Понятие градиента и его вычисление. Разновидности градиентных методов

Градиентные методы

Градиентные методы безусловной оптимизации используют только первые производные целевой функции и являются методами линейной аппроксимации на каждом шаге, т.е. целевая функция на каждом шаге заменяется касательной гиперплоскостью к ее графику в текущей точке.

На k-м этапе градиентных методов переход из точки Xk в точку Xk+1 описывается соотношением:

где k - величина шага, k - вектор в направлении Xk+1-Xk.

Методы наискорейшего спуска

Впервые такой метод рассмотрел и применил еще О. Коши в XVIII в. Идея его проста: градиент целевой функции f(X) в любой точке есть вектор в направлении наибольшего возрастания значения функции. Следовательно, антиградиент будет направлен в сторону наибольшего убывания функции и является направлением наискорейшего спуска. Антиградиент (и градиент) ортогонален поверхности уровня f(X) в точке X. Если в (1.2) ввести направление

то это будет направление наискорейшего спуска в точке Xk.

Получаем формулу перехода из Xk в Xk+1:

Антиградиент дает только направление спуска, но не величину шага. В общем случае один шаг не дает точку минимума, поэтому процедура спуска должна применяться несколько раз. В точке минимума все компоненты градиента равны нулю.

Все градиентные методы используют изложенную идею и отличаются друг от друга техническими деталями: вычисление производных по аналитической формуле или конечно-разностной аппроксимации; величина шага может быть постоянной, меняться по каким-либо правилам или выбираться после применения методов одномерной оптимизации в направлении антиградиента и т.д. и т.п.

Останавливаться подробно мы не будем, т.к. метод наискорейшего спуска не рекомендуется обычно в качестве серьезной оптимизационной процедуры.

Одним из недостатков этого метода является то, что он сходится к любой стационарной точке, в том числе и седловой, которая не может быть решением.

Но самое главное - очень медленная сходимость наискорейшего спуска в общем случае. Дело в том, что спуск является "наискорейшим" в локальном смысле. Если гиперпространство поиска сильно вытянуто ("овраг"), то антиградиент направлен почти ортогонально дну "оврага", т.е. наилучшему направлению достижения минимума. В этом смысле прямой перевод английского термина "steepest descent", т.е. спуск по наиболее крутому склону более соответствует положению дел, чем термин "наискорейший", принятый в русскоязычной специальной литературе. Одним из выходов в этой ситуации является использование информации даваемой вторыми частными производными. Другой выход - изменение масштабов переменных.

линейный аппроксимация производная градиент

Метод сопряженного градиента Флетчера-Ривса

В методе сопряженного градиента строится последовательность направлений поиска, являющихся линейными комбинациями, текущего направления наискорейшего спуска, и, предыдущих направлений поиска, т.е.

причем коэффициенты выбираются так, чтобы сделать направления поиска сопряженными. Доказано, что

и это очень ценный результат, позволяющий строить быстрый и эффективный алгоритм оптимизации.

Алгоритм Флетчера-Ривса

1. В X0 вычисляется.

2. На k-ом шаге с помощь одномерного поиска в направлении находится минимум f(X), который и определяет точку Xk+1.

  • 3. Вычисляются f(Xk+1) и.
  • 4. Направление определяется из соотношения:
  • 5. После (n+1)-й итерации (т.е. при k=n) производится рестарт: полагается X0=Xn+1 и осуществляется переход к шагу 1.
  • 6. Алгоритм останавливается, когда

где - произвольная константа.

Преимуществом алгоритма Флетчера-Ривса является то, что он не требует обращения матрицы и экономит память ЭВМ, так как ему не нужны матрицы, используемые в Ньютоновских методах, но в то же время почти столь же эффективен как квази-Ньютоновские алгоритмы. Т.к. направления поиска взаимно сопряжены, то квадратичная функция будет минимизирована не более, чем за n шагов. В общем случае используется рестарт, который позволяет получать результат.

Алгоритм Флетчера-Ривса чувствителен к точности одномерного поиска, поэтому при его использовании необходимо устранять любые ошибки округления, которые могут возникнуть. Кроме того, алгоритм может отказать в ситуациях, где Гессиан становится плохо обусловленным. Гарантии сходимости всегда и везде у алгоритма нет, хотя практика показывает, что почти всегда алгоритм дает результат.

Ньютоновские методы

Направление поиска, соответствующее наискорейшему спуску, связано с линейной аппроксимацией целевой функции. Методы, использующие вторые производные, возникли из квадратичной аппроксимации целевой функции, т. е. при разложении функции в ряд Тейлора отбрасываются члены третьего и более высоких порядков.

где - матрица Гессе.

Минимум правой части (если он существует) достигается там же, где и минимум квадратичной формы. Запишем формулу для определения направления поиска:

Минимум достигается при

Алгоритм оптимизации, в котором направление поиска определяется из этого соотношения, называется методом Ньютона, а направление - ньютоновским направлением.

В задачах поиска минимума произвольной квадратичной функции с положительной матрицей вторых производных метод Ньютона дает решение за одну итерацию независимо от выбора начальной точки.

Классификация Ньютоновских методов

Собственно метод Ньютона состоит в однократном применении Ньютоновского направления для оптимизации квадратичной функции. Если же функция не является квадратичной, то верна следующая теорема.

