Последние достижения биотехнологии. Биоинженерия

Дисциплина, изучающая способы использования организмов для решения технологических задач, - вот что такое биотехнология. А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей. Например, генная инженерия или клонирование - это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов - вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик - пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия - это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины - биомедицинская инженерия. Главная ее специализация - решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК. Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения. При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем. Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств. Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии - это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида - биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток. С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов. Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками. После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами. То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста. Но это были лишь начальные эксперименты. В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке. Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса. К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия - это продукты, полученные при помощи пищевой биотехнологии. Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания. Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий. И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии. Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок. А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование. То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора». Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность. Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями. Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей. Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно. Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

- 20.37 Кб

Современные достижения биотехнологий

Выполнил:

Проверил:

2011г.

Биотехнология – это область человеческой деятельности, которая характеризуется широким использованием биологических систем всех уровней в самых разнообразных отраслях науки, промышленного производства, медицины, сельского хозяйства и других сферах.

Революционизирующим этапом в развитии биотехнологии стало использование генных и клеточных биотехнологий, которые бурно развивались в последние десятилетия и уже существенно повлияли на разные аспекты жизни человека: здоровье, медицину, питание, демографию, экологию.

Первыми продуктами генных биотехнологий стали биологически активные белки, широко используемые сегодня в медицине в качестве лекарственных средств. Раньше с помощью традиционной биотехнологии различные биологические соединения получали путём переработки больших количеств микробного, животного или растительного материала, используя природную способность организмов синтезировать эти соединения. Так, для лечения диабета ранее использовали инсулин, который выделяли из поджелудочных желез свиней. Такой инсулин был дорогим и, кроме того, малоэффективным. Ситуация сильно изменилась с момента получения в 1982 году в США первого генно- инженерного инсулина человека, синтезируемого клетками кишечной палочки.

В настоящее время в практической медицине используются многие биофармацевтические препараты, полученные с помощью генно-клеточной биотехнологии. Наряду с инсулином уже производят разные интерфероны, интерлейкины, лекарства от гемофилии, противораковые и обезболивающие средства, незаменимые аминокислоты, гормон роста, моноклональные антитела и многое другое. И этот список ежегодно пополняется десятками наименований. В лабораториях и клиниках всего мира постоянно идет интенсивный поиск и испытание новых препаратов, в том числе от таких опаснейших болезней, как сердечные заболевания, различные формы рака, СПИД и разнообразные вирусные инфекции. По оценкам специалистов, сегодня с помощью генных биотехнологий выпускается около 25% всех лекарственных средств в мире.

Важным этапом развития современной генно-клеточной биотехнологии стало разработка методов получения трансгенных животных и растений (их также называют генетически модифицированными организмами, сокращенно ГМО). Трансгенный организм – это организм во всех отношениях подобный нетрансгенному, обычному, но содержащий во всех клетках среди десятков тысяч своих собственных генов 1 (редко 2) дополнительный ген (его называют трансген), несвойственный ему в природе.

Технология создания трансгенных растений привела к революции в области растениеводства. Она позволила получать растения, устойчивые к ряду высоко патогенных вирусов, грибковым и бактериальным инфекциям, насекомым-вредителям, созданию растений с высоким содержанием витамина А, устойчивых к холоду, засоленности почв, засухе, растений с улучшенным содержанием и составом белков и т.д. Так, вмешиваясь в генетические программы растений, можно придавать им функции устойчивости к различным неблагоприятным стрессовым факторам окружающей среды. Использование ГМО существенно повысило эффективность сельского хозяйства, и потому эта технология оказалась востребованной рынком, где другие возможности повышения продуктивности (удобрения, ядохимикаты и т. п.) во многом уже исчерпали себя.

В 1994 г. после тщательных всесторонних полевых испытаний в США была разрешена коммерческая продажа первого трансгенного пищевого растения – помидора с уникальным свойством: он может месяцами лежать в недоспелом виде при температуре 12 °С, но как только попадет в тепло, он дозревает буквально за несколько часов. С тех пор на рынок было выпущено много других трансгенных растений; уже удалось получить множество различных форм сои, картофеля, томатов, табака, рапса, устойчивых к разнообразным сельскохозяйственным вредителям. Например, получен трансгенный картофель недоступный для пожирания колорадским жуком. В этом картофеле происходит синтез одного из белков почвенных бактерий, который токсичен для жука, но совершенно безвреден для человека. Имеются трансгенные растения, способные самостоятельно, без помощи микроорганизмов, фиксировать азот, соддан «золотой» рис с повышенным содержанием витамина А и др.

