Потенциал действия нервной клетки. Мембранный потенциал покоя и действия

Мембранный потенциал (МП) - разность потенциалов между наружной и внутренней стороной мембраны в состоянии физиологического покоя.

Причины возникновения МП:

1. неодинаковое распределение ионов по обе стороны мембраны: внутри - больше К+, снаружи - его мало, но больше Nа+ и Cl. такое распределение ионов называется ионной ассиметрией.

2. избирательная проницаемость мембраны для ионов. В состоянии покоя мембрана неодинакова проницаема.

За счет этих факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта в результате разности концентрации ионов.

Ионы К выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны. Сl - пассивно переходит во внутрь клетки, что приводит к повышению положительного заряда на наружной поверхности мембраны. Nа накапливается на наружной поверхности мембраны и увеличивает «+» заряд. Органические соединения остаются внутри клетки.

В результате такого движения наружная поверхность мембраны «+» заряжена, а внутренняя «-». Внутренняя поверхность может быть «-» заряжена, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние называется поляризацией.

Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов, т.е. пока не наступит электрохимическое равновесие.

Момент равновесия зависит от двух сил:

2. Сила электрохимического взаимодействия.

Значение электрохимического равновесия:

3. поддержание ионной асимметрии

4. поддержание величины мембранного потенциала на постоянном уровне.

Возникновение МП при участи двух сил называют концентрационно-электрохимическим.

Для поддержания ионной симметрии электрохимического равновесия в клетке имеется Nа-К насос. В клеточной мембране имеется система переносчиков, каждый из которых связывает 3Na, которые находятся снаружи, а с внутренней стороны переносчик связывает 2К и переносит внутрь клетки. При этом расходуется 1 молекула АТФ.

Работа Nа-К насоса обеспечивает:

1. высокую концентрацию К внутри клетки, т.е. постоянную величину потенциала покоя

2. низкую концентрацию Nа внутри клетки, т.е. сохраняется нормальная осмомолярность, объем клетки, создает базу для генерации ПД.

3. стабильный концентрационный градиент Nа, способствуя транспорту аминокислот и сахаров.

МП в норме : для гладких мышц -30 - (-70) мВ, для нерва -50 - (-70) мВ, для миокарда -60 - (-90) мВ.

Потенциал действия (ПД) - сдвиг потенциала покоя, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой мембраны.


При действии порогового и сверхпорогового раздражителей изменяется проницаемость клеточной мембраны для ионов. Для Nа увеличивается в 450 раз и градиент нарастает быстро. Для К увеличивается в 10-15 раз и градиент развивается медленно. В результате движение Nа происходит внутрь клетки, К двигается из клетки, что приводит к перезарядке клеточной мембраны.

Фазы:

0. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

1. Фаза деполяризации . Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мсек.

2. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мсек.

3. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится 15-30 мсек.

4. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Ее длительность 250-300 мсек.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ), сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос , выносящий вошедшие в клетку во время ПД ионы натрия.

Соотношение фаз потенциала действия и возбудимости.

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.

В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

В фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Форма потенциала действия позволяет разделить процесс его генерации на несколько фаз: предспайк, быстрая деполяризация, реполяризация и следовые потенциалы (рис. 2.3).

Рис. 2.3.

Предспайк - это процесс медленной деполяризации мембраны, который начинается с первого отклонения от потенциала покоя и заканчивается достижением КУД. Предспайк включает пассивную деполяризацию мембраны и активный локальный ответ. Активный ответ возникает, когда пассивная деполяризация мембраны достигает 70-80% от значений КУД и является первым проявлением начинающегося активного состояния мембраны - началом ее возбуждения. Благодаря пассивной деполяризации и локальному активному ответу сдвиг потенциала на мембране достигает критического уровня деполяризации, при котором и развивается собственно ПД.