Теорема 1.4. Если матрица Гессе нелинейной функции f общего вида в точке минимума X* положительно определена, начальная точка выбрана достаточно близко к X* и длины шагов подобраны верно, то метод Ньютона сходится к X* с квадратичной скоростью.

Метод Ньютона считается эталонным, с ним сравнивают все разрабатываемые оптимизационные процедуры. Однако метод Ньютона работоспособен только при положительно определенной и хорошо обусловленной матрицей Гессе (определитель ее должен быть существенно больше нуля, точнее отношение наибольшего и наименьшего собственных чисел должно быть близко к единице). Для устранения этого недостатка используют модифицированные методы Ньютона, использующие ньютоновские направления по мере возможности и уклоняющиеся от них только тогда, когда это необходимо.

Общий принцип модификаций метода Ньютона состоит в следующем: на каждой итерации сначала строится некоторая "связанная" с положительно определенная матрица, а затем вычисляется по формуле

Так как положительно определена, то - обязательно будет направлением спуска. Процедуру построения организуют так, чтобы она совпадала с матрицей Гессе, если она является положительно определенной. Эти процедуры строятся на основе некоторых матричных разложений.

Другая группа методов, практически не уступающих по быстродействию методу Ньютона, основана на аппроксимации матрицы Гессе с помощью конечных разностей, т.к. не обязательно для оптимизации использовать точные значения производных. Эти методы полезны, когда аналитическое вычисление производных затруднительно или просто невозможно. Такие методы называются дискретными методами Ньютона.

Залогом эффективности методов ньютоновского типа является учет информации о кривизне минимизируемой функции, содержащейся в матрице Гессе и позволяющей строить локально точные квадратичные модели целевой функции. Но ведь возможно информацию о кривизне функции собирать и накапливать на основе наблюдения за изменением градиента во время итераций спуска.

Соответствующие методы, опирающиеся на возможность аппроксимации кривизны нелинейной функции без явного формирования ее матрицы Гессе, называют квази-Ньютоновскими методами.

Отметим, что при построении оптимизационной процедуры ньютоновского типа (в том числе и квази-Ньютоновской) необходимо учитывать возможность появления седловой точки. В этом случае вектор наилучшего направления поиска будет все время направлен к седловой точке, вместо того, чтобы уходить от нее в направлении "вниз".

Метод Ньютона-Рафсона

Данный метод состоит в многократном использовании Ньютоновского направления при оптимизации функций, не являющихся квадратичными.

Основная итерационная формула многомерной оптимизации

используется в этом методе при выборе направления оптимизации из соотношения

Реальная длина шага скрыта в ненормализованном Ньютоновском направлении.

Так как этот метод не требует значения целевой функции в текущей точке, то его иногда называют непрямым или аналитическим методом оптимизации. Его способность определять минимум квадратичной функции за одно вычисление выглядит на первый взгляд исключительно привлекательно. Однако это "одно вычисление" требует значительных затрат. Прежде всего, необходимо вычислить n частных производных первого порядка и n(n+1)/2 - второго. Кроме того, матрица Гессе должна быть инвертирована. Это требует уже порядка n3 вычислительных операций. С теми же самыми затратами методы сопряженных направлений или методы сопряженного градиента могут сделать порядка n шагов, т.е. достичь практически того же результата. Таким образом, итерация метода Ньютона-Рафсона не дает преимуществ в случае квадратичной функции.

Если же функция не квадратична, то

  • - начальное направление уже, вообще говоря, не указывает действительную точку минимума, а значит, итерации должны повторяться неоднократно;
  • - шаг единичной длины может привести в точку с худшим значением целевой функции, а поиск может выдать неправильное направление, если, например, гессиан не является положительно определенным;
  • - гессиан может стать плохо обусловленным, что сделает невозможным его инвертирование, т.е. определение направления для следующей итерации.

Сама по себе стратегия не различает, к какой именно стационарной точке (минимума, максимума, седловой) приближается поиск, а вычисления значений целевой функции, по которым можно было бы отследить, не возрастает ли функция, не делаются. Значит, все зависит от того, в зоне притяжения какой стационарной точки оказывается стартовая точка поиска. Стратегия Ньютона-Рафсона редко используется сама по себе без модификации того или иного рода.

Методы Пирсона

Пирсон предложил несколько методов с аппроксимацией обратного гессиана без явного вычисления вторых производных, т.е. путем наблюдений за изменениями направления антиградиента. При этом получаются сопряженные направления. Эти алгоритмы отличаются только деталями. Приведем те из них, которые получили наиболее широкое распространение в прикладных областях.

Алгоритм Пирсона № 2.

В этом алгоритме обратный гессиан аппроксимируется матрицей Hk, вычисляемой на каждом шаге по формуле

В качестве начальной матрицы H0 выбирается произвольная положительно определенная симметрическая матрица.

Данный алгоритм Пирсона часто приводит к ситуациям, когда матрица Hk становится плохо обусловленной, а именно - она начинает осцилировать, колеблясь между положительно определенной и не положительно определенной, при этом определитель матрицы близок к нулю. Для избежания этой ситуации необходимо через каждые n шагов перезадавать матрицу, приравнивая ее к H0.

Алгоритм Пирсона № 3.