В мире уже существуют стада трансгенных коз и коров, у которых в молочной железе синтезируются полезные с медицинской точки зрения вещества, которые потом выделяются с молоком этих животных. Сегодня лекарством служит молоко трансгенных животных, которое содержит такие белки, как инсулин, гормон роста человека, антитромбин, интерферон. В России, например, генными технологами создана порода овец, вырабатывающих вместе с молоком и фермент, необходимый в производстве сыра; российские ученые совместно с коллегами из Бразилии успешно работают над созданием трансгенных коз, молоко которых будет содержать фармацевтический продукт под названием гранулоцит- колониестимулирующий фактор, необходимый для лечения различных заболеваний крови, потребности в котором в мире огромны.

Во многих научных центрах ведутся работы по созданию трансгенных животных, используемых в качестве моделей разнообразных наследственных заболеваний человека. Уже получены трансгенные лабораторные животные с повышенной частотой возникновения опухолей, выведены линии животных, в организме которых воспроизводятся такие заболевания человека, как серповидно-клеточная анемия, диабет, нейрологические заболевания, артрит, желтуха, сердечно-сосудистые и ряд наследственных болезней. Такие животные-модели позволяют глубже понять природу различных патологий человека и осуществить на их основе поиск эффективных лекарственных средств.

Технология трансгеноза в перспективе может быть применена также для создания трансгенных животных, которые могут быть использованы в качестве источников органов и тканей для трансплантологии (у них, в частности, инактивированы антигены, ответственные за тканесовместимость). Уже начаты исследования в этой области на свиньях, которые рассматриваются в качестве возможных кандидатов для трансплантации их органов человеку. Трансгенные растения также планируются использовать в медицинских целях. Например, на их основе разрабатываются вакцины, которые получили название «съедобных». Для этого в растение вводят тот или иной вирусный ген, который обеспечивает синтез соответствующего белка, обладающего свойством антигена. Употребление этого растения в пищу позволяет человеку постепенно приобретать иммунитет к тому или иному вирусу. Другой пример: в Японии создан сорт риса, который позволит больным сахарным диабетом обходиться без лекарств, так как его употребление стимулирует синтез поджелудочной железой собственного инсулина.

Вероятно, именно заметные успехи в области создания ГМО послужили толчком для возникновения в 1990 году еще одного важного направления генно- клеточной биотехнологии – генной терапии. С помощью генной терапии в клетки, которые страдают от нарушения работы гена, можно доставить «хороший» ген, способный компенсировать работу «плохого». Правда, иногда болезнь вызывается избыточной работой отдельных генов, несвойственных нормальной клетке (например, при вирусной инфекции). В таких случаях следует наоборот подавить работу «вредного» гена. Один из наиболее перспективных подходов к этому – РНК-интерференция – процесс подавления работы гена с помощью фрагментов молекул РНК, механизм которого раскрыт А. Файром и К. Мелло (и снова Нобелевская премия по физиологии и медицине за 2006 год). Все это и пытаются делать сегодня с помощью генной терапии. Мишенью для генной терапии могут быть как клетки тела (соматические клетки), так и зародышевые клетки (яйцеклетки, сперма). В случае наследственных заболеваний более подходящими для генной терапии могли бы стать зародышевые клетки, исправление которых должно сохраняться и у потомства. Однако в практическом плане сейчас больший интерес представляет соматическая терапия, а генная терапия зародышевых клеток - это проблема отдаленного будущего, хотя в действительности наследственные болезни можно было бы вылечить раз и навсегда, воздействуя именно на половые клетки или клетки эмбрионов на ранних стадиях развития. Введенный ген, попадая в результате искусственного переноса во множество интенсивно делящихся клеток эмбриона, способен предотвратить развитие заболевания. Но этот вид генной терапии связан с целым рядом проблем как технических, так и, главным образом, этических. В частности, высказываются опасения, что такой подход можно будет использовать для производства нового поколения «детей на заказ».

