Понятие о диэлектрических свойствах молекул. Поляризация молекул

ДИПОЛЬНЫЙ МОМЕНТ МОЛЕКУЛ

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА МОЛЕКУЛ

ВОДОРОДНАЯ СВЯЗЬ

Водородная связь является промежуточной между молекулярными и химическими силами взаимодействия. Эта своеобразная связь устанавливается между водородным атомом, имеющим отличительные особенности от всех остальных атомов. Отдавая свой электрон на образование связи он остается в виде ядра(протона) без электрона, т.е. в виде частицы, диаметр которой в тысячи раз меньше диаметров остальных атомов. Кроме того, вследствие отсутствия у него электронов ион Н + не испытывает отталкивания от электронной оболочки другого атома, а наоборот притягивается ею. Это позволяет ему ближе подходить к другим атомам, вступать во взаимодействие с их электронами и даже внедряться в их электронные оболочки. Поэтому в жидкостях водородный ион не сохраняется в виде самостоятельной частицы, а связывается с молекулами других веществ. В воде он связывается с молекулами Н 2 О, образуя ионы гидроксония Н 3 О + ,с молекулами аммиака NH 4 + .

Водородная связь представляет собой как бы вторую побочную валентность водородного атома.

Сила связи ¸ 20-30 кдж/моль

Весьма важную роль водородная связь играет в структуре воды и льда

Длина связи Н-О ковалентная = 0,99 А°,длина водородной связи - 1,76 А°.

При плавлении льда происходит разрушение водородных связей, а при нагревании происходит расширение. Разрушение водородных связей приводит к уменьшению объема и в результате плотность воды проходит через максимум при 4°С.

При несовпадении центров тяжести электрических зарядов в молекуле возникают электрические полюса - положительный и отрицательный. Такие молекулы называются полярными. Система из двух одинаковых противоположных зарядов называется диполем.

За меру полярности принимается величина дипольного момента m, который представляет собой произведение заряда q на расстояние l

По порядку величины дипольный момент равен заряду электрона, умноженному на расстояние (10 -10 эл.ст.ед.´ 10 -8 см),что составляет 10-18 эл.ст.ед.см и равняется 1 дебаю.

Если в молекуле имеется несколько полярных связей, то суммарный момент равен векторной сумме дипольных моментов отдельных связей

Различные изменения, которые претерпевают молекулы под воздействием на них внешнего электрического поля, называются поляризацией. Различают ориентационную, атомную и электронную поляризации.

Ориентационная поляризация представляет ориентацию полярных молекул в пространстве в соответствии с направлением внешнего электрического поля. С повышением температуры ориентационная поляризация уменьшается.



Под атомной поляризацией подразумевается относительное смещение атомов, входящих в состав молекулы. Она характеризует смещение положительно заряженных ядер относительно отрицательного полюса.

При электронной поляризации происходит смещение электронов относительно ядра атома.

Атомная и электронная поляризации от температуры не зависят. Сумму электронной, атомной и ориентационной поляризаций называют общей или мольной поляризацией.

Р = Р а + Р э + Р ор = Р ор + Р д

Р д = Р а + Р э

Сумму атомной и электронной называют деформационной поляризацией.

При взаимодействии молекул с электромагнитными полями, в частности с видимым светом (l = 4000-8000 А),атомная и ориентационная поляризации не возникают, так как атомы не успевают перемещаться с та кой же скоростью, с которой происходят световые колебания. Электроны реагируют на колебания света. Мольная поляризация при этом равна только электронной поляризации и называется мольной рефракцией

Мольная рефракция обладает аддитивными свойствами и является характерной константой данного вещества.

Аддитивность рефракции используется для выяснения строения органических молекул.

R m = å n Ri ,где n - число атомов

Ri - инкременты мольной рефракции

СН 3 -СН 2 -СООН - пропионовая кислота

R m = 3Rc + 6Rн + Rо-гидрокс + Rо-карбокс =

3×2,418 + 6×1,10 + 1,325 + 2,211 = 17,59 см 3 /г-ат

Опыт дает 17,68 см 3 /г-ат.