В этом алгоритме матрица Hk+1 определяется из формулы

Hk+1 = Hk +

Траектория спуска, порождаемая алгоритмом, аналогична поведению алгоритма Дэвидона-Флетчера-Пауэлла, но шаги немного короче. Пирсон также предложил разновидность этого алгоритма с циклическим перезаданием матрицы.

Проективный алгоритм Ньютона-Рафсона

Пирсон предложил идею алгоритма, в котором матрица рассчитывается из соотношения

H0=R0, где матрица R0 такая же как и начальные матрицы в предыдущих алгоритмах.

Когда k кратно числу независимых переменных n, матрица Hk заменяется на матрицу Rk+1, вычисляемую как сумма

Величина Hk(f(Xk+1) - f(Xk)) является проекцией вектора приращения градиента (f(Xk+1)-f(Xk)), ортогональной ко всем векторам приращения градиента на предыдущих шагах. После каждых n шагов Rk является аппроксимацией обратного гессиана H-1(Xk), так что в сущности осуществляется (приближенно) поиск Ньютона.

Метод Дэвидона-Флетчера-Пауэла

Этот метод имеет и другие названия - метод переменной метрики, квазиньютоновский метод, т.к. он использует оба эти подхода.

Метод Дэвидона-Флетчера-Пауэла (ДФП) основан на использовании ньютоновских направлений, но не требует вычисления обратного гессиана на каждом шаге.

Направление поиска на шаге k является направлением

где Hi - положительно определенная симметричная матрица, которая обновляется на каждом шаге и в пределе становится равной обратному гессиану. В качестве начальной матрицы H обычно выбирают единичную. Итерационная процедура ДФП может быть представлена следующим образом:

  • 1. На шаге k имеются точка Xk и положительно определенная матрица Hk.
  • 2. В качестве нового направления поиска выбирается

3. Одномерным поиском (обычно кубической интерполяцией) вдоль направления определяется k, минимизирующее функцию.

4. Полагается.

5. Полагается.

6. Определяется и. Если Vk или достаточно малы, процедура завершается.

  • 7. Полагается Uk = f(Xk+1) - f(Xk).
  • 8. Матрица Hk обновляется по формуле

9. Увеличить k на единицу и вернуться на шаг 2.

Метод эффективен на практике, если ошибка вычислений градиента невелика и матрица Hk не становится плохо обусловленной.

Матрица Ak обеспечивает сходимость Hk к G-1, матрица Bk обеспечивает положительную определенность Hk+1 на всех этапах и в пределе исключает H0.

В случае квадратичной функции

т.е. алгоритм ДФП использует сопряженные направления.

Таким образом, метод ДФП использует как идеи ньютоновского подхода, так и свойства сопряженных направлений, и при минимизации квадратичной функции сходится не более чем за n итераций. Если оптимизируемая функция имеет вид, близкий к квадратичной функции, то метод ДФП эффективен за счет хорошей аппроксимации G-1(метод Ньютона). Если же целевая функция имеет общий вид, то метод ДФП эффективен за счет использования сопряженных направлений.

Вкину немного своего экспириенса:)

Метод покоординатного спуска

Идея данного метода в том, что поиск происходит в направлении покоординатного спуска во время новой итерации. Спуск осуществляется постепенно по каждой координате. Количество координат напрямую зависит от количества переменных.
Для демонстрации хода работы данного метода, для начала необходимо взять функцию z = f(x1, x2,…, xn) и выбрать любую точку M0(x10, x20,…, xn0) в n пространстве, которая зависит от числа характеристик функции. Следующим шагом идет фиксация всех точек функции в константу, кроме самой первой. Это делается для того, чтобы поиск многомерной оптимизации свести к решению поиска на определенном отрезке задачу одномерной оптимизации, то есть поиска аргумента x1.
Для нахождения значения данной переменной, необходимо производить спуск по этой координате до новой точки M1(x11, x21,…, xn1). Далее функция дифференцируется и тогда мы можем найти значение новой следующий точки с помощью данного выражения:

После нахождения значения переменной, необходимо повторить итерацию с фиксацией всех аргументов кроме x2 и начать производить спуск по новой координате до следующей новой точке M2(x11,x21,x30…,xn0). Теперь значение новой точки будет происходить по выражению:

И снова итерация с фиксацией будет повторяться до тех пор, пока все аргументы от xi до xn не закончатся. При последней итерации, мы последовательно пройдем по всем возможным координатам, в которых уже найдем локальные минимумы, поэтому целевая функция на последний координате дойдет до глобального минимума. Одним из преимуществ данного метода в том, что в любой момент времени есть возможность прервать спуск и последняя найденная точка будет являться точкой минимума. Это бывает полезно, когда метод уходит в бесконечный цикл и результатом этого поиска можно считать последнюю найденную координату. Однако, целевая установка поиска глобального минимума в области может быть так и не достигнута из-за того, что мы прервали поиск минимума (см. Рисунок 1).


Рисунок 1 – Отмена выполнения покоординатного спуска

Исследование данного метода показали, что каждая найденная вычисляемая точка в пространстве является точкой глобального минимума заданной функции, а функция z = f(x1, x2,…, xn) является выпуклой и дифференцируемой.
Отсюда можно сделать вывод, что функция z = f(x1, x2,…, xn) выпукла и дифференцируема в пространстве, а каждая найденная предельная точка в последовательности M0(x10, x20,…, xn0) будет являться точкой глобального минимума (см. Рисунок 2) данной функции по методу покоординатного спуска.


