Построить интервальную таблицу. Статистическая сводка и группировка

Лабораторная работа №1

По математической статистике

Тема: Первичная обработка экспериментальных данных

3. Оценка в баллах. 1

5. Контрольные вопросы.. 2

6. Методика выполнения лабораторной работы.. 3

Цель работы

Приобретение навыков первичной обработки эмпирических данных методами математической статистики.

На основе совокупности опытных данных выполнить следующие задания:

Задание 1. Построить интервальный вариационный ряд распределения.

Задание 2. Построить гистограмму частот интервального вариационного ряда.

Задание 3. Составить эмпирическую функцию распределения и построить график.

а) моду и медиану;

б) условные начальные моменты;

в) выборочную среднюю;

г) выборочную дисперсию, исправленную дисперсию генеральной совокупности, исправленное среднее квадратичное отклонение;

д) коэффициент вариации;

е) асимметрию;

ж) эксцесс;

Задание 5. Определить границы истинных значений числовых характеристик, изучаемой случайной величины с заданной надёжностью.

Задание 6. Содержательная интерпретация результатов первичной обработки по условию задачи.

Оценка в баллах

Задания 1-5 6 баллов

Задание 6 2 балла

Защита лабораторной работы (устное собеседование по контрольным вопросам и лабораторной работе) - 2 балла

Работа сдается в письменной форме на листах формата А4 и включает:

1) Титульный лист (Приложение 1)

2) Исходные данные.

3) Представление работы по указанному образцу.

4) Результаты расчетов (выполненные вручную и/или с помощью MS Excel) в указанном порядке.

5) Выводы - содержательная интерпретация результатов первичной обработки по условию задачи.

6) Устное собеседование по работе и контрольным вопросам.



5. Контрольные вопросы


Методика выполнения лабораторной работы

Задание 1. Построить интервальный вариационный ряд распределения

Для того, чтобы статистические данные представить в виде вариационного ряда с равноотстоящими вариантами необходимо:

1.В исходной таблице данных найти наименьшее и наибольшее значения.

2.Определить размах варьирования :

3. Определить длину интервала h, если в выборке до 1000 данных, используют формулу: , где n – объем выборки – количество данных в выборке; для вычислений берут lgn).

Вычисленное отношение округляют до удобногоцелого значения .

4. Определить начало первого интервала для четного числа интервалов рекомендуют брать величину ; а для нечетного числа интервалов .

5. Записать интервалы группировок и расположить их в порядке возрастания границ

, ,………., ,

где - нижняя граница первого интервала. За берется удобное число не большее , верхняя граница последнего интервала должна быть не меньше . Рекомендуется, чтобы интервалы содержали в себе исходные значения случайной величины и выделять от 5 до 20 интервалов.

6. Записать исходные данные по интервалам группировок, т.е. подсчитать по исходной таблице число значений случайной величины, попадающих в указанные интервалы. Если некоторые значения совпадают с границами интервалов, то их относят либо только к предыдущему, либо только к последующему интервалу.

Замечание 1. Интервалы необязательно брать равными по длине. На участках, где значения располагаются гуще, удобнее брать более мелкие короткие интервалы, а там где реже - более крупные.

Замечание 2 .Если для некоторых значений получены “нулевые”, либо малые значения частот , то необходимо перегруппировать данные, укрупняя интервалы (увеличивая шаг ).

Если изучаемая случайная величина является непрерывной, то ранжирование и группировка наблюдаемых значений зачастую не позволяют выделить характерные черты варьирования ее значений. Это объясняется тем, что отдельные значения случайной величины могут как угодно мало отличаться друг от друга и поэтому в совокупности наблюдаемых данных одинаковые значения величины могут встречаться редко, а частоты вариантов мало отличаются друг от друга.

Нецелесообразно также построение дискретного ряда для дискретной случайной величины, число возможных значений которой велико. В подобных случаях следует строить интервальный вариационный ряд распределения.

Для построения такого ряда весь интервал варьирования наблюдаемых значений случайной величины разбивают на ряд частичных интервалов и подсчитывают частоту попадания значений величины в каждый частичный интервал.

Интервальным вариационным рядом называют упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами или относительными частотами попаданий в каждый из них значений величины.