Молекула (атом, ион) состоит из нейтральных и положительно и отрицательно заряженных частиц. Различают два вида частиц – с симметричным распределением заряда (H 2 , CH 4 , C 6 H 6 и др.) и несимметричным (HX, CH 3 X, C 6 H 5 X: Х – галоген и др.). Это неполярные и полярные молекулы. Полярную молекулу называют также диполем или дипольной молекулой.

В двухатомной дипольной молекуле на одном из атомов имеется избыток отрицательных, а на другом – такой же избыток положительных зарядов. Суммарный заряд равен нулю. У многоатомных молекул существуют некоторые области с избытками положительных и отрицательных зарядов. Однако и здесь можно представить себе два центра зарядов.

Дипольным моментом ( , Кл×м) называют произведение заряда ( , Кл) на расстояние между зарядами ( , м):

Дипольный момент следует рассматривать как вектор, направленный от отрицательного заряда к положительному (в химии обычно принимают обратное направление). Если молекула состоит из множества атомов, то ее дипольный момент определяется как векторная сумма:

В обычных условиях дипольные моменты молекул в веществе ориентированы произвольно и компенсируют друг друга.

При помещении вещества в электрическое поле (создаваемое конденсатором или полярной молекулой, ионом и т.п.) полярные молекулы стремятся ориентироваться вдоль направления поля. Суммарный дипольный момент молекул в этом случае > 0, его называют ориентационным дипольным моментом.

При помещении как полярной, так и неполярной молекулы в электрическое поле происходит смещение зарядов друг относительно друга, что создает индуцированный (наведенный) дипольный момент . Его называют деформационным дипольным моментом.

Возникновение дипольного момента молекул вещества под действием электрического поля называется поляризацией соединения . Она является суммой деформационного и ориентационного дипольного момента молекул.

Деформационная поляризация молекулы пропорциональна напряженности поля ( , В/м). Возникающий в результате этого наведенный дипольный момент связан с величиной соотношением:

в котором коэффициент пропорциональности ( , м 3) называется деформационной поляризуемостью молекулы. Деформационная поляризуемость молекулы является суммой электронного и атомного вкладов:

обусловленных смещением из положений равновесия под действием внешнего электрического поля атомов и электронов. Чем более удалены внешние электроны молекулы (атома) от ядер, тем выше электронная поляризуемость. Смещение атомных ядер, тяжелых по сравнению с электронами, невелико и составляет примерно от 5 до 10 % от .


Ориентационная поляризация соединения – полярные молекулы в электрическом поле ориентируются вдоль силовых линий поля, стремясь в результате принять наиболее устойчивое положение, соответствующее минимуму потенциальной энергии. Это явление называется ориентационной поляризацией и эквивалентно увеличению поляризуемости на величину , называемой ориентационной поляризуемостью:

где k – постоянная Больцмана, Дж/К;

T – абсолютная температура, К.

Ориентационная поляризуемость обычно на порядок выше, чем деформационная поляризуемость. Из уравнения (43) следует, что уменьшается с ростом температуры, так как тепловое движение препятствует ориентации молекул.

Полная поляризуемость молекулы является суммой трех величин:

. (44)

Поляризуемость имеет размерность объема и выражается в м 3 .

Полная поляризация вещества (мольная поляризация , м 3 /моль) связана с относительной диэлектрической проницаемостью вещества уравнением Дебая:

, (45)

где – молярная масса вещества, г/моль;

– его плотность, г/м 3 ;

– относительная диэлектрическая постоянная среды.

Полная поляризация наблюдается только в статическом поле и в поле низкой частоты. В поле высокой частоты диполи не успевают ориентироваться. Поэтому, например, в поле инфракрасного излучения возникает электронная и атомная поляризация, а в поле видимого излучения – только электронная поляризация, так как благодаря высокой частоте колебаний поля смещаются только наиболее легкие частицы – электроны. Для неполярных веществ ориентационная поляризация равна нулю.