Рисунок 2 – Локальные точки минимума на оси координат

Можно сделать вывод о том, что данный алгоритм отлично справляется с простыми задачами многомерной оптимизации, путём последовательно решения n количества задач одномерной оптимизации, например, методом золотого сечения.

Ход выполнения метода покоординатного спуска происходит по алгоритму описанного в блок схеме (см. Рисунок 3). Итерации выполнения данного метода:
Изначально необходимо ввести несколько параметров: точность Эпсилон, которая должна быть строго положительной, стартовая точка x1 с которой мы начнем выполнение нашего алгоритма и установить Лямбда j;
Следующим шагом будет взять первую стартовую точку x1, после чего происходит решение обычного одномерного уравнения с одной переменной и формула для нахождения минимума будет, где k = 1, j=1:

Теперь после вычисления точки экстремума, необходимо проверить количество аргументов в функции и если j будет меньше n, тогда необходимо повторить предыдущий шаг и переопределить аргумент j = j + 1. При всех иных случаях, переходим к следующему шагу.
Теперь необходимо переопределить переменную x по формуле x (k + 1) = y (n + 1) и попытаться выполнить сходимость функции в заданной точности по выражению:

Теперь от данного выражения зависит нахождение точки экстремума. Если данное выражение истинно, тогда вычисление точки экстремума сводится к x*= xk + 1. Но часто необходимо выполнить дополнительные итерации, зависящие от точности, поэтому значения аргументов будет переопределено y(1) = x(k + 1), а значения индексов j =1, k = k + 1.


Рисунок 3 – Блок схема метода покоординатного спуска

Итого, у нас имеется отличный и многофункциональный алгоритм многомерной оптимизации, который способен разбивать сложную задачу, на несколько последовательно итерационных одномерных. Да, данный метод достаточно прост в реализации и имеет легкое определение точек в пространстве, потому что данной метод гарантирует сходимость к локальной точке минимума. Но даже при таких весомых достоинствах, метод способен уходить в бесконечные циклы из-за того, что может попасть в своего рода овраг.
Существуют овражные функции, в которых существуют впадины. Алгоритм, попав в одну из таких впадин, уже не может выбраться и точку минимума он обнаружит уже там. Так же большое число последовательных использований одного и того же метода одномерной оптимизации, может сильно отразиться на слабых вычислительных машинах. Мало того, что сходимость в данной функции очень медленная, поскольку необходимо вычислить все переменные и зачастую высокая заданная точность увеличивает в разы время решения задачи, так и главным недостатком данного алгоритма – ограниченная применимость.
Проводя исследование различных алгоритмов решения задач оптимизации, нельзя не отметить, что огромную роль играет качество данных алгоритмов. Так же не стоит забывать таких важных характеристик, как время и стабильность выполнения, способность находить наилучшие значения, минимизирующие или максимизирующие целевую функцию, простота реализации решения практических задач. Метод покоординатного спуска прост в использовании, но в задачах многомерной оптимизации, чаще всего, необходимо выполнять комплексные вычисления, а не разбиение целой задачи на подзадачи.

Метод Нелдера - Мида

Стоит отметить известность данного алгоритма среди исследователей методов многомерной оптимизации. Метод Нелдера – Мида один из немногих методов, который основанный на концепции последовательной трансформации деформируемого симплекса вокруг точки экстремума и не используют алгоритм движения в сторону глобального минимума.
Данный симплекс является регулярным, а представляется как многогранник с равностоящими вершинами симплекса в N-мерном пространстве. В различных пространствах, симплекс отображается в R2-равносторонний треугольник, а в R3 - правильный тетраэдр.
Как упоминалось выше, алгоритм является развитием метода симплексов Спендли, Хекста и Химсворта, но, в отличие от последнего, допускает использование неправильных симплексов. Чаще всего, под симплексом подразумевается выпуклый многогранник с числом вершин N+1, где N – количество параметров модели в n -мерном пространстве.
Для того, чтобы начать пользоваться данным методом, необходимо определиться с базовой вершиной всех имеющихся множества координат с помощью выражения:

Самым замечательным в этом методе то, что у симплекса существуют возможности самостоятельно выполнять определенные функции:
Отражение через центр тяжести, отражение со сжатием или растяжением;
Растяжение;
Сжатие.
Преимуществу среди этих свойств отдают отражению, поскольку данный параметр является наиболее опционально – функциональным. От любой выбранной вершины возможно сделать отражение относительно центра тяжести симплекса по выражению:.

Где xc - центр тяжести (см. Рисунок 1).


Рисунок 1 – Отражение через центр тяжести

Следующим шагом необходимо провести расчет аргументов целевой функции во всех вершинах отраженного симплекса. После этого, мы получим полную информацию о том, как симплекс будет вести себя в пространстве, а значит и информацию о поведении функции.
Для того чтобы совершить поиск точки минимума или максимума целевой функции с помощью методов использующих симплексы, необходимо придерживаться следующей последовательности:
На каждом шаге строиться симплекс, в каждой точке которого, необходимо произвести расчет всех его вершин, после чего отсортировать полученные результаты по возрастанию;
Следующий шаг – это отражение. Необходимо провести попытку получить значения нового симплекса, а путём отражения, у нас получиться избавиться от нежелательных значений, которые стараются двигать симплекс не в сторону глобального минимума;
Чтобы получить значения нового симплекса, из полученных отсортированных результатов, мы берем две вершины с наихудшими значениями. Возможны такие случаи, что сразу подобрать подходящие значения не удастся, тогда придется вернуться к первому шагу и произвести сжатие симплекса к точке с самым наименьшим значением;
Окончанием поиска точки экстремума является центр тяжести, при условии, что значение разности между функциями имеет наименьшие значения в точках симплекса.

