненты в зависимости от времени. Для этого нужно будет заменить на и умножить комплексные амплитуды на временной экспоненциальный множитель . Взяв затем от полученных формул действительную часть по формуле Эйлера, получим

.

Остальные компоненты поля равны нулю. Построим теперь точное распределение силовых линий для момента времени . Из выражений следует, что напряженность электрического поля имеет лишь одну составляющую , паралелльную оси . При этом величина составляющей не зависит от координаты . Поэтому электрические силовые линии представляют собой прямые, параллельные узкой стенке волновода (рисунок 21). Напряженность электрического поля в любом поперечном сечении волновода, параллельном плоскости , зависит лишь от координаты и меняется в соответствии с зависимостью . Наибольшее значение напряженность принимает при , т.е. в середине широкой стенки волновода. Следовательно, зависимость напряженности поля от координаты характеризуется полусинусоидой.

Рисунок 21 − Распределение поля в поперечном сечении волновода

В направлении оси величина при фиксированном времени изменяется по закону синуса и при в плоскости напряженность . Поэтому на рисунке 21 построено распределение в плоскости при , когда имеет максимальное значение, направленное сверху вниз. В середине силовые линии располагаются густо, указывая на максимум напряженности поля, и становятся более редкими по направлению к краям. Через половину периода времени направление силовых линий становится обратным.

Величина составляющей напряженности магнитного поля изменяется по координатам, как это следует из выражений для поля, аналогично изменению величины напряженности электрического поля.

Величина же составляющей по координате изменяется по закону косинуса , т.е. имеет максимальные противоположные по знаку значения у вертикальных (узких) стенок волновода , , и нулевое значение на середине поперечного сечения волновода .

Республика Казахстан

Алматинский институт Энергетики и Связи

Кафедра Радиотехники

Контрольная работа

По дисциплине: Теория передачи электромагнитных волн

Прямоугольный волновод

Выполнил: ст. гр. БРЭ-07-9

Джуматаев Е. Б.

Зачетная книжка № 073013

Принял: доцент Хорош А.Х.

Алматы 2009


Задание

1. Построить амплитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики отрезка волновода длиной L в заданном диапазоне длин волн.

2. Изобразить картину силовых линий электромагнитного поля всех типов волн, которые в этом диапазоне длин волн могут участвовать в переносе активной энергии. Построить зависимости их продольных составляющих от поперечных координат. Привести картины распределения плотности поверхностного тока, соответствующего распределению поля этих типов волн на стенках волновода.

3. Во сколько раз изменится длительность импульса прямоугольной формы на выходе волновода по сравнению со входом, если частота заполнения импульса равна центральной частоте рабочего диапазона волновода.

Исходные данные из таблиц 3-5:

Амплитуда поля

, В/м: 10

Длина отрезка L, м: 15

Материал стенок: медь

Тип волновода: □ (прямоугольный)

Характерные размеры волновода, мм: 28.5x12.6

Рабочий диапазон

, м: 0.029 – 0.056

Длительность импульса, нс: 1

Учитывать, что независимо от количества мод, участвующих в переносе энергии по волноводу, мощность генератора не меняется (можно принять равенство амплитуд всех мод).

Задание 1


Рис. 1. Амплитудно-частотная характеристика


Рис. 2. Фазо-частотная характеристика

Задание 2

волновод электромагнитный поле импульс

Прямоугольный волновод представляет собой полую металлическую трубу прямоугольного сечения.

При падение плоской волны с параллельной поляризацией на идеально проводящую плоскость, структуры полей электрического и магнитного векторов Магнитный вектор с единственной проекцией H y чисто поперечен, в то время как электрический вектор имеет и поперечную проекцию E x , и продольную проекцию E y . Неоднородные плоские волны такой структуры принято называть Е-волнами .(131 стр.)

При падении плоской волны с перпендикулярной поляризацией на идеально проводящую плоскость электрическое поле имеет единственную отличную от нуля проекцию

и является чисто поперечным. Вектор напряженности магнитного поля, напротив, кроме поперечной проекции H x имеет также продольную проекцию H y . По этой причине такие направляемые волны принято называть Н-волнами . (133 стр.)

Характер зависимостей проекций векторов электромагнитного поля волн Е- и Н-типов вдоль продольной координаты z и поперечной координаты х совершенно различен: по оси z устанавливается бегущая, а по оси х - стоячая волна. Чтобы учесть эту особенность рассматриваемого волнового процесса, вводят два параметра: продольное волновое число (7.18-7.20)

и поперечное волновое число ,

(2)

такие, что

при любом угле падения

. Где, - коэффициент фазы волны.

Пограничный случай возникает на такой рабочей частоте, когда

. При этом h=0 и, как следствие, длина волны в волноводе . Принято говорить, что волновод с выбранным типом волны оказывается в критическом режиме. Длину волны генератора, соответствующую случаю , называют критической длиной волны данного типа и обозначают. (стр. 158-159)

Из приведенных рассуждений следует, что в критическом режиме коэффициент фазы

Отсюда получается формула для вычисления критической длины волны (8.29)

(4)

Где, a и b – размеры волновода, числа т и п называют индексами волны данного типа. Физически они означают количества стоячих полуволн, возникающих внутри волновода вдоль координатных осей х и у соответственно. Поскольку индексы могут быть любыми, в прямоугольном металлическом волноводе возможно раздельное существование сколь угодно большого числа волн типа Е тп. Однако, волны типа E 0n и E m0 не существует. Для волн типа Н тп , также, справедлива формула (4).

Значит, для критической длины волны должно выполнятся следующее условие, при котором поле представляет собой распространяющуюся волну

Или, подставив значения рабочего диапазона и размеры волновода, получим

(5)

Условие выполняется, только при m=1 и n=0 (

становится равным 0.057). Значит, в данном волноводе будет распространяться волна типа H 10 .

Рис. 4. Структура силовых линий векторов электромагнитного поля типа H 10 в прямоугольном волноводе


Длину волны в волноводе можно найти преобразовав формулы (3) и (4):

(6)

Это равенство показывает, что при изменении длины волны генератора

длина волны в волноводе изменяется не пропорционально ей. Закон зависимости длины волны в волноводе от длины волны в свободном пространстве называют дисперсионной характеристикой волновода. В явном виде эта характеристика описывается формулой, вытекающей из выражения (6) (8.32):

Зависимость длины волны в волноводе от длины волны генератора показано на рис. 3.