Рефракция

Электромагнитная теория Максвелла для прозрачных неполярных веществ приводит к соотношению:

где – показатель преломления (для полярных веществ ). Подставив в уравнение (45) уравнение (46) и полагая, что , получаем:

. (47)

Величина называется молекулярной рефракцией вещества.

Из уравнения (47) следует, что величина R , определяемая через показатель преломления вещества, служит мерой электронной поляризуемости его молекул. Вообще говоря, показатель преломления n зависит от длины волны излучения и равенство строго справедливо для l = ¥. Экстраполяция n к n ¥ проводится обычно по формуле Коши:

n= n ¥ + b/l. (48)

Константы b и n ¥ определяют, измерив n при двух разных l, например l F и l C линий спектра водорода. В большинстве случаев определяют не R ¥ , а R D , измерив n D для желтой D линии натрия.

В физико-химических исследованиях пользуются также удельной рефракцией:

. (49)

Рефракция имеет размерность объема, отнесенного к определенной порции вещества:

удельная рефракция – (см 3 /г);

молекулярная – (см 3 /моль).

Весьма приближенно молекулу можно рассматривать как сферу эффективного радиуса r M с проводящей поверхностью. В этом случае:

Тогда из уравнений (47, 50) получим:

Таким образом, молекулярная рефракция равна собственному объему N A молекул вещества.

Для неполярных веществ , для полярных веществ R меньше на значение ориентационной поляризации.

Как следует из уравнения (47), молекулярная рефракция определяется только поляризуемостью и поэтому не зависит от температуры и агрегатного состояния вещества. Таким образом, рефракция является характеристической константой вещества.

В электрическом поле ион или молекула деформируются, т.е. в них происходит относительное смещение ядер и электронов. Такая деформируемость ионов и молекул называется поляризуемостью . Поскольку наименее прочно в атоме связаны электроны внешнего слоя, то они испытывают смещение в первую очередь.

Поляризуемость анионов, как правило, значительно выше поляризуемости катионов.

При одинаковой структуре электронных оболочек поляризуемость иона уменьшается по мере увеличения положительного заряда, например, в ряду:

Для ионов электронных аналогов поляризуемость увеличивается с ростом числа электронных слоев, например: или
.

Поляризуемость молекул определяется поляризуемостью входящих в них атомов, геометрической конфигурацией, количеством и кратностью связей и др. Вывод об относительной поляризуемости возможен лишь для аналогично построенных молекул, различающихся одним атомом. В этом случае о различии в поляризуемости молекул можно судить по различию в поляризуемости атомов.

Электрическое поле может быть создано как заряженным электродом, так и ионом. Таким образом, ион сам может оказывать поляризующее действие (поляризацию) на другие ионы или молекулы. Поляризующее действие иона возрастает с увеличением его заряда и уменьшением радиуса.

Поляризующее действие анионов, как правило, значительно меньше, чем поляризующее действие катионов. Это объясняется большими размерами анионов по сравнению с катионами.

Молекулы обладают поляризующим действием в том случае, если они полярны; поляризующее действие тем выше, чем больше дипольный момент молекулы.

Поляризующая способность увеличивается в ряду ,т.к. радиусы увеличиваются и электрическое поле, создаваемое ионом, уменьшается.