Алгоритм Нелдера – Мида так же использует эти функции работы с симплексом по следующим формулам:

Функция отражения через центр тяжести симплекса высчитывается по следующему выражению:

Данное отражение выполняется строго в сторону точки экстремума и только через центр тяжести (см. Рисунок 2).


Рисунок 2 – Отражение симплекса происходит через центр тяжести

Функция сжатия вовнутрь симплекса высчитывается по следующему выражению:

Для того, чтобы провести сжатие, необходимо определить точку с наименьшим значением (см. Рисунок 3).


Рисунок 3 – Сжатие симплекса происходит к наименьшему аргументу.

Функция отражения со сжатием симплекса высчитывается по следующему выражению:

Для того, чтобы провести отражение со сжатием (см. Рисунок 4), необходимо помнить работу двух отдельных функций – это отражение через центр тяжести и сжатие симплекса к наименьшему значению.


Рисунок 4 - Отражение со сжатие

Функция отражения с растяжением симплекса (см. Рисунок 5) происходит с использованием двух функций – это отражение через центр тяжести и растяжение через наибольшее значение.


Рисунок 5 - Отражение с растяжением.

Чтобы продемонстрировать работу метода Нелдера – Мида, необходимо обратиться к блок схеме алгоритма (см. Рисунок 6).
Первостепенно, как и в предыдущих примерах, нужно задать параметр искаженности ε, которая должна быть строго больше нуля, а также задать необходмые параметры для вычисления α, β и a. Это нужно будет для вычисления функции f(x0), а также для построения самого симплекса.

Рисунок 6 - Первая часть метода Нелдера - Мида.

После построения симплекса необходимо произвести расчет всех значений целевой функции. Как и было описано выше про поиск экстремума с помощью симплекса, необходимо рассчитать функцию симплекса f(x) во всех его точках. Далее производим сортировку, где базовая точка будет находиться:

Теперь, когда базовая точка рассчитана, а также и все остальные отсортированы в списке, мы производим проверку условия достижимости по ранее заданной нами точности:

Как только данное условие станет истинным, тогда точка x(0) симплекса будет считаться искомой точкой экстремума. В другом случае, мы переходим на следующий шаг, где нужно определить новое значение центра тяжести по формуле:

Если данное условие выполняется, тогда точка x(0) будет являться точкой минимума, в противном случае, необходимо перейти на следующий шаг в котором необходимо произвести поиск наименьшего аргумента функции:

Из функции необходимо достать самую минимальное значение аргумента для того, что перейти к следующему шагу выполнения алгоритма. Иногда случается проблема того, что несколько аргументов сразу имеют одинаковое значение, вычисляемое из функции. Решением такой проблемы может стать повторное определение значения аргумента вплоть до десятитысячных.
После повторного вычисления минимального аргумента, необходимо заново сохранить новые полученные значения на n позициях аргументов.


Рисунок 7 - Вторая часть метода Нелдера - Мида.

Вычисленное из предыдущей функции значение необходимо подставить в условие fmin < f(xN). При истинном выполнении данного условия, точка x(N) будет являться минимальной из группы тех, которые хранятся в отсортированном списке и нужно вернуться к шагу, где мы рассчитывали центр тяжести, в противном случае, производим сжатие симплекса в 2 раза и возвращаемся к самому началу с новым набором точек.
Исследования данного алгоритма показывают, что методы с нерегулярными симплексами (см. Рисунок 8) еще достаточно слабо изучены, но это не мешает им отлично справляться с поставленными задачами.
Более глубокие тесты показывают, что экспериментальным образом можно подобрать наиболее подходящие для задачи параметры функций растяжения, сжатия и отражения, но можно пользоваться общепринятыми параметрами этих функций α = 1/2, β = 2, γ = 2 или α = 1/4, β = 5/2, γ = 2. Поэтому, перед тем как отбрасывать данный метод для решения поставленной задачи, необходимо понимать, что для каждого нового поиска безусловного экстремума, нужно пристально наблюдать за поведением симплекса во время его работы и отмечать нестандартные решения метода.


Рисунок 8 - Процесс нахождения минимума.

