Предикаты и логические операции над ними кратко. Предикат

ОПРЕДЕЛЕНИЕ 5. ДИЗЪЮНКЦИЕЙ предикатов, заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х из множества Х (х Х), при которых хотя бы один из предикатов А(х) и В(х) обращается в истинное высказывание.

Width:="" auto="">

Можно заметить, что множеством истинности дизъюнкции предикатов является объединение множеств ТА и Т В, т. е. Т А В =ТА ТВ. Докажем это предположение.

1). Сначала докажем, что множество Т А В является подмножеством множества ТА ТВ (Т А В ТА ТВ). Пусть x = a – произвольный элемент из множества ТА В, т. е. а ТА В. Следовательно, А(а) В(а) – «и» высказывания. По определению, А(а) В(а) – «и» только тогда, когда А(а) – «и» или В(а) – «и. »

Если А(а) – и, то а ТА, если В(а) - и, то а ТВ. Т. к. А(а) В(а) – и, то а ТА или а ТВ –, это значит, что а ТА ТВ. а - произвольный элемент из ТА В, следовательно, все элементы множества ТА В принадлежат множеству ТА ТВ, т. е. ТА В ТА ТВ, ч. т. д.

2). Докажем, что множество ТА ТВ является подмножеством множества Т А В (ТА ТВ Т А В). Пусть х = в – произвольный элемент из ТА ТВ, в ТА ТВ, по определению, в ТА или в ТВ А(в) – «и» или В(в)- «и» А(в) В В(в)- «и» в ТА В.

Следовательно, если в ТА ТВ, то в ТА В. т. к. Т. К. в – произвольный элемент из ТА ТВ, то ТА ТВ Т А В, ч. т. д.

Из пунктов 1 и 2 по определению равных множеств следует справедливость равенства Т А В = ТА ТВ Заметим, что полученное правило справедливо и для предикатов, содержащих более одной переменной.

ПРИМЕР. Предикаты: А(х)- «х-делитель числа 15» и В(х) - «х –делитель числа 16» . Множество истинности А(х)- ТА ={1, 3, 5, 15 }, множество истинности В(х) -ТВ ={1, 2, 4, 8, 16}. Множество истинности дизъюнкции предикатов Т А В = {1, 2, 3, 4, 5, 8, 15, 16}.

ОПРЕДЕЛЕНИЕ 6. ОТРИЦАНИЕМ предиката А(х), заданного на множестве Х, называется предикат А(х) (« не А(х) »), определенный на том же множестве и истинный при тех и только тех значениях переменной х из множества Х (х Х), при которых предикат А(х) обращается в ложное высказывание.

ПРИМЕР. Предикат А(х)- « х - четное число » . Отрицание предиката: А(х) «х - нечетное число» . Пусть область определения предиката А(х) - Х={х, х N, х

Множество истинности предиката А(х) - все нечетные числа, меньшие 10: ТА = {1, 3, 5, 7, 9}. Из примера видно, что ТА = Х ТА = ТА т. е. множество истинности предиката « не А(х) » является дополнением к множеству истинности предиката А(х). Х = ТА

КВАНТОР – общее название для логических операций, которые по предикату Р(х) строят высказывание, характеризующее область истинности предиката Р(х). В математической логике наиболее употребительны квантор всеобщности (х), квантор существования (х) и квантор единственности существования (! х).

Выражение «для всех х» («для любого х» , «для каждого х») называется квантором общности и обозначается х. Выражение «существует такое х» («для некоторых х» , «хотя бы для одного х» , «найдется такое х») называется квантором существования и обозначается х.

Высказывание, полученное из предиката Р(х) при помощи квантора общности, записывается в виде (х Х) Р(х) Высказывание, полученное из предиката Р(х) при помощи квантора существования, записывается в виде (х Х) Р(х) Высказывание «существует одно и только одно х X, для которого истинно Р(х) обозначают (!х X) Р(х)

Для того чтобы получить высказывание из многоместного предиката надо связать кванторами каждую переменную. Например, если Р (х, у) – двухместный предикат, то (х Х)(у Y) Р(х, у) – высказывание. ПРИМЕР. Задан предикат Р(х, у): «х>у» . Для получения высказывания надо связать кванторами обе переменные: например, (Х)(у) х>у или (у)(х) х>у.