Для построения интервального ряда необходимо:

  1. определить величину частичных интервалов;
  2. определить ширину интервалов;
  3. установить для каждого интервала его верхнюю и нижнюю границы ;
  4. сгруппировать результаты наблюдении.

1 . Вопрос о выборе числа и ширины интервалов группировки приходится решать в каждом конкретном случае исходя из целей исследования, объема выборки и степени варьирования признака в выборке.

Приблизительно число интервалов k можно оценить исходя только из объема выборки n одним из следующих способов:

  • по формуле Стержеса : k = 1 + 3,32·lg n ;
  • с помощью таблицы 1.

Таблица 1

2 . Обычно предпочтительны интервалы одинаковой ширины. Для определения ширины интервалов h вычисляют:

  • размах варьирования R - значений выборки: R = x max - x min ,

где x max и x min - максимальная и минимальная варианты выборки;

  • ширину каждого из интервалов h определяют по следующей формуле: h = R/k .

3 . Нижняя граница первого интервала x h1 выбирается так, чтобы минимальная варианта выборки x min попадала примерно в середину этого интервала: x h1 = x min - 0,5·h .

Промежуточные интервалы получают прибавляя к концу предыдущего интервала длину частичного интервала h :

x hi = x hi-1 +h .

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина x hi удовлетворяет соотношению:

x hi < x max + 0,5·h .

4 . В соответствии со шкалой интервалов производится группирование значений признака - для каждого частичного интервала вычисляется сумма частот n i вариант, попавших в i -й интервал. При этом в интервал включают значения случайной величины, большие или равные нижней границе и меньшие верхней границы интервала.

Полигон и гистограмма

Для наглядности строят различные графики статистического распределения.

По данным дискретного вариационного ряда строят полигон частот или относительных частот.

Полигоном частот x 1 ; n 1 ), (x 2 ; n 2 ), ..., (x k ; n k ). Для построения полигона частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им частоты n i . Точки (x i ; n i ) соединяют отрезками прямых и получают полигон частот (Рис. 1).

Полигоном относительных частот называют ломанную, отрезки которой соединяют точки (x 1 ; W 1 ), (x 2 ; W 2 ), ..., (x k ; W k ). Для построения полигона относительных частот на оси абсцисс откладывают варианты x i , а на оси ординат - соответствующие им относительные частоты W i . Точки (x i ; W i ) соединяют отрезками прямых и получают полигон относительных частот.

В случае непрерывного признака целесообразно строить гистограмму .

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h , а высоты равны отношению n i / h (плотность частоты).

Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии n i / h .

Что такое группировка статистических данных, и как она связана с рядами распределения, было рассмотрено этой лекции, там же можно узнать, о том что такое дискретный и вариационный ряд распределения.

Ряды распределения одна из разновидностей статистических рядов (кроме них в статистике используются ряды динамики), используются для анализа данных о явлениях общественной жизни. Построение вариационных рядов вполне посильная задача для каждого. Однако есть правила, которые необходимо помнить.

Как построить дискретный вариационный ряд распределения

Пример 1. Имеются данные о количестве детей в 20 обследованных семьях. Построить дискретный вариационный ряд распределения семей по числу детей .

0 1 2 3 1
2 1 2 1 0
4 3 2 1 1
1 0 1 0 2

Решение:

  1. Начнем с макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по числу детей – значит наша варианта это число детей.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения семей – значит наша частота это число семей с соответствующим количеством детей.

  1. Теперь из исходных данных выберем те значения, которые встречаются хотя бы один раз. В нашем случае это

И расставим эти данные в первой колонке нашей таблицы в логическом порядке, в данном случае возрастающем от 0 до 4. Получаем

И в заключение подсчитаем, сколько же раз встречается каждое значение варианты.

0 1 2 3 1

2 1 2 1 0

4 3 2 1 1

1 0 1 0 2

В результате получаем законченную табличку или требуемый ряд распределения семей по количеству детей.

Задание . Имеются данные о тарифных разрядах 30 рабочих предприятия. Построить дискретный вариационный ряд распределения рабочих по тарифному разряду. 2 3 2 4 4 5 5 4 6 3

1 4 4 5 5 6 4 3 2 3

4 5 4 5 5 6 6 3 3 4

Как построить интервальный вариационный ряд распределения

Построим интервальный ряд распределения, и посмотрим чем же его построение отличается от дискретного ряда.