Статистика показала, что в работе данного алгоритма существует одна из наиболее распространенных проблем – это вырождение деформируемого симплекса. Это происходит, когда каждый раз, когда несколько вершин симплекса попадают в одно пространство, размерность которого не удовлетворяет поставленной задачи.
Таким образом, размерность во время работы и заданная размерность закидывают несколько вершин симплекса в одну прямую, запуская метод в бесконечный цикл. Алгоритм в данной модификации еще не оснащен способом выйти из такого положения и сместить одну вершину в сторону, поэтому приходится создать новый симплекс с новыми параметрами, чтобы такого в дальнейшем не происходило.
Еще одной особенностью обладает данный метод – это некорректной работой при шести и более вершинах симплекса. Однако, при модификации данного метода, можно избавиться от этой проблемы и даже не потерять при этом скорости выполнения, но значение выделяемой памяти заметно повысится. Данный метод можно считать циклическим, поскольку он полностью основан на циклах, поэтому и замечается некорректная работа при большом количестве вершин.
Алгоритм Нелдера – Мида по праву можно считать одним из наилучших методов нахождения точки экстремума с помощью симплекса и отлично подходит для использования его в различные рода инженерных и экономических задачах. Даже не смотря на цикличность, количество памяти он использует очень малое количество, по сравнение с тем же методом покоординатного спуска, а для нахождения самого экстремума требуется высчитывать только значения центра тяжести и функции. Небольшое, но достаточное, количество комплексных параметров дают этому методу широкое использование в сложных математических и актуальных производственных задачах.
Симплексные алгоритмы – это край, горизонты которого еще мы не скоро раскроем, но уже сейчас они значительно упрощают нашу жизнь своей визуальной составляющей.

P.S. Текст полностью мой. Надеюсь кому-нибудь данная информация будет полезной.

Градиентный метод и его разновидности относятся к самым распространенным методам поиска экстремума функций нескольких переменных. Идея градиентного метода заключается в том, чтобы в процессе поиска экстремума (для определенности максимума) двигаться каждый раз в направлении наибольшего возрастания целевой функции.

Градиентный метод предполагает вычисление первых производных целевой функции по ее аргументам. Он, как и предыдущие, относится к приближенным методам и позволяет, как правило, не достигнуть точки оптимума, а только приблизиться к ней за конечное число шагов.

Рис. 4.11.

Рис. 4.12.

(двумерный случай)

Вначале выбирают начальную точку Если в одномерном случае (см. подпараграф 4.2.6) из нее можно было

сдвинуться только влево или вправо (см. рис. 4.9), то в многомерном случае число возможных направлений перемещения бесконечно велико. На рис. 4.11, иллюстрирующем случай двух переменных, стрелками, выходящими из начальной точки А, показаны различные возможные направления. При этом движение по некоторым из них дает увеличение значения целевой функции по отношению к точке А (например, направления 1-3), а по другим направлениям приводит к его уменьшению (направления 5-8). Учитывая, что положение точки оптимума неизвестно, считается наилучшим то направление, в котором целевая функция возрастает быстрее всего. Это направление называется градиентом функции. Отметим, что в каждой точке координатной плоскости направление градиента перпендикулярно касательной к линии уровня, проведенной через ту же точку.

В математическом анализе доказано, что составляющие вектора градиента функции у =/(*, х 2 , ..., х п) являются ее частными производными по аргументам, т.е.

&ад/(х 1 ,х 2 ,.= {ду/дху,ду/дх 2 , ...,ду/дх п }. (4.20)

Таким образом, при поиске максимума по методу градиента на первой итерации вычисляют составляющие градиента по формулам (4.20) для начальной точки и делают рабочий шаг в найденном направлении, т.е. осуществляется переход в новую точку -0)

У" с координатами:

1§гас1/(х (0)),

или в векторной форме

где X - постоянный или переменный параметр, определяющий длину рабочего шага, ?і>0. На второй итерации снова вычисляют

вектор градиента уже для новой точки.У, после чего по анало-

гичной формуле переходят в точку х^ > и т.д. (рис. 4.12). Для произвольной к- й итерации имеем

Если отыскивается не максимум, а минимум целевой функции, то на каждой итерации делается шаг в направлении, противоположном направлению градиента. Оно называется направлением антиградиента. Вместо формулы (4.22) в этом случае будет

Существует много разновидностей метода градиента, различающихся выбором рабочего шага. Можно, например, переходить в каждую последующую точку при постоянной величине X, и тогда

длина рабочего шага - расстояние между соседними точками х^

их 1 " - окажется пропорциональном модулю вектора градиента. Можно, наоборот, на каждой итерации выбирать X таким, чтобы длина рабочего шага оставалась постоянной.

Пример. Требуется найти максимум функции

у = 110-2(лг, -4) 2 -3(* 2 -5) 2 .

Разумеется, воспользовавшись необходимым условием экстремума, сразу получим искомое решение: х ] - 4; х 2 = 5. Однако на этом простом примере удобно продемонстрировать алгоритм градиентного метода. Вычислим градиент целевой функции:

grad у = {ду/дх-,ду/дх 2 } = {4(4 - *,); 6(5 - х 2)} и выбираем начальную точку

Л*» = {х}°> = 0; 4°> = О}.

Значение целевой функции для этой точки, как легко подсчитать, равно у[х^ j = 3. Положим, X = const = 0,1. Величина градиента в точке

Зс (0) равна grad y|x^j = {16; 30}. Тогда на первой итерации получим согласно формулам (4.21) координаты точки

х 1) = 0 + 0,1 16 = 1,6; х^ = 0 + 0,1 30 = 3.

у(х (1)) = 110 - 2(1,6 - 4) 2 - 3(3 - 5) 2 = 86,48.