ОПРЕДЕЛЕНИЕ ИСТИННОСТИ ВЫСКАЗЫВАНИЯ С КВАНТОРАМИ ИСТИННОСТЬ высказывания с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их) достаточно привести контрпример. .

Истинность высказывания с квантором существования устанавливается при помощи конкретного примера. Для опровержения такого высказывания необходимо провести доказательство. Для чего нужны кванторы?

ВЫВОД. ПРЕДИКАТ обращается в ВЫСКАЗЫВАНИЕ двумя способами: 1). По определению, подставив вместо переменных их конкретные значения из области определения предиката; 2). Связать кванторами переменные, содержащиеся в предикате. Если предикат содержит несколько переменных, необходимо связать квантором каждую переменную.

ПРИМЕР. Пусть дано высказывание А: « Любые четные числа кратны 3» . Высказывание А: « Не любые четные числа кратны 3» или высказывание А: «Неверно, что любые четные числа кратны 3» , другими словами это можно сказать так: «существуют (есть) четные числа не кратные 3» . 8, 10, …

Для построения отрицания высказываний с кванторами надо: 1) квантор общности заменить на квантор существования, а квантор существования на квантор общности; 2) предложение, стоящее после квантора, заменить его отрицанием. (х Х) А(х) = (х Х) А (х) (х Х) А(х) = (х Х)А (х). Таким образом, получаем две равносильности. Или перед данным высказыванием ставят слова: «неверно, что» .

Это правило сохраняется и в том случае, если высказывание содержит не один, а несколько кванторов, например: (х Х)(х Y) А(х, y) = (х Х) (х Y) А (х, y) Для построения отрицания полезны следующие формулы: А(х) В(х) = А(х) В(х) , А(х) В(х)=А(х) В(х)

Рассмотрим два предиката А (х) и В (х). Пусть А (х) – «х: 6» ; В (х) – «х: 3» . Образуем импликацию предикатов «Если х: 6, то х: 3» . Множества истинности предикатов А(х) – ТА= {6, 12, 18, …}; В(х) – ТВ = {3, 6, 9, 12, 15, 18, … }. Из того, что «х: 6» всегда следует, что «х: 3» .

В этом случае говорят, что предикат В(х) логически следует из предиката А(х), а предикаты А(х) и В(х) находятся в отношении логического следования.

В этом случае множество истинности импликации таких предикатов совпадает с ее областью определения Т А В = Х. Отношение логического следования обозначается всегда А(х) => В (х).

Предикат А(х) называют достаточным условием для В(х), а предикат В(х) называют необходимым условием для предиката А(х). Это возможно тогда и только тогда, когда ТА ТВ. .

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-32.jpg" alt="Пример. Предложение «х: 6» => «х: 3» в этом случае читают так: чтобы «х:"> Пример. Предложение «х: 6» => «х: 3» в этом случае читают так: чтобы «х: 3» – достаточно, чтобы «х: 6» , а чтобы «х: 6» необходимо, чтобы «х: 3» .

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-33.jpg" alt="Логическое следование: достат. необход. А(х) => B(x), TА ТВ "> Логическое следование: достат. необход. А(х) => B(x), TА ТВ

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-34.jpg" alt="Пример: Предложение «х: 4» => «х: 2» в этом случае читают так: чтобы «х:"> Пример: Предложение «х: 4» => «х: 2» в этом случае читают так: чтобы «х: 2» – достаточно, чтобы «х: 4» , а для того чтобы «х: 4» необходимо, чтобы «х: 2» .

Если из А(х) следует В(х) и из В(х) следует А(х), то предикаты А(х) и В(х) называют равносильными или эквивалентными и записывают А(х) В(х). Это возможно тогда и только тогда, когда ТА= ТВ.

В этом случае А(х) является необходимым и достаточным условием для В(х), а В(х) – необходимым и достаточным условием для А(х). При этом А(х) => В(х) и В(х) =>А (х). ПРИМЕР. А(х)- «число х делится на 9» , В(х)- «сумма цифр числа х делится на 9» . А(х) В(х)

Теорема –это предложение (утверждение), истинность которого может быть доказана. Теоремы часто формулируются в виде импликаций: если А(х), то В(х) для каждого х, т. е. (х х)А(х) => В(х).