Пример 2. Имеются данные о величине полученной прибыли 16 предприятий, млн. руб. — 23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63. Построить интервальный вариационный ряд распределения предприятий по объему прибыли, выделив 3 группы с равными интервалами.

Общий принцип построения ряда, конечно же, сохраниться, те же две колонки, те же варианта и частота, но в здесь варианта будет располагаться в интервале и подсчет частот будет вестись иначе.

Решение:

  1. Начнем аналогично предыдущей задачи с построения макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по объему прибыли – значит, наша варианта это объем полученной прибыли.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения предприятий – значит наша частота это число предприятий с соответствующей прибылью, в данном случае попадающие в интервал.

В итоге макет нашей таблицы будет выглядеть так:

где i – величина или длинна интервала,

Хmax и Xmin – максимальное и минимальное значение признака,

n – требуемое число групп по условию задачи.

Рассчитаем величину интервала для нашего примера. Для этого среди исходных данных найдем самое большое и самое маленькое

23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63 – максимальное значение 118 млн. руб., и минимальное 9 млн. руб. Проведем расчет по формуле.

В расчете получили число 36,(3) три в периоде, в таких ситуациях величину интервала нужно округлить до большего, чтобы после подсчетов не потерялось максимальное данное, именно поэтому в расчете величина интервала 36,4 млн. руб.

  1. Теперь построим интервалы – наши варианты в данной задаче. Первый интервал начинают строить от минимального значения к нему добавляется величина интервала и получается верхняя граница первого интервала. Затем верхняя граница первого интервала становится нижней границей второго интервала, к ней добавляется величина интервала и получается второй интервал. И так далее столько раз сколько требуется построить интервалов по условию.

Обратим внимание если бы мы не округлили величину интервала до 36,4, а оставили бы ее 36,3, то последнее значение у нас бы получилось 117,9. Именно для того чтобы не было потери данных необходимо округлять величину интервала до большего значения.

  1. Проведем подсчет количества предприятий попавших в каждый конкретный интервал. При обработке данных необходимо помнить, что верхнее значение интервала в данном интервале не учитывается (не включается в этот интервал), а учитывается в следующем интервале (нижняя граница интервала включается в данный интервал, а верхняя не включается), за исключением последнего интервала.

При проведении обработки данных лучше всего отобранные данные обозначить условными значками или цветом, для упрощения обработки.

23 48 57 12 118 9 16 22

27 48 56 87 45 98 88 63

Первый интервал обозначим желтым цветом – и определим сколько данных попадает в интервал от 9 до 45,4, при этом данное 45,4 будет учитываться во втором интервале (при условии что оно есть в данных) – в итоге получаем 7 предприятий в первом интервале. И так дальше по всем интервалам.

  1. (дополнительное действие ) Проведем подсчет общего объема прибыли полученного предприятиями по каждому интервалу и в целом. Для этого сложим данные отмеченные разными цветами и получим суммарное значение прибыли.

По первому интервалу — 23 + 12 + 9 + 16 + 22 + 27 + 45 = 154 млн. руб.

По второму интервалу — 48 + 57 + 48 + 56 + 63 = 272 млн. руб.

По третьему интервалу — 118 + 87 + 98 + 88 = 391 млн. руб.

Задание . Имеются данные о величине вклада в банке 30 вкладчиков, тыс. руб. 150, 120, 300, 650, 1500, 900, 450, 500, 380, 440,

600, 80, 150, 180, 250, 350, 90, 470, 1100, 800,

500, 520, 480, 630, 650, 670, 220, 140, 680, 320

Построить интервальный вариационный ряд распределения вкладчиков, по размеру вклада выделив 4 группы с равными интервалами. По каждой группе подсчитать общий размер вкладов.

Во многих случаях, кота статистическая совокупность включает большое или тем более бесконечное число вариант, что чаще всего встречается при непрерывной вариации, практически невозможно и нецелесообразно формировать группу единиц для каждой варианты. В таких случаях объединение статистических единиц в группы возможно лишь на базе интервала, т.е. такой группы, которая имеет определенные пределы значений варьирующего признака. Эти пределы обозначаются двумя числами, указывающими верхнюю и нижнюю границы каждой группы. Применение интервалов приводит к формированию интервального ряда распределения.