Водородная связь

Водородная связь является особым видом химической связи. Известно, что соединения водорода с сильно электроотрицательными неметаллами, такими как F, О, N, имеют аномально высокие температуры кипения. Если в ряду Н 2 Тe – H 2 Se – H 2 S температура кипения закономерно уменьшается, то при переходе от H 2 S к Н 2 О наблюдается резкий скачок к увеличению этой температуры. Такая же картина наблюдается и в ряду галогенводородных кислот. Это свидетельствует о наличии специфического взаимодействия между молекулами Н 2 О, молекулами HF. Такое взаимодействие должно затруднять отрыв молекул друг от друга, т.е. уменьшать их летучесть, а, следовательно, повышать температуру кипения соответствующих веществ. Вследствие большой разницы в ЭО химические связи H–F, H–O, H–N сильно поляризованы. Поэтому атом водорода имеет положительный эффективный заряд (δ +), а на атомах F, O и N находится избыток электронной плотности, и они заряжены отрицательно ( -). Вследствие кулоновского притяжения происходит взаимодействие положительно заряженного атома водорода одной молекулы с электроотрицательным атомом другой молекулы. Благодаря этому молекулы притягиваются друг к другу (жирными точками обозначены водородные связи).

Водородной называется такая связь, которая образуется посредством атома водорода, входящего в состав одной из двух связанных частиц (молекул или ионов). Энергия водородной связи (21–29 кДж/моль или 5–7 ккал/моль) приблизительно в 10 раз меньше энергии обычной химической связи. И тем не менее, водородная связь обусловливает существование в парах димерных молекул (Н 2 О) 2 , (HF) 2 и муравьиной кислоты.

В ряду сочетаний атомов НF, HO, HN, HCl, HS энергия водородной связи падает. Она также уменьшается с повышением температуры, поэтому вещества в парообразном состоянии проявляют водородную связь лишь в незначительной степени; она характерна для веществ в жидком и твердом состояниях. Такие вещества как вода, лед, жидкий аммиак, органические кислоты, спирты и фенолы, ассоциированы в димеры, тримеры и полимеры. В жидком состоянии наиболее устойчивы димеры.

Существуют две причины поляризации вещества под действием электрического поля. Первая состоит в смещении центра тяжести электронной оболочки (собственно поляризуемость). Вторая заключается в ориентирующем действии поля, которое может повернуть молекулы, обладающие постоянным (как иногда говорят, жестким) дипольным моментом, ближе к направлению поля. Принято поэтому разбиение поляризуемости на две части: а - собственно поляризуемость и ориентационная поляризуемость.

Ориентирование диполя требует поворота молекулы как целого. Вследствие инерции молекулы этот поворот требует некоторого времени. При быстрых электромагнитных колебаниях жесткий диполь не может следовать за полем. Поэтому для световых волн ориентационная поляризуемость отсутствует.

Измеряя показатель преломления, мы получаем возможность найти поляризуемость молекулы а. Если, кроме того, измерено и то вычитание даст значение ориентационной поляризуемости

Величина ориентационной поляризуемости непосредственно связана с жестким дипольным моментом молекулы. Покажем, что

Молекулы газа разбросаны в пространстве с произвольными ориентировками из-за теплового хаотического движения. В отсутствие поля дипольный момент молекулы с равной вероятностью имеет любую ориентацию. Если наложено поле то положение дел меняется. Потенциальная энергия диполя равна где потенциалы поля в местах концов диполя, т. е.

где - угол между векторами поля и дипольного момента. Минимальной энергией обладает диполь, установившийся вдоль поля, его энергия будет - Тепловое движение препятствует тому, чтобы все диполи заняли положение с минимумом энергии. Устанавливается некоторое компромиссное распределение: уравновешиваются стремления к максимальной энтропии и к минимуму энергии (ср. стр. 603). Закон Больцмана выражает этот компромисс. Вероятность того, что энергия молекулы лежит между пропорциональна В нашем случае поэтому Доля молекул, у которых направления дипольных моментов заключены между углами будет

Для обычных температур Даже для самых сильных полей порядка 105 В/см отношение будет порядка 0,01 (диполь-ные моменты суть величины порядка Поэтому можно ограничиться приближением и искомая доля молекул будет равна

Интеграл этого выражения по от до по смыслу понятия вероятности должен равняться единице, так как у любой молекулы направление лежит где-нибудь между Тогда, как легко проверить, и доля молекул, вектор поляризации которых лежит в интервале от до будет равна

Проекция дипольного момента на направление поля есть Если число молекул в единице объема, то доля, которая будет