Реальностью в настоящее время представляется только генная терапия, направленная на соматические клетки взрослого организма. Из общего числа известных заболеваний человека около 30-40% составляют так называемые генетические или наследственные болезни. Многие из этих патологий связаны с нарушением работы одного единственного гена. Генная терапия применима в первую очередь к таким заболеваниям, поскольку в этих случаях процесс лечения существенно облегчается. В настоящее время, используя информацию о структуре генома человека и его отдельных генов, ученые осуществляют широкомасштабный поиск средств лечения многих традиционно считавшихся фатальными для человека наследственных и приобретенных болезней, для которых известен «плохой» ген и/или его продукт. В первую очередь это такие заболевания как гемофилия, муковисцидоз, дефицит аденозиндезаминазы, миодистрофия Дюшенна, болезнь Паркинсона, болезнь Альцгеймера, различные кардио-васкулярные патологии и др. Так, в США и Великобритании были проведены испытания на пациентах с дефектом гена, который кодирует белок, необходимый для нормальной работы сетчатки. В ходе операций этим пациентам вводили «здоровые» копии поврежденного гена в заднюю часть одного глаза. Через полгода пациенты, которые до генной терапии могли различать лишь движения рук, стали способны видеть все линии на таблице проверки зрения. Имеются определенные успехи и при использовании генной терапии для лечения ряда ненаследственных патологий (отдельные формы рака, ишемия) и инфекционных заболеваний (СПИД, гепатит). В настоящее время в разных странах мира уже одобрено свыше 600 протоколов клинических испытаний с использование генной и генно-клеточной терапии.

Технология генной терапии претерпела за прошедшие годы значительные изменения. На первых этапах для перенесения генов в организм полагались в основном на природную способность вирусов, несущих терапевтический ген, проникать и размножаться в клетках. Сейчас пришла пора принять в этом участие нанобиотехнологии. Уже начаты разработки подходов к направленному переносу генов в определенные виды клеток с помощью наночастиц, содержащих на своей поверхности антитела к специфическим антигенам этих клеток. Такие «нагруженные» генами и антителами наночастицы целенаправленно движутся в организме к пораженным местам и оказывают целевой терапевтический эффект. Однако при всех положительных результатах, полученных с помощью генной терапии, она пока остается малоэффективной. Остаются нерешенными такие ключевые проблемы, как целевая доставка генов, длительное и эффективное их функционирование в пораженных тканях. Будущее генной терапии во многом зависит от решения этих проблем.

Успеху генных биотехнологий в значительной мере способствовало параллельное развитие с ними клеточных биотехнологий. Одним из важных достижений стало получение и культивирование стволовых клеток. В конце 70-х прошлого века были получены убедительные данные о возможности применения трансплантации стволовых клеток костного мозга при лечении острых лейкозов. С этого времени началась новая эра в медицине. Сначала из эмбрионов мышей, а потом из эмбрионов человека были получены так называемые эмбриональные стволовые клетки. Последнее событие было признано одним из трех наиболее значимых достижений в биологии за XX век (наряду с открытием двойной спирали ДНК и полной расшифровкой генома человека).

Существенный прогресс в современной биотехнология произошел в связи с разработкой технологии репродуктивного клонирования животных организмов, т.е. получения искусственным путем идентичных копий таких организмов. Около 10 лет назад был поднят неимоверный шум вокруг рождения овцы Долли, о которой теперь знают все.

Вопрос 1. Что такое биотехнология?

Биотехнология — это использование ор-ганизмов, биологических систем или биологи-ческих процессов в промышленном производ-стве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных расте-ний и животных, использование микроорга-низмов в хлебопечении, виноделии, производ-стве лекарств и др.

Вопрос 2. Какие проблемы решает генная ин-женерия? С какими трудностями связаны исследования в этой области?

Методы генной инженерии позволяют ввес-ти в генотип одних организмов (например,бактерий) гены других организмов (напри-мер, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона рос-та. Путем создания генетически модифициро-ванных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для ген-ной инженерии является наблюдение и конт-роль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужерод-ных генов. Существует также опасность само-произвольного переноса (миграции) чужерод-ных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ра-ди собственного блага?

Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?

Существует несколько причин повышения интереса к селекции микроорганизмов:

  • легкость селекции (по сравнению с рас-тениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
  • огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витами нов до выделения из руд редких химических элементов);
  • простота генно-инженерных манипу-ляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает рабо-тать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.

В результате на сегодняшний день сущест-вует огромное число примеров использования новых штаммов бактерий на практике: произ-водство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.

Вопрос 4. Приведите примеры промышленно-го получения и использования продуктов жизнеде-ятельности микроорганизмов.

С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спир-та; дрожжи используют в хлебопечении и ви-ноделии.

С 1982 г. в промышленных масштабах по-лучают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бак-терии. В настоящее время налажен синтез трансгенного гормона роста, который исполь-зуется для лечения карликовости у детей.

Микроорганизмы участвуют также в биотех-нологических процессах по очистке сточных мод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.

Вопрос 5. Какие организмы называют транс-генными?

