Построить ход лучей в треугольной стеклянной призме. Ход лучей через призму

Геометрическая оптика

Геометрической оптикой называется раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.

Световой луч - это не пучок света,а линия указывающая направление распространения света.

Основные законы:

1. Закон о прямолинейном распространении света.

Свет в однородной среде распространяется прямолинейно. Прямолинейностью распространения света объясняется образование тени,то есть место, куда не проникает световая энергия. От источников малых размеров образуется резко очерченная тень,а больших размеров создают тени и полутени, в зависимости от величины источника и расстояния между телом и источником.

2. Закон отражения. Угол падения равен углу отражения.

Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости

б-угол падения в-угол отражения г-перпендикуляр опущенный в точку падения

3. Закон преломления.

На границе раздела двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду,то есть происходит отражение света. Если вторая среда прозрачна,то часть света при определенных условиях может пройти через границу сред также меняя при этом,как правило, направление распространения. Это явление называется преломлением света.

б-угол падения в- угол преломления.

Падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Постоянная n называется относительным показателем преломления или показателем преломления второй среды относительно первой.

Ход лучей в треугольной призме

В оптических приборах часто применяется треугольная призма из стекла или других прозрачных материалов.

Ход лучей в сечении треугольной призмы

Луч, проходящий через треугольную стеклянную призму, всегда стремится к её основанию.

Угол цназывается преломляющим углом призмы.Угол отклонения луча и зависит от показания преломления n призмы и угла падения б.В оптических приборах часто применяют оптические призмы в виде равнобедренного прямоугольного треугольника. Их применение основано на том что предельный угол полного отражения для стекла равенб 0 =45 0

Монохроматический свет падает на грань АВ стеклянной призмы (рис. 16.28), находящейся в воздухе, S 1 O 1 - падающий луч, \(~\alpha_1\) - угол падения, O 1 O 2 - преломленный луч, \(~\beta_1\) - угол преломления. Так как свет переходит из среды оптически менее плотной в оптически более плотную, то \(~\beta_1<\alpha_1.\) Пройдя через призму, свет падает на ее грань АС . Здесь он снова преломляется\[~\alpha_2\] - угол падения, \(~\beta_2\) - угол преломления. На данной грани свет переходит из среды оптически более плотной в оптически менее плотную. поэтому \(~\beta_2>\alpha_2.\)

Грани ВА и СА , на которых происходит преломление света, называются преломляющими гранями . Угол \(\varphi\) между преломляющими гранями называется преломляющим углом призмы. Угол \(~\delta\), образованный направлением луча, входящего в призму, и направлением луча, выходящего из нее, называют углом отклонения . Грань, лежащая против преломляющего угла, называется основанием призмы .

Для призмы справедливы следующие соотношения:

1) Для первой преломляющей грани закон преломления света запишется так:

\(\frac{\sin \alpha_1}{\sin \beta_1}=n,\)

где n - относительный показатель преломления вещества, из которого сделана призма.

2) Для второй грани:

\(\frac{\sin \alpha_1}{\sin \beta_1}=\frac{1}{n}.\)

3) Преломляющий угол призмы:

\(\varphi=\alpha_2 + \beta_1.\)

Угол отклонения луча призмы от первоначального направления:

\(\delta = \alpha_1 + \beta_2 - \varphi.\)

Следовательно, если оптическая плотность вещества призмы больше, чем окружающей среды, то луч света, проходящий через призму, отклоняется к ее основанию. Несложно показать, что если оптическая плотность вещества призмы меньше, чем окружающей среды, то луч света после прохождения через призму отклонится к ее вершине.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 469-470.

Рассмотрим метод определения показателя преломления, применимый для прозрачных веществ. Метод состоит в измерении угла отклонения лучей при прохождении света через призму, изготовленную из исследуемого материала. На призму направляется параллельный пучок лучей, поэтому достаточно рассмотреть ход одного из них (S 1) в плоскости, перпендикулярной линии пересечения луча преломляющих граней призмы (рис.6).

А 1 ─направление нормали к грани, на которую падает луч S 1 ,

А 2 ─ направление нормали к грани, из которой выходит луч S 2 ,

i 1 , i 2 - углы падения,

r 1 , r 2 - углы преломления на границах раздела АС и АВ соответственно,

φ - преломляющий угол призмы,

δ - угол отклонения выходящего из призмы луча относительно первоначального направления.