Интервальный рад - это вариационный ряд, варианты которого представлены в виде интервалов.

Интервальный ряд может формироваться с равными инеравными ин­тервалами, при этом выбор принципа построения этого ряда зависит главным образом от степени представительности и удобности статистической совокупности. Если совокупность достаточно велика (представительна) по числу единиц и вполне однородна по своему составу, то в основу формирования интервального ряда целесообразно положить равенства интервалов. Обычно по этому принципу образуют интервальный ряд по тем совокупностям, где размах вариации сравнительно невелик, т.е. максимальная и минимальная варианты различаются между собой обычно в несколько раз. При этом величина равных интервалов рассчитывается отношением размаха вариации признака к заданному числу образуемых интервалов. Для определения равного и нтервала может быть ииспользована формула Стерджесса (обычно при небольшой вариации интервальных признаков и большом числе единиц в статистической совокупности):

где х i - величина равного интервала; X max, X min- максимальная и минимальная варианты в статистической совокупности; n. - число единиц в совокупности.

Пример . Целесообразно рассчитать размер равного интервала по плотности радиоактивного загрязнения цезием – 137 в 100 населенных пунктах Краснопольского района Могилевской области, если известно, что начальная (минимальная) варианта равна I км/км 2 , конечная (максимальная) - 65 ки/км 2 . Воспользовавшись формулой 5.1. получим:

Следовательно, чтобы сформировать интервальный ряд с равными интервалами по плотности загрязнения цезием - 137 населенных пунктов Краснопольского района, размер равного интервала может составить 8 ки/км 2 .

В условиях неравномерного распределения т.е. когда максимальная иминимальная варианты сотни раз, при формировании интервального ряда можно применить принцип неравных интервалов. Неравные интервалы обычно увеличиваются по мере перехода к большим значениям признака.

По форме интервалы могут быть закрытыми и открытыми. Закрытыми принято называть интервалы, у которых обозначены как нижняя, так и верхняя границы. Открытые интервалы имеют только одну границу: в первом интервале – верхняя, в последнем - нижняя граница.

Оценку интервальных рядов, особенно с неравным интервалами, целесообразно проводить с учетом плотности распределения , простейшим способом расчета которого является отношение локальной частоты (или частости) к размеру интервала.

Для практического формирования интервального ряда можно воспользоваться макетом табл. 5.3.

Т а б л и ц а 5.3. Порядок формирования интервального ряда населённых пунктов Краснопольского района по плотности радиоактивного загрязнения цезием –137

Основное преимущество интервального ряда - его предельная компактность. в то же время в интервальном ряду распределения индивидуальные варианты признака скрыты в соответствующих интервалах

При графическом изображении интервального ряда в системе прямоугольных координат на оси абсцисс откладывают верхние границы интервалов, на ос ординат - локальные частоты ряда. Графическое построение интервального ряда отличается от построения полигона распределения тем, что каждый интервал имеет нижнюю и верхнею границы, а одному какому- либо значению ординаты соответствуют две абсциссы. Поэтому на графике интервального ряда отмечается не точка, как в полигоне, а линия, соединяющая две точку. Эти горизонтальные линии соединяются друг с другом вертикальными линиями и получается фигура ступенчатого многоугольника, который принято называть гистограммой распределения (рис.5.3).

При графическом построении интервального ряда по достаточно большой статистической совокупности гистограмма приближается к симметричной форме распределения. В тех же случаях, где статистическая совокупность невелика, как правило, формируется асимметричная гистограмма.

В некоторых случаях имеется целесообразность в формировании ряда накопленных частот, т.е. кумулятивного ряда. Кумулятивный ряд можно образовать на основе дискретного либо интервального ряда распределения. При графическом изображении кумулятивного ряда в системе прямоугольных координат на оси абсцисс откладывают вариан­ты, на оси ординат - накопленные частоты (частости). Полученную при этом кривую линию принято называть кумулятой распределения (рис.5.4).