Src="https://present5.com/presentation/3/-42558499_158059721.pdf-img/-42558499_158059721.pdf-39.jpg" alt="(х х)А(х) => В(х). Чаще всего ее записывают так А => В (1)"> (х х)А(х) => В(х). Чаще всего ее записывают так А => В (1) Для всякой теоремы (1) можно сформулировать предложение: «Если В, то А» - обратное данному. Но не всегда это предложение является теоремой.

Пример. «Если углы вертикальные, то они равные» . Обратное предложение: « Если углы равны, то они вертикальные» . или «Если четырехугольник – прямоугольник, то в нем диагонали равны» . Обратное: не верно. Какой пример?

Но если обратное предложение – истинно, то оно наз. обратной теоремой. Например: Т 1: « Если треугольник прямоуг. , то квадрат гипотенузы равен сумме квадратов катетов» Обратное: « Если в треугольнике квадрат одной стороны равен сумме квадратов двух других, то треуг. – прямоуг. » Это -истина, поэтому оно наз. Теоремой, обратной данной.

Если в теореме Для всякой теоремы « Если А, то В» можно сформулировать предложение: « Если не А, то не В» . (если А, то В) Это предложение наз. Противоположным данному. Всегда ли оно будет теоремой? Пример. В том случае, если предложение является теоремой, то его наз. теоремой, противоположной данной. Если

Итак, если для теоремы «Если А, то В» сформулировать предложение, обратное или противоположное ей, то их надо доказывать и только тогда они будут наз. теоремой, обратной или противоположной данной. , если их истинность будет доказана

Для всякой теоремы « Если А, то В» можно сформулировать предложение « Если не В, то не А» «Если В, то А» - обратным противоположному. «Если углы -вертикальные, то они равны» и « если углы не равны, то они и не вертикальные» . Эти предложения всегда истинны, т. е всегда теорема. (А В В А). Эту равносильность наз. законом контрапозиции

Примеры: 1. Если четырехугольник – ромб, то его диагонали взаимно перпедикулярны. 2. Если каждое слагаемое - четное число, то и сумма - четная.

Это предложение наз. Противоположным данному. Всегда ли оно будет теоремой? Пример. В том случае, если предложение является теоремой, то его наз. теоремой, противоположной данной. Итак, если для теоремы «Если А, то В» сформулировать предложение, обратное или противоположное ей, то их надо доказывать и только тогда они будут наз. теоремой, обратной или противоположной данной.

Предикаты так же, как высказывания, могут принимать два значения: “истина” (1) и “ложь” (0), поэтому к ним применимы все операции логики высказываний, в результате чего из элементарных предикатов формируются сложные предикаты (как и в логике высказываний, где из элементарных высказываний формировались сложные, составные). Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов. Эти операции в логике предикатов сохраняют тот же смысл, который был им присвоен в логике высказываний.

Пусть на некотором множестве M определены два предиката P(x) и Q(x).

Определение 1.

Конъюнкцией двух предикатов P(x) и Q(x) называется новый (сложный) предикат , который принимает значение “истина” при тех и только тех значениях , при которых каждый из предикатов принимает значение “истина”, и принимает значение “ложь” во всех остальных случаях.

Очевидно, что областью истинности предиката является общая часть области истинности предикатов P(x) и Q(x), т.е. пересечение .

Так, например, для предикатов P(x): “x – четное число” и Q(x): “x кратно 3” конъюнкцией является предикат “x – четное число и x кратно трем”, т.е. предикат “x делится на 6”.

Определение 2.

Дизъюнкцией двух предикатов P(x) и Q(x) называется новый предикат , который принимает значение “ложь” при тех и только тех значениях , при которых каждый из предикатов принимает значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Ясно, что областью истинности предиката является объединение области истинности предикатов P(x) и Q(x), т.е. .

Определение 3.

Отрицанием предиката P(x) называется новый предикат или , который принимает значение “истина” при всех значениях , при которых предикат P(x) принимает значение “ложь”, и принимает значение “ложь” при тех значениях , при которых предикат P(x) принимает значение “истина”.

Очевидно, что , т.е. множество истинности предиката является дополнением к множеству I P .

Определение 4.

Импликацией предикатов P(x) и Q(x) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно P(x) принимает значение “истина”, а Q(x) – значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Поскольку при каждом фиксированном справедлива равносильность , то .

Определение 5.

Эквиваленцией предикатов P(x) и Q(x) называется новый предикат , который обращается в “истину” при всех тех и только тех , при которых P(x) и Q(x) обращаются оба в истинные или оба в ложные высказывания.