Ход луча через призму рассчитывается на основании законов преломления света. При преломлении на первой грани призмы АС получим

(12)

где n – показатель преломления материала призмы для данной длины волны света.

Для грани АВ закон преломления запишется как

. (13)

Соотношения 12 и 13 позволяют найти выражения для определения n . Однако экспериментально определить углы r 1 и i 1 достаточно сложно. На практике удобнее измерить угол отклонения луча призмой δ и преломляющий угол призмы φ.

Получим формулу для определения показателя преломления n через углы δ и φ .

Сначала воспользуемся известной в геометрии теоремой, что внешний угол треугольника равен сумме внутренних углов, не смежных с ним. Тогда из треугольника EDF получим

φ = r 1 + i 2 . (14)

Из треугольника EHF и, используя (14), получим:

δ =(i 1 – r 1 )+(r 2 – i 2 )= i 1 +r 2 –(r 1 + i 2 )= i 1 +r 2 + φ . (15)

Затем выразим угол δ через угол r 1 , используя законы преломления (12), (13) и (14), и определим условия минимальности δ :

i 1 = arcsin(n sin r 1);

r 2 = arcsin(n sin i 2 ) = arcsin(n sin (φ- r 1 ));

δ = arcsin(n sin r 1 ) +arcsin(n sin (φ- r 1 )).

Зависимость δ от r 1 имеет минимум, условие которого можно найти, приравняв производную δ от r 1 нулю:

Выражение (16) выполняется, если r 1 = φ - r 1. В соответствии с (14) имеем φ - r 1 = i 2 , поэтому r 1 = i 2 . Тогда из законов преломления (12) и (13) следует, что углы i 1 , r 2 также должны быть равны: i 1 = r 2 . Принимая во внимание (14) и (15), получим:

φ = 2 r 1 ; δ min =2 i 1 φ .

C учетом этих равенств окончательно получим:

и
.

Следовательно, при наименьшем угле отклонения луча призмой δ min показатель преломления вещества призмы может быть определен по формуле

. (17)

Таким образом, определение показателя преломления вещества сводится к измерению преломляющего угла призмы и угла наименьшего отклонения лучей .

Угол наименьшего отклонения δ образован двумя направлениями: направлением луча, падающего на призму S 1 и направлением луча, вышедшего из призмы S 2 . Если источник излучения не является монохроматическим, то из-за дисперсии вещества призмы направление преломленного луча Е F , а, следовательно, и направление вышедшего луча S 2 будут различными для разных длин волн, т.е. S 2 =f(λ ). Это приводит к тому, что δ и n для разных λ, будут различными.

Преломляющий угол призмы φ образован гранью призмы СА , на которую падает луч и гранью АВ , из которой выходит излучение, или перпендикулярами к этим граням А 1 и А 2 соответственно.

Источником излучения в работе служит ртутная лампа.

Пусть луч падает на одну из гранен призмы. Преломившись в точке , луч пойдет по направлению и, вторично преломившись в точке , выйдет из призмы в воздух (рис. 189). Найдем угол , на который луч, пройдя через призму, отклонится от первоначального направления. Этот угол мы будем называть углом отклонения. Угол между преломляющими гранями, называемый преломляющим углом призмы, обозначим .

Рис. 189. Преломление в призме

Из четырехугольника , в котором углы при и прямые, найдем, что угол равен . Пользуясь этим, из четырехугольника находим

Угол , как внешний угол в треугольнике , равен

где - угол преломления в точке , а - угол падения в точке луча, выходящего из призмы. Далее, пользуясь законом преломления, имеем

С помощью полученных уравнений, зная преломляющий угол призмы и показатель преломления , мы можем при любом угле падения вычислить угол отклонения .

Особенно простую форму получает выражение для угла отклонения в том случае, когда преломляющий угол призмы мал, т. е. призма тонкая, а угол падения невелик; тогда угол также мал. Заменяя приближенно в формулах (86.3) и (86.4) синусы углов самими углами (в радианах), имеем

.

Подставляя эти выражения в формулу (86.1) и пользуясь (86.2), находим

Этой формулой, справедливой для тонкой призмы при падении на нее лучей под небольшим углом, мы воспользуемся в дальнейшем.