Фаза быстрой (лавинообразной) деполяризации мембраны является первой фазой ПД. На этой стадии мембранный потенциал быстро сдвигается от критического уровня деполяризации до нуля и продолжает смещаться вплоть до пика Г1Д, перезаряжая мембрану. Во время первой фазы ПД потенциал на мембране «извращается», т.е. мембрана разряжается до нуля и перезаряжается с противоположным знаком. Участок ПД со значениями от нуля до пика перезарядки носит название овершут (англ, overshoot) потенциала. Вместо отрицательных значений потенциал на мембране становится положительным. У гигантского аксона кальмара пик ПД достигает значений порядка +50 мВ, а фаза деполяризации с овер- шутом длится порядка 0,5 мс.

Фаза реполяризации является второй фазой ПД. Во время этой фазы значение потенциала на мембране возвращается к исходному значению, т.е. к потенциалу покоя. Эта фаза может быть подразделена на быструю реполяризацию от +50 мВ до 0 В и более медленную реполяризацию - от 0 В до КУД и далее до потенциала покоя. Фаза реполяризации занимает 1-2 мс.

Следовые потенциалы могут в ряде случаев развиваться в конце ПД в виде медленной деполяризации или даже медленной гиперполяризации. Следовая гиперполяризация наблюдается, в частности, на мембране гигантского аксона кальмара.

Ионная природа фаз потенциала действия была изучена в ходе экспериментов на гигантских аксонах кальмара Ходжкиным и Хаксли. Выяснилось, что в момент генерации ПД электрическое сопротивление мембраны аксона на период 1-2 мс снижается в 20-30 раз, г.е. резко возрастает проводимость мембраны, и через мембрану начинает протекать ток. Но какой это ток? Оказалось, что если удалить катионы Na + из наружного раствора и заменить их на сахарозу, то амплитуда потенциала действия резко уменьшается либо ПД вообще не возникает. Это позволило сделать заключение, что главной причиной генерации ПД и перезарядки мембраны до положительных значений является возникновение высокой проницаемости мембраны к катионам натрия и быстрый вход этих катионов внутрь клетки.

Движение натрия внутрь происходит под действием двух сил. Первая сила связана с наличием трансмембранного концентрационного градиента катионов натрия. Концентрация натрия в наружном растворе в 20-30 раз больше, чем внутри, т.е. концентрационный градиент для Na + направлен внутрь клетки, и при наличии достаточной проницаемости катионы натрия будут быстро входить в клетку. Вторая сила связана с наличием большого отрицательного заряда на внутренней стороне мембраны (порядка -70 мВ). Отрицательный заряд на внутренней стороне мембраны будет способствовать входу положительно заряженных катионов натрия в клетку. Входя, катионы натрия будут сначала стремительно уменьшать отрицательный заряд мембраны до нуля, а потом перезаряжать мембрану до положительных значений, приближая величину мембранного потенциала к равновесному потенциалу для Na + . Напомним, что равновесный потенциал для катионов Na" может быть рассчитан по уравнению Нернста и составляет для гигантского аксона кальмара +55 мВ.

В пользу участия входящего натриевого тока в создании деполяриза- ционной фазы ПД свидетельствуют результаты экспериментов с тетродо- токсином - блокатором потенциал-зависимой натриевой проницаемости. Тетродотоксин способен полностью блокировать развитие Г1Д (рис. 2.4, а).

Рис. 2.4. Изменения ПД, возникающие при действии на мембрану избирательных блокаторов натриевой проницаемости - тетродотоксина (я) или калиевой проницаемости - тетраэгиламмония (б)

Таким образом, натриевая гипотеза удовлетворительно объясняет развитие деполяризационной фазы ПД, но оставляет открытым вопрос о причинах рсиоляризации, т.е. фазы ПД, приводящей к возврату мембранного потенциала к уровню потенциала покоя. Было высказано предположение, что на мембране развивается еще один процесс - возрастает ее проницаемость к ионам калия. Было ясно, что это - особая активная калиевая проницаемость, отличающаяся от пассивной калиевой проницаемости, существующей у мембраны в покое (пассивной калиевой утечки). Дополнительная калиевая проницаемость мембраны возникает только в ответ на деполяризацию мембраны до критического уровня, причем с небольшим запаздыванием по сравнению с увеличением натриевой проницаемости. В случае возникновения такой дополнительной активной проницаемости к калию катионы К* начинают выходить из клетки под действием концентрационного градиента и заряда на мембране, созданного опережающим входом катионов натрия. Входящие катионы Na + заряжают внутреннюю сторону мембраны положительно, а наружную - отрицательно. Дополнительный выходящий ток катионов калия будет уменьшать созданный натриевым током положительный заряд внутри клетки и возвращать электрический заряд па мембране к исходным значениям, т.е. к потенциалу покоя.