Формирование и графическое изображение различных видов вариационных рядов способствует упрощенному расчету основных статистических характеристик, которые подробно рассматриваются в теме 6, помогает лучше понять сущность законов распределения статистической совокупности. Анализ вариационного ряда приобретает особенное значение в тех случаях, когда необходимо выявить и проследить зависимость между вариантами и частотами (частостями). Эта зависимость проявляется в том, что число случаев, приходящихся на каждую варианту, определенным образом связано с величиной этой варианты, т.е. с возрастанием значений варьирующего признака частоты (частости) этих значений испытывают определенные, систематические изменения. Это означает, что числа в столбце частот (частостей) подвержены не хаотическим колебаниям, а изменяются в определенном направлении, в определенном порядке и последовательности.

Если частоты в своих изменениях обнаруживают определенную систематичность, то это означает, что мы находимся на пути к выявлению закономерности. Система, порядок, последовательность в изменении частот - это отражение общих причин, общих условий, характерных для всей совокупности.

Не следует считать, что закономерность распределения всегда дается в готовом виде. Встречается довольно много вариационных рядов, в которых частоты причудливо скачут, то возрастая, то уменьшаясь. В таких случаях целесообразно выяснить, с каким распределением имеет дело исследователь: то ли этому распределению вовсе не присущи закономерности, то его характер еще не выявлен: Первый случай встречается редко, второй же, второй же случай - явление довольно частое и весьма распространенное.

Так, при формировании интервального ряда общее число статистических единиц может быть небольшим, и в каждый интервал попадает малое число вариант (например, 1-3 единицы). В таких случаях рассчитывать на проявление какой-либо закономерности не приходится. Для того чтобы на основе случайных наблюдений получился закономерный результат, необходимо вступление в силу закона больших чисел, т.е. чтобы на каждый интервал приходилось бы не несколько, а десятки и сотни статистических единиц. С этой целью надо стараться, по возможности увеличивать число наблюдений. Это самый верный способ обнаружения закономерности в массовых процессах. Если же не представляется реальная возможность увеличить число наблюдений, то выявление закономерности может быть достигнуто уменьшением числа интервалов в ряду распределения. Уменьшая число интервалов в вариационном ряду, тем самым увеличивается численность частот в каждом интервале. Это означает, что случайные колебания каждой статистической единицы накладываются друг на друга, "сглаживается", превращаясь в закономерность.

Формирование и построение вариационных рядов позволяет получить лишь общую, приближенную картину распределения статистической совокупности. Например, гистограмма лишь в грубой форме выражает зависимость между значениями признака и его частотами (частостями) Поэтому вариационные ряды по существу являются лишь основой для дальнейшего, углубленного изучения внутренней закономерности статического распределения.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ТЕМЕ 5

1. Что представляет собой вариация? Чем вызывается вариация признака в статистической совокупности?

2. Какие виды варьирующих признаков могут иметь место в статистике?

3. Что такое вариационный ряд? Какие могут быть виды вариационных рядов?

4. Что представляет собой ранжированный ряд? Какие его преимущества и недостатки?

5. Что такое дискретный ряд и какие его преимущества и недостатки?

6. Каков порядок формирования интервального ряда, какие его преимущества и недостатки?

7. Что представляет собой графическое изображение ранжированного, дискретного, интервального рядов распределения?

8. Что такое кумулята распределения и что она характеризует?

При построении интервального ряда распределения решаются три вопроса:

  • 1. Сколько надо взять интервалов?
  • 2. Какова длина интервалов?
  • 3. Каков порядок включения единиц совокупности в границы интервалов?
  • 1. Количество интервалов можно определить по формуле Стер- джесса :

2. Длина интервала, или шаг интервала , обычно определяется по формуле

где R - размах вариации.

3. Порядок включения единиц совокупности в границы интервала

может быть разным, но при построении интервального ряда распределения обязательно строго определен.

Например, такой: [), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал , верхняя граница которого включает последнее число ранжированного ряда.

Границы интервалов бывают:

  • закрытые - с двумя крайними значениями признака;
  • открытые - с одним крайним значением признака (до такого-то числа или свыше такого-то числа).

С целью усвоения теоретического материала введем исходную информацию для решения сквозной задачи.

Имеются условные данные по среднесписочной численности менеджеров по продажам, количеству проданного ими однокачественного товара, индивидуальной рыночной цене на этот товар, а также объему продаж 30 фирм в одном из регионов РФ в I квартале отчетного года (табл. 2.1).