внесена в вектор поляризации молекулами, наклоненными под углом к полю, будет равна

Вектор поляризации найдется интегрированием этого выражения от до . Получим:

и, следовательно, ориентационная поляризуемость выразится формулой

Связь молекулярной поляризации с температурой выражается формулой

Это заключение теории превосходно подтверждается опытом. Измеряя 9 в функции от 7, нетрудно из хода этой зависимости вычислить оба параметра, характеризующих электрические свойства молекулы: поляризуемость и «жесткий» дипольный момент

Таким образом, данные, полученные из рефракции (в отношении а), могут быть сопоставлены с измерениями поляризации

Опыты показывают, что в некоторых случаях взаимодействие диполей соседних частиц может привести к существенным изменениям диэлектрической проницаемости по сравнению с величиной для системы невзаимодействующих молекул. Такого рода наблюдения можно сделать, измеряя жидкости и газа, построенных из тех же молекул.

Взаимодействие частиц сказывается и на величине диэлектрической проницаемости кристаллов.

В кристаллических телах, как правило, электрическая поляризация происходит только за счет деформации электронной оболочки и сдвигов ионов. Ориентационная поляризация отсутствует: повороты молекул в кристалле большей частью невозможны.

Во многих ионных кристаллах квадрат показателя преломления значительно меньше величины диэлектрической проницаемости (например, у каменной соли соответственно 2,37 и 6,3, двуокиси титана 7,3 и 114, углекислого свинца 4,34 и 24 и т. д.). В таких кристаллах под действием статического поля деформируется не только электронная оболочка, но и ионы сдвигаются как целое. Напротив, установлено, что в молекулярных кристаллах диэлектрическая проницаемость не отличается от квадрата показателя преломления, что доказывает наличие поляризации исключительно за счет деформации электронной оболочки.

Так как ориентационная поляризация отсутствует, то у кристаллов имеет место слабая зависимость диэлектрической проницаемости от температуры.

Мы уже сказали вскользь, что при быстропеременном полеориентационная поляризация отсутствует и молекулярная поляризация становится равной рефракции. Важно знать, какие колебания поля следует считать быстрыми. Это определяется временем релаксации. Если время релаксации намного превышает период колебаний, то ориентационная поляризация отсутствует.

О времени релаксации было сказано на стр. 144. Если диэлектрик находится в постоянном поле, его диполи примут некоторое равновесное распределение по ориентациям, характерное для данной температуры. Если поле выключить, то произойдет дезориентация диполей. Однако она происходит не мгновенно, а порядок спадает по экспоненциальному закону. Быстроту этого спада и характеризует время релаксации время, за которое поляризация уменьшится в раз. Если много больше периода колебаний, то прежде чем ориентация диполей изменится, переменит свое направление внешнее поле. Действие столь быстрого поля вообще не скажется на поведении диполей. Если же каждое мгновенное состояние будет равновесным и поляризация будет послушно следовать за полем. Для большинства диэлектриков времена релаксации имеют порядок

Для определения строения молекул необходимо знать их основные электрические и оптические характеристики. Важнейшими характе-ристиками являются поляризуемость и дипольный момент. Дипольный момент молекулы является ее важной физической характеристикой, которая непосредственно связана с ее строением и определяет взаимо-действие полярных молекул, а также их ориентацию во внешнем электрическом поле, что в свою очередь обусловливает диэлектрические свойства вещества .

Наиболее важной составляющей энергии молекулы является электронная, которая является функцией межъядерного расстояния и по отношению к движению ядер играет роль потенциальной энергии и для двухатомной молекулы отражается потенциальной кривой (рис. 4.7).

Энергия связи может быть оценена по глубине потенциальной ямы (Д) на кривой потенциальной энергии Е(r) .

В молекуле воды атом кислорода имеет два неспаренных р-электрона, которые занимают две орбитали, расположенные под прямым углом (90 0) друг к другу. Атомы водорода имеют по одному s-электрону. Молекула воды образуется за счет перекрывания двух р-электронных орбиталей и двух s-орбиталей. Причем образованные две ковалентные связи должны составлять угол 90 0 (рис. 4.8) .