В пользу участия выходящего калиевого тока в создании реполяризаци- онной фазы ПД свидетельствовали результаты экспериментов с использованием блокатора активной калиевой проницаемости - тетраэтиламмония. Тетраэтиламмоний резко замедляет протекание фазы реполяризации ПД (рис. 2.4, б).

Если ПД является результатом появления и развития на мембране двух новых ионных токов, которых не было в покое, а именно токов натрия и калия, то, следовательно, при деполяризации на мембране открываются новые потенциал-активируемые ионные каналы. Эти каналы проводят сначала натрий, а затем - калий. Свойства таких каналов можно понять, анализируя развитие токов, которые возникают при их работе. Но эти токи надо регистрировать «в чистом виде», т.е. не осложненные одновременными изменениями потенциала на мембране и емкостными токами мембраны. Для этого Ходжкиным и Хаксли в их экспериментах на гигантских аксонах кальмара впервые был использован метод фиксации потенциала на мембране (англ, voltage-clamp).

Метод фиксации потенциала на мембране заключается в подключении к мембране аксона системы двух усилителей. Один усилитель предназначен для регистрации сдвигов мембранного потенциала, второй работает по принципу отрицательной обратной связи. В аксон вводятся два проволочных микроэлектрода. Один из них измеряет сдвиги мембранного потенциала и передает их на усилитель с отрицательной обратной связью. Этот усилитель (отслеживающий сдвиги потенциала на мембране и генерирующий токи) на выходе соединяют со вторым внутриклеточным микроэлектродом - токовым. Через этот микроэлектрод будет подаваться ток, который можно измерять во внешней цепи индифферентного электрода, расположенного снаружи аксона.

Если теперь искусственно деполяризовать мембрану до КУД, то в ответ через возбужденную мембрану начинают течь потенциал-активируемые токи: натриевый и калиевый. Создаваемые этими токами сдвиги мембранного потенциала мгновенно отслеживаются при помощи усилителя обратной связи, посылающего через токовый микроэлектрод равные по амплитуде, но противоположно направленные токи, - возникает обратная связь. Такие «токи фиксации» удерживают (фиксируют) мембрану от сдвигов потенциала и являются, по существу, зеркальным отражением Na + - и К + -токов. Токи фиксации могут быть легко измерены во внешней цепи схемы (рис. 2.5).


Рис. 2.5.

(voltage-clamp ):

при помощи усилителя обратной связи токовый электрод пропускает ток фиксации, являющийся зеркальным отражением трансмембранных токов

На рис. 2.6 приведены данные, полученные с применением метода фиксации потенциала. При деполяризации мембраны от -65 до -9 мВ мембрана возбуждается, что сопровождается генерацией двухфазного тока. Видно, что сначала возникает быстрый входящий ток, который затухает и сменяется на более медленно развивающийся выходящий ток. Оказалось, что входящий ток можно полностью заблокировать с помощью тетродоток- сина - избирательного блокатора потенциал-зависимых натриевых каналов. Из этого следует, что входящий ток - натриевый ток.

Выходящий ток, также возникавший в ответ на деполяризацию, при этом сохраняется и выявляется в чистом виде. Этот ток развивается с небольшой задержкой, нарастает медленнее, но зато не затухает и сохраняется в течение всего времени деполяризации. Он полностью блокируется блокатором потенциал-активируемых калиевых каналов тетраэтилам- монием и, следовательно, представляет собой потенциал-активирусмый К + -ток. Таким образом, с помощью метода фиксации потенциала и использования избирательных блокаторов натриевого и калиевого токов удалось разделить и выявить по отдельности два тока, возникающих при генерации ПД, показать их независимость друг от друга и проанализировать каждый из них.