Обратим внимание, что угол отклонения луча в призме зависит от показателя преломления вещества, из которого сделана призма. Как мы указывали выше, показатель преломления для разных цветов света различен (дисперсия). Для прозрачных тел показатель преломления фиолетовых лучей наибольший, затем следуют лучи синие, голубые, зеленые, желтые, оранжевые, и, наконец, красные, которые имеют наименьший показатель преломления. В соответствии с этим угол отклонения для фиолетовых лучей наибольший, для красных - наименьший, и луч белого цвета, падающий на призму, по выходе из нее окажется разложенным на ряд цветных лучей (рис. 190 и рис. I на цветном форзаце), т. е. образуется спектр лучей.

Рис. 190. Разложение белого света при преломлении в призме. Падающий пучок белого света изображен в виде фронта с перпендикулярным к нему направлением распространения волны. Для преломленных пучков показана только направления распространения волн

18. Поместив экран позади куска картона, в котором проделано маленькое отверстие, можно получить на этом экране изображение источники. При каких условиях изображение на экране будет отчетливое? Объясните, почему изображение получается перевернутым?

19. Докажите, что пучок параллельных лучей остается таким же после отражения от плоского зеркала

Рис. 191. К упражнению 27. Если чашка пустая, глаз не видит монеты (а), если же чашка наполнена водой, то монета видна (б). Палка, погруженная одним концом в воду, кажется сломанной (в). Мираж в пустыне (г). Как рыба видит дерево и ныряльщика (д)

20. Чему равен угол падения луча, если луч падающий и луч отраженны» образуют угол ?

21. Чему равен угол падения луча, если луч отраженный и луч преломленный образуют угол ? Показатель преломления второй среды относительно первой равен .

22. Докажете обратимость направления световых лучей для случая отражения света.

23. Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

24. Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

25. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

26. найдите смещение луча при прохождении его через плоскопараллельную пластинку из стекла с показателем преломления, равным 1,55, если угол падения , а толщина пластинки равна

27. Пользуясь законами преломления и отражения, объясните явления, показанные на рис. 191

Видеоурок 2: Геометрическая оптика: Законы преломления

Лекция: Законы преломления света. Ход лучей в призме


В тот момент, когда луч падает на некоторую другую среду, он не только отражается, но и проходит сквозь нее. Однако, из-за разности плотностей, он меняет свой путь. То есть луч, попадая на границу, изменяет свою траекторию распространения и двигается со смещением на некоторый угол. Преломление будет происходить в том случае, когда луч падает под некоторым углом к перпендикуляру. Если же он совпадает с перпендикуляром, то преломления не происходит и луч проникает в среду под таким же углом.


Воздух-Среда


Самой распространенной ситуацией при переходе света из одной среды в другую является переход из воздуха.


Итак, на рисунке АО - луч, падающий на границу раздела, СО и ОD - перпендикуляры (нормали) к разделам сред, опущенные из точки падения луча. ОВ - луч, который преломился и перешел в другую среду. Угол, находящийся между нормалью и падающим лучом, называется углом падения (АОС) . Угол, что находится между преломленным лучом и нормалью, называется углом преломления (ВОD) .

Чтобы выяснить интенсивность преломления той или иной среды, вводят ФВ, которая носит название показатель преломления. Данная величина является табличной и для основных веществ значение является постоянной величиной, которую можно найти в таблице. Чаще всего в задачах используются показатели преломления воздуха, воды и стекла.



Законы преломления для воздух-среда


1. При рассмотрении падающего и преломленного луча, а также нормали к разделам сред, все перечисленные величины находятся в одной плоскости.


2. Отношение синуса угла падения к синусу угла преломления является постоянной величиной, равной показателю преломления среды.

Из данного соотношения понятно, что значение показателя преломления больше единицы, это значит, что синус угла падения всегда больше синуса угла преломления. То есть, если луч выходит из воздуха в более плотную среду, то угол уменьшается.


Показатель преломления так же показывает, как изменяется скорость распространения света в той или иной среде, относительно распространения в вакууме:

Отсюда можно получить следующее соотношение:

Когда мы рассматриваем воздух, то можем делать некоторые пренебрежения - будем считать, что показатель преломления данной среды равен единице, тогда и скорость распространения света в воздухе будет равен 3*10 8 м/с.


Обратимость лучей


Данные законы применимы и в тех случаях, когда направление лучей происходит в обратном направлении, то есть из среды в воздух. То есть на траекторию распространения света не влияет направление, в котором происходит перемещение лучей.


Закон преломления для произвольных сред