Трансгенными (генетически модифициро-ванными) называют организмы, содержащие искусственные дополнения в геноме. Приме-ром (помимо упомянутой выше кишечной па-лочки) могут служить растения, в ДНК кото-рых встроен фрагмент бактериальной хро-мосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В резуль-тате получены сорта кукурузы, риса, картофе-ля, устойчивые к вредителям и не требующие использования пестицидов. Интересен при-мер лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быст-рее, и вес рыб оказался гораздо больше нормы.

Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?

Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции. Материал с сайта

Клонирование дает возможность работать с отдельными клетками или небольшими заро-дышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии не-дифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.

При необходимости можно использовать и клонирование растений. В этом случае селек-ция происходит в клеточной культуре (на ис-кусственно культивируемых изолированных клетках). И лишь затем из клеток, обладаю-щих необходимыми свойствами, выращивают полноценные растения.

Наиболее известный пример клонирова-ния — пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • презентация на тему биотехнология достижения и перспективы развития
  • биотехнологии клонирование с видео
  • как вы думаете почему селекция микроорганизмов приобретает в настоящее время
  • в чем приимущество клонирования по сравнению с традиционными методами селекции?
  • почему селекция микроорганизмов приобретает в наше время

Знаете ли вы, что такое биотехнология? Наверняка вы кое-что о ней слышали. Это важный раздел современной биологии. Она стала, как и физика, одним из основных приоритетов в мировой экономике и науке в конце 20 века. Еще полвека назад никто не знал, что такое биотехнология. Однако основы ее заложил ученый, живший еще в 19 веке. Биотехнология получила мощный толчок к развитию благодаря работам исследователя из Франции Луи Пастера (годы жизни - 1822-1895). Он является основоположником современной иммунологии и микробиологии.

В 20 веке бурно развивалась генетика и молекулярная биология с использованием достижений физики и химии. В это время важнейшим направлением была разработка методов, с помощью которых можно было бы культивировать клетки животных и растений.

Всплеск исследований

В 1980 годах произошел всплеск исследований в области биотехнологии. К этому времени были созданы новые методические и методологические подходы, которые обеспечили переход к применению биотехнологий в науке и практике. Появилась возможность извлечь из этого большой Согласно прогнозам, биотехнологические товары должны были составить уже в начале нового века четверть мировой продукции.

Работа, осуществленная в нашей стране

Активное развитие биотехнологии происходило в это время и в нашей стране. В России также было достигнуто значительно расширение работ в этой области и внедрение в производство их результатов в 1980 годы. В нашей стране в этот период была разработана и осуществлялась первая программа по биотехнологии общенационального масштаба. Были созданы специальные межведомственные центры, подготовлены специалисты-биотехнологи, основаны кафедры и сформированы лаборатории в вузах и научно-исследовательских учреждениях.

Биотехнология сегодня

Сегодня мы настолько привыкли к этому слову, что мало кто задает себе вопрос: "Что такое биотехнология?" А между тем познакомиться с ней подробнее было бы совсем не лишним. Современные процессы в этой области основаны на методах использования рекомбинантных ДНК и клеточных органелл или клеток. Современная биотехнология является наукой о клеточных и генноинженерных технологиях и методах создания и применения трансформированных генетически биологических объектов с целью интенсификации производства либо создания новых видов продуктов. Выделяются три основные направления, о которых мы сейчас расскажем.

Промышленная биотехнология

В этом направлении можно выделить как разновидность красную Она считается самой важной сферой применения биотехнологий. Все большую роль они играют при разработке медикаментов (в частности, для лечения рака). Большое значение биотехнологии имеют также в диагностике. Они применяются, например, при создании биосенсоров, чипов ДНК. В Австрии красная биотехнология сегодня пользуется заслуженным признанием. Она даже считается двигателем развития остальных отраслей.

Переходим к следующей разновидности промышленной биотехнологии. Это биотехнология зеленая. Она используется, когда осуществляется селекция. Биотехнология эта предоставляет сегодня особые методы, с помощью которых разрабатываются средства противодействия против гербицидов, вирусов, грибков, насекомых. Все это также очень важно, согласитесь.

Для области зеленой биотехнологии особое значение имеет генная инженерия. С помощью нее создаются предпосылки для переноса генов одного вида растений на другие, и таким образом ученые могут влиять на развитие устойчивых характеристик и свойств.

Серая биотехнология используется для охраны окружающей среды. Ее методы применяются для очистки канализационных стоков, санации почв, очистки газов и отработанного воздуха, для переработки отходов.

Но и это еще не все. Существует и белая биотехнология, которая охватывает сферу использования в химической промышленности. Биотехнологические методы в данном случае применяются для безопасного с экологической точки зрения и эффективного производства ферментов, антибиотиков, аминокислот, витаминов, а также алкоголя.