Рис. 2.6.

а - смещение мембранного потенциала на 56 мВ и фиксация его на уровне -9 мВ;

6 - двухфазный (ранний входящий и поздний выходящий) ток в ответ на фиксацию потенциала на уровне -9 мВ; в - фармакологическое разделение двух токов с помощью блокаторов натриевой (тетродотоксин) и калиевой (тетраэтиламмоний)

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

Потенциал действия

Физической основой возбуждения является потенциал действия. По сути своей потенциал действия представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки). В результате наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса.

Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка?70 - ?90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация) или положительную (деполяризация) сторону.

Для конкретики рассмотрим нервные клетки. В нервной ткани потенциал действия, как правило, возникает при деполяризации. По степени деполяризации раздражители могут быть подпороговыми, пороговыми и сверхпороговыми. При воздействии подпороговых раздражителей возникает так называемый локальный ответ - местная незначительная деполяризация мембраны, характеризуемая такими свойствами, как декрементность, суммация и градуальность.

Если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его (пороговый и сверхпороговый раздражители), клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала - потенциал действия (рис. 3). Это обусловлено тем, что на мембране клетки находятся ионные каналы. Мембрана клеток возбудимых тканей (нервной, секреторной и мышечной) содержит большое количество потенциалзависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциалзависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны.

Рис. 3.

Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны. Поток ионов натрия вызывает ещё большее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

По достижении значения мембранного потенциала 0 мВ деполяризация продолжается, переходя в стадию реверсии (перезарядки). В этот момент в формирование ПД включаются калиевые потенциал - зависимые каналы (медленные относительно натриевых), а натриевые каналы переходят в инактивированное состояние (закрываются). При достижении мембранного потенциала пикового значения - около 30 мВ - происходит нарастание восстановление его значения - реполяризация, обусловленная током ионов К в противоположную относительно Na сторону (из клетки по градиенту концентрации в межклеточную среду). При достижении исходного значения мембранного потенциала происходит непродолжительная гиперполяризация, обусловленная током ионов Cl в клетку (рис. 4).

Рис. 4.

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

При подробном рассмотрении ПД можно выделить 6 фаз его развития (рис. 5).

1. Медленная деполяризация - от МП до критического уровня деполяризации (КУД), по сути представляет собой локальный ответ на пороговый раздражитель.

2. Быстрая деполяризация - от КУД до 0 мВ, вызвана лавинообразным потоком ионов Naв клетку.

3. Реверсия (овершут, перехлест) - от 0 мВ до пика деполяризации, открываются K каналы, Naканалы инактивируются.

4. Быстрая реполяризация - от пика деполяризации до КУД, вызвана током ионов K из клетки.

5. Медленнаяреполяризация - от КУД до МП.

6. Гиперполяризация - перехлест через МП с восстановлением его значения, вызвана током ионов Clв клетку.


Рис. 5.

Рефрактерность и возбудимость

Инактивация натриевой системы в процессе генерации потенциала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности. Постепенное восстановление потенциала покоя в процессе реполяризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.

Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности (в фазу медленной реполяризации), или экзальтации (в фазу медленной деполяризации). И наконец, фаза гиперполяризации снижает возбудимость и проявляется в виде субнормального периода.

Продолжительность периода абсолютной рефрактерности ограничивает максимальную частоту генерации потенциалов действия данным типом клеток. Например, при продолжительности периода абсолютной рефрактерности 4 мс максимальная частота равна 250 Гц.

Рис. 6.

Н. Е. Введенский ввел понятие лабильности, или функциональной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительностью периода рефрактерности. Наиболее лабильными являются волокна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.

Работа органов и тканей нашего организма зависит от многих факторов. Некоторые клетки (кардиомиоциты и нервы) зависят от передачи нервных импульсов, генерируемых в специальных компонентах клеток или узлах. В основе лежит образование специфической волны возбуждения, носящей название потенциала действия.

Что это такое?