Таблица 2.1

Исходная информация для сквозной задачи

Численность

менеджеров,

Цена, тыс. руб.

Объем продаж, млн руб.

Численность

менеджеров,

Количество проданного товара, шт.

Цена, тыс. руб.

Объем продаж, млн руб.

На базе исходной информации, а также дополнительной сделаем постановку отдельных заданий. Затем представим методику их решения и сами решения.

Сквозная задача. Задание 2.1

Используя исходные данные табл. 2.1, требуется построить дискретный ряд распределения фирм по количеству проданного товара (табл. 2.2).

Решение:

Таблица 2.2

Дискретный ряд распределения фирм по количеству проданного товара в одном из регионов РФ в I квартале отчетного года

Сквозная задача. Задание 2.2

требуется построить ранжированный ряд 30 фирм по среднесписочной численности менеджеров.

Решение:

15; 17; 18; 20; 20; 20; 22; 22; 24; 25; 25; 25; 27; 27; 27; 28; 29; 30; 32; 32; 33; 33; 33; 34; 35; 35; 38; 39; 39; 45.

Сквозная задача. Задание 2.3

Используя исходные данные табл. 2.1, требуется:

  • 1. Построить интервальный ряд распределения фирм по численности менеджеров.
  • 2. Рассчитать частости ряда распределения фирм.
  • 3. Сделать выводы.

Решение:

Рассчитаем по формуле Стерджесса (2.5) количество интервалов :

Таким образом, берем 6 интервалов (групп).

Длину интервала , или шаг интервала , рассчитаем по формуле

Примечание. Порядок включения единиц совокупности в границы интервала такой: I), при котором единицы совокупности в нижние границы включаются, а в верхние - не включаются, а переносятся в следующий интервал. Исключение в этом правиле составляет последний интервал I ], верхняя граница которого включает последнее число ранжированного ряда.

Строим интервальный ряд (табл. 2.3).

Интервальный ряд распределения фирм но среднесписочной численности менеджеров в одном из регионов РФ в I квартале отчетного года

Вывод. Наиболее многочисленной группой фирм является группа со среднесписочной численностью менеджеров 25- 30 человек, которая включает 8 фирм (27%); в самую малочисленную группу со среднесписочной численностью менеджеров 40-45 человек входит всего одна фирма (3%).

Используя исходные данные табл. 2.1, а также интервальный ряд распределения фирм по численности менеджеров (табл. 2.3), требуется построить аналитическую группировку зависимости между численностью менеджеров и объемом продаж фирм и на основании ее сделать вывод о наличии (или отсутствии) связи между указанными признаками.

Решение:

Аналитическая группировка строится по факторному признаку. В нашей задаче факторным признаком (х) является численность менеджеров, а результативным признаком (у) - объем продаж (табл. 2.4).

Построим теперь аналитическую группировку (табл. 2.5).

Вывод. На основании данных построенной аналитической группировки можно сказать, что с увеличением численности менеджеров по продажам средний в группе объем продаж фирмы также увеличивается, что свидетельствует о наличии прямой связи между указанными признаками.

Таблица 2.4

Вспомогательная таблица для построения аналитической группировки

Численность менеджеров, чел.,

Номер фирмы

Объем продаж, млн руб., у

» = 59 f = 9,97

Я-™ 4 - Ю.22

74 ’25 1ПЙ1

У4 = 7 = 10,61

у = ’ =10,31 30

Таблица 2.5

Зависимость объемов продаж от численности менеджеров фирм в одном из регионов РФ в I квартале отчетного года

КОНТРОЛЬНЫЕ ВОПРОСЫ
  • 1. В чем суть статистического наблюдения?
  • 2. Назовите этапы статистического наблюдения.
  • 3. Каковы организационные формы статистического наблюдения?
  • 4. Назовите виды статистического наблюдения.
  • 5. Что такое статистическая сводка?
  • 6. Назовите виды статистических сводок.
  • 7. Что такое статистическая группировка?
  • 8. Назовите виды статистических группировок.
  • 9. Что такое ряд распределения?
  • 10. Назовите конструктивные элементы ряда распределения.
  • 11. Каков порядок построения ряда распределения?