Для его множества истинности имеем:

Свободные и связанные переменные. Кванторы всеобщности и существования, их взаимосвязь.

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:
Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).
Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).
В математической логике приписывание квантора к формуле называется связыванием или квантификацией.
В многозначных логиках также вводятся и другие кванторы, например, квантор плюральности (квантор Решера) (обозначается перевёрнутой M, читается «для большинства …»).
Содержание [убрать]
1 Примеры
2 Введение в понятие
3 Кванторы в математической логике
3.1 Свободные и связанные переменные
3.2 Операции над кванторами
4 История появления
5 Литература
6 Ссылки
7 Примечания
Примеры[править | править исходный текст]

Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):
любое натуральное число кратно 5;
каждое натуральное число кратно 5;
все натуральные числа кратны 5;
следующим образом:
.
Следующие (уже истинные) высказывания используют квантор существования:
существуют натуральные числа, кратные 5;
найдётся натуральное число, кратное 5;
хотя бы одно натуральное число кратно 5.
Их формальная запись:
.

Пусть на множестве простых чисел задан предикат: «Простое число нечётно». Подставим перед этим предикатом слово «любое». Получим ложное высказывание «любое простое число нечётно» (это высказывание ложно, так как 2 - простое чётное число).
Подставив перед данным предикатом слово «существует», получим истинное выcказывание «Существует простое число, являющееся нечётным» (например,).
Таким образом, превратить предикат в высказывание можно, поставив перед предикатом слова («все», «существует» и другие), называемые в логике кванторами.
Кванторы в математической логике[править | править исходный текст]

Высказывание означает, что область значений переменной включена в область истинности предиката.
(«При всех значениях утверждение верно»).
Высказывание означает, что область истинности предиката непуста.
(«Существует при котором утверждение верно»).

Свободные и связанные переменные[править | править исходный текст]
Множество свободных переменных* формулы F определяется рекурсивно, следующим образом:
Свободные переменные.
Все переменные, входящие в атомарную формулу, являются свободными переменными этой формулы,
свободные переменные формулы F являются свободными переменными формулы F,
переменные, являющиеся свободными для хотя бы одной из формул F или G, являются свободными переменными формулы (F Д G),
все свободные переменные формулы F кроме v являются свободными переменными формулы Kv F.
Замкнутая формула.
Формула без свободных переменных называется замкнутой формулой, или предложением.
Связанная переменная.
Переменная v связана в формуле F, если F содержит вхождение Kv, где K - квантор.
Связанное переименованию
Квантор всеобщности (обозначения: , ∀) - это условие, которое верно для всех обозначенных элементов, в отличие от квантора существования, где условие верно только для каких-то отдельных элементов из указанного множества. Формально говоря, это квантор, используемый для обозначения того, что множество целиком лежит в области истинности указанного предиката. Читается как: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…».
Квантор всеобщности - это попытка формализации обозначения того, что нечто (логическое выражение) истинно для всего, или для любой относящейся к делу сущности. Применяется в предикатной логике и символической логике.
В предикатной логике, квантор существования (экзистенциальный квантификатор) - это предикат свойства или отношения для, по крайней мере, одного элемента области определения. Он обозначается как символ логического оператора ∃ (произносится как «существует» или «для некоторого»). Квантор существования отличается от квантора всеобщности, который утверждает, что свойство или отношение выполняется для всех элементов области.

Понятие предиката

Определение 1

Предикат - утверждение, которое содержит переменные, принимающие значение $1$ или $0$ (истинно или ложно) в зависимости от значений переменных.

Пример 1

Например, выражение $x=x^5$ является предикатом, т.к. оно является истинным при $x=0$ или $x=1$ и ложным при всех остальных значениях $x$.

Определение 2

Множество, на котором предикат принимает только истинные значения, называется множеством истинности предиката $I_p$.

Предикат называется тождественно-истинным , если на любом наборе аргументов он принимает истинное значение:

$P (x_1, \dots, x_n)=1$

Предикат называется тождественно-ложным , если на любом наборе аргументов он принимает ложное значение:

$P (x_1, \dots, x_0)=0$

Предикат называется выполнимым , если хотя бы на одном наборе аргументов он принимает истинное значение.