Потенциалом действия принято называть волну возбуждения, передвигающуюся от клетки к клетке. За счет ее образования и прохождения через происходит кратковременное изменение их заряда (в норме внутренняя сторона мембраны заряжена отрицательно, а наружная - положительно). Образованная волна способствует изменению свойств ионных каналов клетки, что приводит к перезарядке мембраны. В тот момент, когда потенциал действия проходит через мембрану, происходит кратковременное изменение ее заряда, что приводит к изменению свойств клетки.

Образование данной волны лежит в основе функционирования а также системы путей проведения сердца.

При нарушении его образования развиваются многие заболевания, что делает определение потенциала действия необходимым в комплексе лечебно-диагностических мероприятий.

Как же образуется потенциал действия и что для него характерно?

История исследования

Изучение возникновения возбуждения в клетках и волокнах было начато довольно давно. Первыми его возникновение заметили биологи, изучавшие воздействие различных раздражителей на оголенный берцовый нерв лягушки. Ими было замечено, что при воздействии на него концентрированным раствором пищевой соли наблюдалось сокращение мышц.

В дальнейшем исследования были продолжены неврологами, однако основная наука после физики, изучающая потенциал действия - физиология. Именно физиологами было доказано наличие потенциала действия в клетках сердца и нервах.

По мере углубления в изучение потенциалов было доказано наличие и потенциала покоя.

С начала 19 века начали создаваться методы, позволяющие зафиксировать наличие данных потенциалов и измерить их величину. В настоящее время фиксация и изучение потенциалов действия проводится в двух инструментальных исследованиях - снятии электрокардиограмм и электроэнцефалограмм.

Механизм потенциала действия

Образование возбуждения происходит за счет изменения внутриклеточной концентрации ионов натрия и калия. В норме в клетке содержится больше калия, чем натрия. Внеклеточная концентрация ионов натрия значительно больше, чем в цитоплазме. Изменения, вызываемые потенциалом действия, способствуют изменению заряда на мембране, в результате чего обуславливается ток ионов натрия внутрь клетки. Из-за этого изменяются заряды снаружи и внутри заряжается положительно, а внешняя среда - отрицательно.

Это делается для облегчения прохождения волны по клетке.

После того как волна была передана через синапс, происходит обратное восстановление заряда за счет тока внутрь клетки отрицательно заряженных ионов хлора. Восстанавливаются исходные уровни заряда снаружи и внутри клетки, что приводит к образованию потенциала покоя.

Периоды покоя и возбуждения чередуются. В патологической клетке все может происходить иначе, и образование ПД там будет подчиняться несколько иным законам.

Фазы ПД

Течение потенциала действия можно разделить на несколько фаз.

Первая фаза протекает до образования (проходящим потенциалом действия стимулируется медленная разрядка мембраны, которая достигает максимального уровня, обычно он составляет около -90 мЭв). Данная фаза носит название предспайк. Осуществляется за счет входа в клетку ионов натрия.

Следующая фаза - пиковый потенциал (или спайк), образует параболу с острым углом, где восходящая часть потенциала означает деполяризацию мембраны (быстрая), а нисходящая часть - реполяризацию.

Третья фаза - отрицательный следовый потенциал - показывает следовую деполяризацию (переход от пика деполяризации до состояния покоя). Обусловлена входом ионов хлора внутрь клетки.

На четвертом этапе, фазе положительного следового потенциала, происходит возврат уровней заряда мембраны к исходному.

Данные фазы, обусловленные потенциалом действия, строго следуют одна за одной.

Функции потенциала действия

Несомненно, развитие потенциала действия имеет важное значение в функционировании тех или иных клеток. В работе сердца возбуждению принадлежит главная роль. Без него сердце было бы просто неактивным органом, но за счет распространения волны по всем клеткам сердца происходит его сокращение, что способствует проталкиванию крови по сосудистому руслу, обогащению ею всех тканей и органов.

Также не могла бы нормально выполнять свою функцию без потенциала действия. Органы не могли бы получать сигналы к выполнению той или иной функции, в результате чего были бы просто бесполезными. Кроме того, совершенствование передачи нервного импульса в нервных волокнах (появление миелина и перехватов Ранвье) позволило передавать сигнал за считаные доли секунды, что и обусловило развитие рефлексов и сознательных движений.