Как видно, оно существенно больше предыдущего значения. На второй итерации имеем по формулам (4.22):

  • 1,6 + 0,1 4(4 - 1,6) = 2,56;

1. Понятие градиентных методов. Необходимым условием существова­ния экстремума непрерывной дифференцируемой функции яв­ляются условия вида

где – аргументы функции. Более компактно это условие можно записать в форме

(2.4.1)

где – обозначение градиента функции в заданной точке.

Методы оптимизации, использующие при определении экстремума целе­вой функции градиент, называются градиентными. Их широко применяют в системах оптимального адаптивного управления установившимися состояния­ми, в которых производится поиск оптимального (в смысле выбранного крите­рия) установившегося состояния системы при изменении ее параметров, струк­туры или внешних воздействий.

Уравнение (2.4.1) в общем случае нелинейно. Непосредственное решение его либо невозможно, либо весьма сложно. Нахождение решений такого рода уравнений возможно путем организации специальной процедуры поиска точки экстремума, основанной на использовании различного рода рекуррентных фор­мул.

Процедура поиска строится в форме многошагового процесса, при кото­ром каждый последующий шаг приводит к увеличению или уменьшению целе­вой функции, т. е. выполняются условия в случае поиска максимума и миниму­ма соответственно:

Через n и n– 1 обозначены номера шагов, а через и – векторы, соответствующие значениям аргументов целевой функции на n -м и (п– 1)-м шагах. После r-го шага можно получить

т. е. после r - шагов - целевая функция уже не будет увеличиваться (уменьшать­ся) при любом дальнейшем изменении ее аргументов;. Последнее означает достижение точки с координатами для которой можно написать, что

(2.4.2)
(2.4.3)

где – экстремальное значение целевой функции.

Для решения (2.4.1) в общем случае может быть применена следующая процедура. Запишем значение координат целевой функции в виде

где – некоторый коэффициент (скаляр), не равный нулю.

В точке экстремума так как

Решение уравнения (2.4.1) этим способом возможно, если выполняется условие сходимости итерационного процесса для любого начального значения.

Методы определения , основанные на решении уравнения (2.2.), отли­чаются друг от друга выбором , т. е. выбором шага изменения целевой функции в процессе поиска экстремума. Этот шаг может быть постоянным или переменным Во втором случае закон изменения зна­чения шага, в свою очередь, может, быть заранее определен или. зависеть от те­кущего значения (может быть нелинейным).

2. Метод наискорейшего спуска .Идея метода наискорейшего спуска со­стоит в том, что поиск экстремума должен производиться в направлении наи­большего изменения градиента или антиградиента, так как это путь – наикрат­чайший для достижения экстремальной точки. При его реализации, в первую очередь, необходимо вычислить градиент в данной точке и выбрать значение шага.

Вычисление градиента. Так как в результате оптимизации находятся координаты точки экстремума, для которых справедливо соотношение:

то вычислительную процедуру определения градиента можно заменить процедурой определения составляющих градиентов в дискретных точках пространства целевой функции

(2.4.5)

где – малое изменение координаты

Если предположить, что точка определения градиента находится посередине

отрезка то

Выбор (2.4.5) или (2.4.6) зависит от крутизны функции на участке - Ах;; если крутизна не велика, предпочтение следует отдать (2.4.5), так как вычислений здесь меньше; в противном случае более точные результаты дает вычисление по (2.4.4). Повышение точности определения градиента возможно также за счет усреднения случайных отклонений.

Выбор значения шага Сложность выбора значения шага состоит в том, что направление градиента может меняться от точки к точке. При этом слишком большой шаг приведёт к отклонению от оптимальной траектории, т. е. от направления по градиенту или антиградиенту, а слишком малый шаг -к очень медленному движению к экстремуму за счет необходимости выполнения большого объёма вычислений.

Одним из возможных методов оценки значения шага является метод Ньютона – Рафсона. Рассмотрим его на примере одномерного случая в предположении, что экстремум достигается в точке, определяемой решением уравнения (рис.2.4.2).

Пусть поиск начинается из точки причем в окрестностях этой точки функция разложима в сходящийся ряд Тейлора. Тогда

Направление градиента в точке совпадает с направлением касательной. При поиске минимальной экстремальной точки изменение координаты х при движении по градиенту можно записать в виде:

Рис.2.4.2 Схема вычисления шага по методу Ньютона – Рафсона.

Подставив (2.4.7) в (2.4.8), получим:

Так как по условию данного примера значение достигается в точке, определяемой решением уравнения то можно попытаться сделать такой шаг, чтобы т. е. чтобы

Подставим новое значение в целевую функцию. Если то в точке процедура определения повторяется, в результате чего находится значение:



и т.д. вычисление прекращается, если изменения целевой функции малы, т. е.

где допустимая погрешность определения целевой функции.

Оптимальный градиентный метод. Идея этого метода заключается в следующем. В обычном методе наискорейшего спуска шаг выбирается в общем случае [когда ] произвольно, руководствуясь лишь тем, что он не должен превышать определенного значения. В оптимальном градиентном методе значение шага выбирается исходя из требования, что из данной точки в направлении градиента (антиградиента) следует двигаться до тех пор, пока целевая функция будет увеличиваться (уменьшаться). Если это требование не выполняется, необходимо прекратить движение и определить новое направление движения (направление градиента) и т. д. (до нахождения оптимальной точки).