Т.к. предикаты могут принимать только два значения (истинно/ложно или $0/1$), то к ним можно применять все операции алгебры логики: отрицание, конъюнкция, дизъюнкция и т.д.

Примеры предикатов

Пусть предикат $R(x, y)$: $«x = y»$ обозначает отношение равенства, где $x$ и $y$ принадлежат множеству целых чисел. В этом случае предикат R будет принимать истинное значение для всех равных $x$ и $y$.

Другой пример предиката -- РАБОТАЕТ($x, y, z$) для отношения «$x$ работает в городе y в компании $z$».

Еще один пример предиката -- НРАВИТСЯ($x, y$) для «x нравится y» для $x$ и $y$, которые принадлежат $M$ -- множеству всех людей.

Таким образом, предикатом является все то, что утверждается или отрицается о субъекте суждения.

Операции над предикатами

Рассмотрим применение операций алгебры логики к предикатам.

Логические операции:

Определение 3

Конъюнкция двух предикатов $A(x)$ и $B(x)$ -- предикат, который принимает истинное значение при тех и только тех значениях $x$ из $T$, при которых каждый из предикатов принимает истинное значение, а ложное значение -- во всех остальных случаях. Множество истинности $T$ предиката -- пересечение множеств истинности предикатов $A(x)$ и $B(x)$. Например: предикат $A(x)$: «$x$ -- чётное число», предикат $B(x)$: «$x$ делится на $5$». Таким образом, предикатом будет выражение «$x$ -- чётное число и делится на $5$» или «$x$ делится на $10$».

Определение 4

Дизъюнкция двух предикатов $A(x)$ и $B(x)$ -- предикат, который принимает ложное значение при тех и только тех значениях $x$ из $T$, при которых каждый из предикатов принимает ложное значение и принимает истинное значение во всех остальных случаях. Множество истинности предиката -- объединение областей истинности предикатов $A(x)$ и $B(x)$.

Определение 5

Отрицание предиката $A(x)$ -- предикат, который принимает истинное значение при всех значениях $x$ из $T$, при которых предикат $A(x)$ принимает ложное значение и наоборот. Множество истинности предиката $A(x)$ -- дополнение $T"$ к множеству $T$ в множестве $x$.

Определение 6

Импликация предикатов $A(x)$ и $B(x)$ -- предикат, который является ложным при тех и только тех значениях $x$ из $T$, при которых $A(x)$ -- истинно, а $B(x)$ -- ложно, и принимает истинное значение во всех остальных случаях. Читается: «Если $A(x)$, то $B(x)$».

Пример 2

Пусть $A(x)$: «Натуральное число $x$ делится на $3$»;

$B(x)$: «Натуральное число $x$ делится на $4$».

Составим предикат: «Если натуральное число $x$ делится на $3$, то оно делится и на $4$».

Множество истинности предиката -- объединение множества истинности предиката $B(x)$ и дополнения к множеству истинности предиката $A(x)$.

Над предикатами помимо логических операций можно выполнять квантовые операции: применение квантора всеобщности, квантора существования и т.д.

Кванторы

Определение 7

Кванторы -- логические операторы, применение которых к предикатам превращает их в ложные или истинные высказывания.

Определение 8

Квантор -- логические операции, которые ограничивают область истинности предиката и создают высказывание.

Чаще всего используют кванторы:

    квантор всеобщности (обозначается символом $\forall x$) -- выражение «для всех $x$» («для любого $x$»);

    квантор существования (обозначается символом $\exists x$) -- выражение «существует $x$ такое, что... »;

    квантор единственности и существования (обозначается $\exists !x$) -- выражение «существует точно одно такое $x$, что... ».

В математической логике существует понятие связывание или квантификация , которые обозначают приписывание квантора к формуле.

Примеры применения кванторов

Пусть -- предикат «$x$ кратно $7$».

С помощью квантора всеобщности можно записать следующие ложные высказывания:

    любое натуральное число делится на $7$;

    каждое натуральное число делится на $7$;

    все натуральные числа делятся на $7$;

который будет иметь вид:

Рисунок 1.

Для записи истинных высказываний используем квантор существования :

    существуют натуральные числа, которые делятся на $7$;

    найдётся натуральное число, которое делится на $7$;

    хотя бы одно натуральное число делится на $7$.

Запись будет иметь вид:

Рисунок 2.