Кроме данных систем органов, потенциал действия образуется и во многих других клетках, однако в них он играет роль лишь в выполнении клеткой своих специфических функций.

Возникновение потенциала действия в сердце

Основным органом, работа которого основана на принципе образования потенциала действия, является сердце. За счет существования узлов образования импульсов осуществляется работа данного органа, функция которого заключается в доставке крови к тканям и органам.

Генерация потенциала действия в сердце происходит в синусовом узле. Он находится в месте впадения полых вен в правом предсердии. Оттуда импульс распространяется по волокнам проводящей системы сердца - от узла к атриовентрикулярному соединению. Проходя по точнее, по его ножкам, импульс проходит к правому и левому желудочку. В их толще расположены более мелкие пути проведения - волокна Пуркинье, по которым возбуждение доходит до каждой клетки сердца.

Потенциал действия кардиомиоцитов является составным, т.е. зависит от сокращения всех клеток сердечной ткани. При наличии блока (рубец после инфаркта) образование потенциала действия нарушается, что фиксируется на электрокардиограмме.

Нервная система

Как же образуется ПД в нейронах - клетках нервной системы. Тут все осуществляется несколько проще.

Внешний импульс воспринимается отростками нервных клеток - дендритами, связанными с рецепторами, расположенными как в коже, так и во всех других тканях (потенциал покоя и потенциал действия также сменяют друг друга). Раздражение провоцирует образование потенциала действия в них, после чего импульс через тело нервной клетки идет в ее длинный отросток - аксон, а от него через синапсы - к другим клеткам. Таким образом, образованная волна возбуждения доходит до головного мозга.

Особенностью нервной системы является наличие двух типов волокон - покрытых миелином и без него. Возникновение потенциала действия и его передача в тех волокнах, где есть миелин, осуществляется значительно быстрее, чем в демиелинезированных.

Данный феномен наблюдается из-за того, что распространение ПД по миелинизированным волокнам происходит за счет “прыжков” - импульс перескакивает участки миелина, что в результате уменьшает его путь и, соответственно, ускоряет распространение.

Потенциал покоя

Без развития потенциала покоя не было бы и потенциала действия. Под потенциалом покоя понимают нормальное, невозбужденное состояние клетки, при котором заряды внутри и вне ее мембраны значительно отличаются (то есть снаружи мембрана заряжена положительно, а внутри - отрицательно). Потенциал покоя показывает разницу между зарядами внутри и извне клетки. Обычно в норме он составляет от -50 до -110 мЭв. В нервных волокнах данная величина обычно равна -70 мЭв.

Обусловлен он миграцией ионов хлора внутрь клетки и созданием негативного заряда на внутренней стороне мембраны.

При смене концентрации внутриклеточных ионов (как было указано выше) ПП сменяет ПД.

В норме все клетки организма находятся в невозбужденном состоянии, поэтому смену потенциалов можно считать физиологически необходимым процессом, так как без них не могли бы осуществлять свою деятельность сердечно-сосудистая и нервная системы.

Значимость исследования потенциалов покоя и действия

Потенциал покоя и потенциал действия позволяют определить состояние организма, а также отдельных органов.

Фиксация потенциала действия с сердца (электрокардиография) позволяет определить его состояние, а также функциональную способность всех его отделов. Если изучать нормальную ЭКГ, то можно заметить, что все зубцы на ней есть проявление потенциала действия и последующего потенциала покоя (соответственно, возникновение данных потенциалов в предсердиях отображает зубец Р, а распространение возбуждения в желудочках - зубец R).

Что касаемо электроэнцефалограммы, то на ней возникновение различных волн и ритмов (в частности, альфа и бета-волн у здорового человека) также обусловлено возникновением потенциалов действия в нейронах головного мозга.

Данные исследования позволяют своевременно выявить развитие того или иного патологического процесса и обуславливают практически до 50 процентов успешного лечения исходного заболевания.