Таким образом, оптимальные значения и для поиска минимума и максимума соответственно определяются из решения уравнений:

В (1) и (2) соответственно

Следовательно определение на каждом шаге заключается в нахождении из уравнений (1) или (2) для каждой точки траектории движения вдоль градиента, начиная с исходной.

Градиентные методы оптимизации

Задачи оптимизации с нелинейными или трудно вычислимыми соотноше­ниями, определяющими критерий оптимизации и ограничения, являются предметом нелинейного программирования. Как правило, решения задач не­линейного программирования могут быть найдены лишь численными мето­дами с применением вычислительной техники. Среди них наиболее часто пользуются градиентными методами (методы релаксации, градиента, наиско­рейшего спуска и восхождения), безградиентными методами детерминиро­ванного поиска (методы сканирования, симплексный и др.), методами случай­ного поиска. Все эти методы применяются при численном определении опти-мумов и достаточно широко освещены в специальной литературе.

В общем случае значение критерия оптимизации R может рассматри­ваться как функция R (х ь хь ..., х п), определенная в л-мерном пространстве. Поскольку не существует наглядного графического изображения я-мерного пространства, воспользуемся случаем двумерного пространства.

Если R (л ь х 2) непрерывна в области D, то вокруг оптимальной точки M°(xi°, х г °) можно провести в данной плоскости замкнутую линию, вдоль ко­торой значение R = const. Таких линий, называемых линиями равных уровней, вокруг оптимальной точки можно провести множество (в зависимости от шага

Среди методов, применяемых для решения задач нелинейного програм­мирования, значительное место занимают методы поиска решений, основан­ные на анализе производной по направлению оптимизируемой функции. Если в каждой точке пространства скалярная функция нескольких переменных принимает вполне определенные значения, то в данном случае имеем дело со скалярным полем (поле температур, поле давлений, поле плотностей и т.д.). Подобным образом определяется векторное поле (поле сил, скоростей и т.д.). Изотермы, изобары, изохроны и т.д. - все это линии (поверхности) равных уровней, равных значений функции (температуры, давления, объема и т.д.). Поскольку от точки к точке пространства значение функции меняется, то ста­новится необходимым определение скорости изменения функции в простран­стве, то есть производной по направлению.

Понятие градиента широко используется в инженерных расчетах при на­хождении экстремумов нелинейных функций. Градиентные методы относятся к численным методам поискового типа. Они универсальны и особенно эффек­тивны в случаях поиска экстремумов нелинейных функций с ограничениями, а также когда аналитическая функция неизвестна совсем. Сущность этих мето­дов заключается в определении значений переменных, обеспечивающих экс­тремум функции цели, путем движения по градиенту (при поиске max) или в противоположном направлении (min). Различные градиентные методы отли­чаются один от другого способом определения движения к оптимуму. Суть заключается в том, что если линии равных уровней R{xu x i) характеризуют графически зависимость R(x\jc?), то поиск оптимальной точки можно вести по-разному. Например, изобразить сетку на плоскости х\, хг с указанием зна­чений R в узлах сетки (рис. 2.13).

Затем можно выбрать из узловых значений экстремальное. Путь этот не рациональный, связан с большим количеством вычислений, да и точность не­велика, так как зависит от шага, а оптимум может находиться между узлами.

Численные методы

Математические модели содержат соотношения, составленные на основе теоретического анализа изучаемых процессов или полученные в результате обработки экспериментов (таблиц данных, графиков). В любом случае мате матическая модель лишь приближенно описывает реальный процесс. Поэтом} вопрос точности, адекватности модели является важнейшим. Необходимости приближений возникает и при самом решении уравнений. До недавних пор модели, содержащие нелинейные дифференциальные уравнения или диффе ренциальные уравнения в частных производных, не могли быть решены ана литическими методами. Это же относится к многочисленным классам небе рущихся интегралов. Однако разработка методов численного анализа позво лила необозримо раздвинуть границы возможностей анализа математических моделей, особенно это стало реальным с применением ЭВМ.

Численные методы используются для приближения функций, для реше ния дифференциальных уравнений и их систем, для интегрирования и диффе ренцирования, для вычисления числовых выражений.

Функция может быть задана аналитически, таблицей, графиком. При вы полнении исследований распространенной задачей является приближение функции аналитическим выражением, удовлетворяющим поставленным уело виям. При этом решаются четыре задачи:

Выбор узловых точек, проведение экспериментов при определен­ных значениях (уровнях) независимых переменных (при непра­вильном выборе шага изменения фактора либо «пропустим» ха­рактерную особенность изучаемого процесса, либо удлиним про­цедуру и повысим трудоемкость поиска закономерности);

Выбор приближающих функций в виде многочленов, эмпириче­ских формул в зависимости от содержания конкретной задачи (следует стремиться к максимальному упрощению приближающих функций);

Выбор и использование критериев согласия, на основе которых на­ходятся параметры приближающих функций;

Выполнение требований заданной точности к выбору приближаю­щей функции.

В задачах приближения функций многочленами используются три класса

Линейная комбинация степенных функций (ряд Тейлора, много­члены Лагранжа, Ньютона и др.);

Комбинация функций соз пх, ш их (ряды Фурье);

Многочлен, образуемый функциями ехр (-а, г).

При нахождении приближающей функции используют различные крите­рии согласия с экспериментальными данными.