Пусть на множестве $x$ простых чисел задан предикат: «Простое число является нечетным». Поставив перед предикатом слово «любое», получим ложное высказывание: «Любое простое число является нечетным» (например, $2$ является простым четным числом).

Поставим перед предикатом слово «существует» и получим истинное высказывание: «Существует простое число, которое является нечетным» (например, $x=3$).

Таким образом, предикат можно превратить в высказывание, если поставить перед предикатом квантор.

Операции над кванторами

Для построения отрицания высказываний, которые содержат кванторы, применяется правило отрицания кванторов :

Рисунок 3.

Рассмотрим предложения и выделим среди них предикаты, указав область истинности каждого из них.

Предикаты так же, как высказывания, могут принимать два значения: “истина” (1) и “ложь” (0), поэтому к ним применимы все операции логики высказываний, в результате чего из элементарных предикатов формируются сложные предикаты (как и в логике высказываний, где из элементарных высказываний формировались сложные, составные). Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов. Эти операции в логике предикатов сохраняют тот же смысл, который был им присвоен в логике высказываний.

Пусть на некотором множестве M определены два предиката P(x) и Q(x).

Определение 1.

Конъюнкцией двух предикатов P(x) и Q(x) называется новый (сложный) предикат , который принимает значение “истина” при тех и только тех значениях , при которых каждый из предикатов принимает значение “истина”, и принимает значение “ложь” во всех остальных случаях.

Очевидно, что областью истинности предиката является общая часть области истинности предикатов P(x) и Q(x), т.е. пересечение .

Так, например, для предикатов P(x): “x – четное число” и Q(x): “x кратно 3” конъюнкцией является предикат “x – четное число и x кратно трем”, т.е. предикат “x делится на 6”.

Определение 2.

Дизъюнкцией двух предикатов P(x) и Q(x) называется новый предикат , который принимает значение “ложь” при тех и только тех значениях , при которых каждый из предикатов принимает значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Ясно, что областью истинности предиката является объединение области истинности предикатов P(x) и Q(x), т.е. .

Определение 3.

Отрицанием предиката P(x) называется новый предикат или , который принимает значение “истина” при всех значениях , при которых предикат P(x) принимает значение “ложь”, и принимает значение “ложь” при тех значениях , при которых предикат P(x) принимает значение “истина”.

Очевидно, что , т.е. множество истинности предиката является дополнением к множеству I P .

Определение 4.

Импликацией предикатов P(x) и Q(x) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно P(x) принимает значение “истина”, а Q(x) – значение “ложь”, и принимает значение “истина” во всех остальных случаях.

Поскольку при каждом фиксированном справедлива равносильность , то .

Определение 5.

Эквиваленцией предикатов P(x) и Q(x) называется новый предикат , который обращается в “истину” при всех тех и только тех , при которых P(x) и Q(x) обращаются оба в истинные или оба в ложные высказывания.

Для его множества истинности имеем:

Кванторные операции.

Рассмотрим операции, преобразующие предикаты в высказывания.

Пусть имеется предикат Р(х) определенный на множестве М. Если “а” – некоторый элемент из множества М, то подстановка его вместо х в предикат Р(х) превращает этот предикат в высказывание Р(а). Такое высказывание называют единичным . Например, r(x): “х – четное число” – предикат, а r (6)- истинное высказывание, r (3) – ложное высказывание.

Это же относится и к n – местным предикатам: если вместо всех предметных переменных х i , i= подставить их значения, то получим высказывание.

Наряду с образованием из предикатов высказываний в результате таких подстановок в логике предикатов рассматриваются еще две операции, которые превращают одноместный предикат в высказывание. Эти операции называются операциями квантификации (или просто квантификацией, или связыванием кванторами, или навешиванием кванторов). При этом рассматриваются, соответственно, два типа так называемых кванторов.

1.1 Квантор всеобщности.

Пусть Р(х) – предикат , определенный на множестве М. Под выражением понимают высказывание , истинное, когда Р(х) истинно для каждого элемента х из множества М, и ложное в противном случае. Это высказывание уже не зависит от х. Соответствующее ему словесное выражение звучит так: “Для всякого х Р(х) истинно ”.

Символ называют квантором всеобщности (общности). Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), в высказывании же х называют связанной квантором всеобщности.

1.2 Квантор существования.