На самом деле угол между связями в молекулах:

Н 2 О – 104,5 0 , Н 2 S – 92 0 , H 2 Se – 91 0 .


Рис. 4.8. Схема образования химических связей в молекуле воды

Отклонение угла между связями от 90 0 можно объяснить полярностью связи О–Н , т.е. электронная пара, за счет которой образуется связь, оттянута к атому кислорода. В результате у атомов водорода появляется некоторый положительный заряд; отталкивание положительных зарядов приводит к увеличению угла между связями. Связь Н–S менее полярна, поэтому отклонение меньше. Такое объяснение строения молекул воды и сероводорода наглядное, но несколько упрощенное.

Полярность химической связи. Любая молекула представляет собой совокупность положительно заряженных ядер атомов и отрицательно заряженного электронного облака. Если распределение электронного облака в молекуле таково, что электрические центры положительных зарядов ядер и отрицательного заряда электронного облака смещены друг относительно друга, то молекула представляетсобой диполь и называется полярной.

Мерой полярности служит величина дипольного момента , которая равна произведению зарядаq на расстояние l между зарядами

величина векторная, обозначается стрелкой, направленной от центра отрицательного заряда к центру положительного.

Вывод : вследствие асимметрии электронной плотности в молекуле возникает дипольный момент . Асимметричность распре-деления электронной плотности обусловлена химической природой и строением молекулы , т.е. из каких атомов она образована, какой характер химических связей, какова длина, направленность связи; имеет ли место гибридизация орбиталей, наличие неподеленных электронных пар.

На рис. 4.9 изображено возникновение дипольного момента в двухатомной молекуле АВ:



Рис. 4.9. Дипольный момент двухатомной молекулы

Измерение дипольного момента может дать представление о сим-метрии равновесной конфигурации молекулы.

При расчете дипольных моментов молекул часто используют дипольные моменты отдельных связей.

Сложение двух векторов можно произвести графически по правилу параллелограмма

или аналитически по формуле (4.2), выражающей теорему косинусов:

, (4.2)

где j – угол между двумя полярными химическими связями;

1 и 2 – дипольные моменты.

Результат сложения векторов зависит от симметрии в расположении полярных связей в молекуле. При этом может произойти частичная и даже полная взаимная компенсация дипольных моментов отдельных связей. В симметрично построенных молекулах дипольный момент отсутствует, хотя отдельные связи полярные.

Например, молекулы СО 2 , СS 2 , CCl 4 .

Итак, молекулы и связи, имеющие несимметричное распределение электрических зарядов, называются полярными . Полярные молекулы обладают дипольным моментом, отличным от 0 ( ¹ 0) .

При расчете дипольных моментов сложных органических молекул по векторной схеме предпочтительно пользоваться не моментами отдельных связей , а так называемыми групповыми моментами , характеризующими значение и направление вектора дипольного момента молекулы, содержащей ту или иную группу атомов (заместитель) X, связанную с фенильным (С 6 Н 5) или метильным радикалом (СН 3).

Групповому дипольному моменту приписывают знак "плюс", если положительный полюс диполя молекулы С 6 Н 5 X (или СН 3 X) находится на заместителе X (электронодонорные заместители – СН 3 , CН 3 О, NH 2 и т.п.).

Наоборот, группы, являющиеся центрами отрицательного заряда, характеризуются отрицательным значением группового момента (электроноакцепторные заместители –Cl, Br, NO 2 и т.п.).

Расчет дипольного момента молекул, содержащих два заместителя X 1 и X 2 , проводится по формуле:

где: m 1, m 2 – групповые моменты заместителей;

q - угол между вектором группового момента заместителя и направлением связи последнего с соседним атомом углерода;

j - угол между направлениями связей заместителей С- X 1 и С- X 2 .