И наконец, последняя разновидность. Синяя биотехнология основана на техническом применении различных организмов, а также процессов морской биологии. В этом случае в центре исследований - биологические организмы, населяющие Мировой океан.

Переходим к следующему направлению - клеточной инженерии.

Клеточная инженерия

Она занимается получением гибридов, клонированием, изучением клеточных механизмов, "гибридными" клетками, составлением генетических карт. Начало ее относят к 1960 годам, когда появился метод гибридизации Уже были усовершенствованы к этому времени способы культивирования, возникли и способы выращивания тканей. Соматическую гибридизацию, при которой гибриды создаются без участия полового процесса, сегодня проводят, культивируя различные клетки линий одного вида или используя клетки разных видов.

Гибридомы и их значение

Гибридомы, то есть гибриды между лимфоцитами (обычными клетками иммунной системы) и опухолевыми, обладают свойствами клеточных линий родителей. Они способны, подобно раковым, делиться неограниченно долго на питательных искусственных средах (то есть являются "бессмертными"), а также могут, подобно лимфоцитам, вырабатывать однородные обладающие определенной специфичностью. Эти антитела используются в диагностических и лечебных целях, как чувствительные реагенты на органические вещества и др.

Еще одним направлением клеточной инженерии являются манипуляции с клетками, не имеющими ядер, со свободными ядрами, а также с иными фрагментами. Эти манипуляции сводятся к комбинированию частей клетки. Подобные эксперименты вместе с микроинъекциями красителей или хромосом в клетку проводят, чтобы выяснить, как цитоплазма и ядро влияют друг на друга, какие факторы регулируют активность тех или иных генов и проч.

С помощью соединения на ранних стадиях развития клеток различных зародышей выращивают так называемых мозаичных животных. Иначе их именуют химерами. Они состоят из 2-х видов клеток, различающихся генотипами. Путем данных экспериментов выясняют, как в ходе развития организма происходит дифференцировка тканей и клеток.

Клонирование

Современные биотехнологии немыслимы без клонирования. Опыты, связанные с пересадкой ядер различных соматических клеток в энуклеированные (то есть лишенные ядра) яйцеклетки животных с дальнейшим выращиванием во взрослый организм получившегося зародыша ведутся уже не одно десятилетие. Однако они получили очень широкую известность с конца 20 века. Сегодня мы называем такие опыты клонированием животных.

Мало кому не знакома сегодня овечка Долли. В 1996 году около Эдинбурга (Шотландия) в Рослинском институте было осуществлено первое клонирование млекопитающего, которое осуществилось из клетки взрослого организма. Именно овечка Долли стала первым таким клоном.

Генная инженерия

Появившись в начале 1970 годов, сегодня добилась значительных успехов. Ее методы преобразуют клетки млекопитающих, дрожжей, бактерий в настоящие "фабрики" для производства любого белка. Такое достижение науки предоставляет возможность детально изучить функции и структуру белков для того, чтобы использовать их как лекарственные средства.

Основы биотехнологии сегодня широко применяются. Кишечная палочка, например, стала в наше время поставщиком важных гормонов соматотропина и инсулина. Прикладная генная инженерия ставит перед собой цель конструирования рекомбинантных молекул ДНК. При внедрении в определенный генетический аппарат они могут придавать организму полезные для человека свойства. К примеру, можно получать "биологические реакторы", то есть животные, растения и микроорганизмы, которые продуцировали бы вещества, фармакологически важные для человека. Достижения биотехнологии привели к возможности выведения пород животных и сортов растений с признаками, ценными для людей. С помощью методов генной инженерии можно осуществлять генетическую паспортизацию, создавать ДНК-вакцины, диагностировать различные генетические заболевания и др.

Заключение

Итак, мы ответили на вопрос: "Что такое биотехнология?" Конечно, в статье приведены лишь основные сведения о ней, кратко перечислены направления. Эта ознакомительная информация дает общее представление о том, какие существуют современные биотехнологии и как они используются.

Биотехноло́гия - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX-XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах - химической и информационной технологиях и робототехнике.

История биотехнологии.

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона. Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895). Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов – более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.
В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения – это “старая” биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, – “новая” биотехнология.

Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик - пенициллин - удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование – это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Достижения биотехнологии.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека - сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В 3 , В 13 , и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Список литературы.

1) Н.А. Лемеза, Л.В.Камлюк Н.Д. Лисов “Пособие по биологии для поступающих в ВУЗы”