Поместим какое-либо вещество в электрическое поле, создаваемое конденсатором, полярной молекулой, ионом. При этом происходит смещение отрицательного и положительного зарядов молекулы относи-тельно их центров тяжести в отсутствие поля. Изменения, которые атомы, молекулы, ионы претерпевают под действием электрического поля, называются поляризацией (П).

Различают:

электронную поляризацию – П эл;

атомную поляризацию – П ат;

ориентационную поляризацию – П ор.

Причем, полная поляризация П находится как сумма всех видов поляризации.

П = П эл + П ат + П ор (4.3)

В отсутствие электрического поля центры положительного и отрицательного зарядов совпадают и дипольный момент = 0 (см. рис. 4)



Рис. 4.10. Влияние постоянного электрического поля на поведение

неполярных молекул

Под действием электрического поля заряды смещаются друг отно-сительно друга на расстояние l , т.е. происходит поляризация.

В частице возникает индуцированный (или наведенный) дипольныймомент

Инд = q × , (4.4)

который зависит от напряженности действующего электрического поля Е .

Эту зависимость можно выразить в виде ряда разложения по степеням:

Инд = aE + bE 2 + + . . .

При небольших Е , что имеет место для электрических полей, cоздаваемых полярными молекулами или ионами, можно ограничиться первым слагаемым, т.е.

Инд = aE (4.5)

Коэффициент пропорциональности a называется поляризуемос-тью. Он характеризует количественную способность молекул к поляри-зации и показывает, какой дипольный момент создается при напряжен-ности поля Е = 1В.

Чем больше a, тем легче поляризуется молекула.

Поляризуемость имеет размерность объема в системе СГС

; [a] = см 3 или м 3

Величина поляризуемости молекул имеет порядок 1А 3 (1А 3 = 10 -30 м 3 = 10 -24 см 3) и характеризует объем электронного облака , т.е. поляризуемость примерно равна по величине объему молекулы . В этом заключается физический смысл поляризуемости . Однако в системе СИ эта наглядность для a теряется, т.к. в системе СИ размерность

[a] =

Поляризуемость, связанная с деформацией частицы, называется деформационной. Она характеризует смещение электронного облака и ядер относительно исходных положений.

Деформационная поляризуемость складывается из электронной и атомной составляющих:

a деф = a эл + a ат (4.6)

Ядра менее подвижны, чем электроны. Поэтому атомной поляризуемос-тью часто пренебрегают, т.е. a деф » a эл.

Для молекул деформационная поляризуемость может быть раз-личной в различных направлениях, т.е. проявляется свойство анизотро-пии поляризуемости. Причем наибольшее значение поляризуемости наблюдается в направлении химических связей.

Поскольку в неполярных молекулах под действием электричес-кого поля происходит смещение электронного облака и ядер, то полная поляризация будет складываться из поляризации электронной и атомной, т.е. представляет собой деформационную поляризацию П деф .

П = П деф = П эл + П ат (4.7)

Поляризация, отнесенная к одному моль вещества, называется молярной поляризацией . Статистические расчеты показывают, что деформационная поляризация вещества

П деф = 4/3 p N А a деф, (4.8)

где N А – число Авогадро (6,02×10 23).

Как видно из этой формулы, молярная поляризация равна собственному объему одного моль вещества. Размерность: [П] = м 3 /моль.

К группе полярных молекул относятся такие, как H 2 O, NH 3 , спирты, кетоны, органические кислоты, галогенпроизводные, ароматические соединения и т.д.

Молекула состоит из нейтральных, положительно и отрицательно заряженных частиц. Различают два рода молекул – с симметричным распределением заряда (Н 2 , CH 4 , C 6 H 6 и др.) и несимметричным (HX, CH 3 X, С 6 H 5 X; X – галоген). Это - неполярные и полярные молекулы. Полярную молекулу называются также дипольной или диполем.

Полярные молекулы обладают некоторым постоянным дипольным моментом 0 . В электрическом поле они также будут испытывать деформационную поляризацию, что приведет к увеличению их дипольного момента, т.е. в электрическом поле дипольный момент полярной молекулы будет складываться из двух составляющих: собственного дипольного момента 0 и наведенного (индуцированного) инд

0 + инд (4.9)

В отсутствие внешнего поля (Е = 0) дипольные моменты полярных молекул направлены хаотично вследствие теплового движения молекул.

Полярные молекулы ориентируются друг относительно друга в результате электростатического притяжения разноименных зарядов.

Тепловое движение будет препятствовать ориентации полярных молекул вдоль линий напряженности поля. Поэтому с увеличением температуры ориентационная поляризация уменьшается.

При возникновении наведенного дипольного момента происходит деформационная поляризация П деф . Таким образом, полярные молекулы в постоянном электрическом поле подвергаются как ориентационной, так и деформационной поляризации.

В этом случае полная молярная поляризация

П = П ор + П деф = П ор + П эл + П ат (4.10)

Для полярныхмолекул Дебаем было выведено следующее соотношение П = , (4.11)

где 0 – собственный дипольный момент полярной молекулы;

к – постоянная Больцмана, равная 1,38×10 -23 Дж/К;

Т – абсолютная температура системы в градусах Кельвина;

a – деформационная поляризуемость молекул.

Для неполярных молекул уже записывали уравнение

П = 4/3 pN А a.

Сравнивая формулы (4.8), (4.10), получаем

П деф = 4/3 pN А a

П ор = 4/3 pN А (4.12)

Выражение (4.12) называется уравнением Дебая .

Необходимо отметить, что выражения для ориентационной и деформационной поляризации справедливы только в том случае, если диполи между собой не взаимодействуют. Это возможно, когда расстояние между молекулами велико, т.е. в газах или в разбавленных растворах полярных веществ в неполярных растворителях.

Для определения строения молекул необходимо знать их основные электрические и оптические характеристики. Такими электрическими характеристиками являются поляризуемость a и дипольный момент m . Исследование этих характеристик молекул дает ценную информацию о распределении электронной плотности и подвижности электронов.

Поляризуемость a и дипольный момент m молекул можно легко рассчитать на основании данных по диэлектрической проницаемости e и показателю преломления n вещества, которые связаны с поляризацией вещества.

Диэлектрическая проницаемость e отражает электрические свойст-ва молекул жидкости и равна отношению емкостей конденсаторов:

где С 0 – емкость воздушного конденсатора;

С – емкость конденсатора, заполненного исследуемым веществом.

Эта величинапоказывает, во сколько раз уменьшается напряжен-ность электрического поля Е вследствие поляризации вещества по сравнению с вакуумом (Е 0).

Оптические свойства молекулы определяются величиной пока-зателя преломления.

Показатель преломления зависит от длины волны падающего излу-чения и температуры. Между показателем преломления и диэлектричес-кой проницаемостью вещества существует зависимость, обнаруженная Максвеллом:

Чем больше поляризация, тем больше e . Диэлектрическую проницае-мость вакуума можно принять за единицу (e 0 = 1).

Из закона Кулона F = следует, что сила взаимодействия между зарядами в какой - либо среде в e раз уменьшается по сравнению с вакуумом. Это уменьшение вызвано поляризацией внутри вещества, т.е. e должно быть связано с поляризуемостью a и поляризацией П .

Такая зависимость между этими величинами была установлена Клаузиусом и Моссоти для неполярного диэлектрика.

, (4.13)

где N А – число Авогадро;

M – молярная масса вещества;

– плотность вещества.

Измерив r и e , можно рассчитать деформационную поляризацию неполярных молекул. Зная r и e при разных температурах, можно установить, зависит ли поляризация от температуры.

Для веществ, состоящих из полярных молекул, было выведено уравнение Дебая – Ланжевена (1912 г.), которое учитывает собственный дипольный момент 0 молекулы. Уравнение Дебая – Ланжевена было получено для полярных газов.