Пусть P(x) -предикат определенный на множестве М. Под выражением понимают высказывание , которое является истинным, если существует элемент , для которого P(x) истинно, и ложным – в противном случае. Это высказывание уже не зависит от x. Соответствующее ему словесное выражение звучит так: “Существует x, при котором P(x) истинно.” Символ называют квантором существования. В высказывании переменная x связана этим квантором (на нее навешен квантор).

Кванторные операции применяются и к многоместным предикатам. Пусть, например, на множестве М задан двухместный предикат P(x,y). Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат (или одноместный предикат ), зависящий от переменной y и не зависящий от переменной x. К ним можно применить кванторные операции по переменной y, которые приведут уже к высказываниям следующих видов:

Рассмотрим предикат P(x) определенный на множестве M={a 1 ,…,a n }, содержащем конечное число элементов. Если предикат P(x) является тождественно - истинным, то истинными будут высказывания P(a 1),P(a 2),…,P(a n). При этом истинными будут высказывания и конъюнкция .

Если же хотя бы для одного элемента P(a k)окажется ложным, то ложными будут высказывание и конъюнкция . Следовательно, справедлива равносильность .

Численные кванторы.

В математике часто встречаются выражения вида “по меньшей мере n” (“хотя бы n”), “не более чем n”, “n и только n” (“ровно n”), где n – натуральное число.

Эти выражения, называемые численными кванторами , имеют чисто логический смысл; они могут быть заменены равнозначными выражениями, не содержащими числительных и состоящими только из логических терминов и знака или ~, означающего тождество (совпадение) объектов.

Пусть n=1. Предложение “По меньшей мере один объект обладает свойством P” имеет тот же смысл, что и предложение “Существует объект, обладающий свойством P”, т.е. (*)

Предложение “не более чем один объект обладает свойством P” равнозначно предложению “Если есть объекты, обладающие свойством P, то они совпадают”, т.е. (**) Предложение “один и только один объект обладает свойством P” равнозначно конъюнкции вышеуказанных предложений (*) и (**).

1.3 Отрицание предложений с кванторами.

Известно, что часто для отрицания некоторого предложения достаточно предпослать сказуемому этого предложения отрицательную частицу “не”. Например, отрицанием предложения “Река х впадает в Черное море.” является предложение “ Река х не впадает в Черное море ”. Годится ли этот прием для построения отрицаний предложений с кванторами? Рассмотрим пример.

Отношение порядка. Упорядоченные множества

Определение. Отношение R на множестве Х называется отношением порядка, если оно транзитивно и асимметрично или антисимметрично.

Определение. Отношение R на множестве Х называется отношением строгого порядка, если оно транзитивно и асимметрично.

Примеры отношений строгого порядка: «больше» на множестве натуральных чисел, «выше» на множестве людей и др.

Определение. Отношение R на множестве Х называется отношением нестрогого порядка, если оно транзитивно и антисимметрично.

Примеры отношений нестрогого порядка: «не больше» на множестве действительных чисел, «быть делителем» на множестве натуральных чисел и др.

Определение. Множество Х называют упорядоченным, если на нем задано отношение порядка.

Пример . На множестве Х = {1; 2; 3; 4; 5} заданы два отношения: «х £ у » и «х – делитель у ».

Оба эти отношения обладают свойствами рефлексивности, антисимметричности и транзитивности (постройте графы и проверьте свойства самостоятельно), т.е. являются отношением нестрогого порядка. Но первое отношение обладает свойством связности, а второе – нет.

Определение. Отношение порядка R на множестве Х называется отношением линейного порядка, если оно обладает свойством связности.

В начальной школе изучаются многие отношения порядка. Уже в первом классе водятся отношение «меньше», «больше» на множестве натуральных чисел, «короче», «длиннее» на множестве отрезков и др.

Контрольные вопросы

1. Дайте определение бинарного отношения на множестве Х .

2. Как записать утверждение о том, что элементы х и у находятся в отношении R ?

3. Перечислите способы задания отношений.

4. Сформулируйте свойства, которыми могут обладать отношения. Как данные свойства отражаются на графе?

5. Какими свойствами должно обладать отношение, чтобы оно являлось отношением эквивалентности?

6. Как отношение эквивалентности связано с разбиением множества на классы?

7. Какими свойствами должно обладать отношение, чтобы оно являлось отношением порядка?


Глава 5. Предикаты и теоремы

В математике часто встречаются предложения, содержащие одну или несколько переменных, например: «х + 2 = 7», «город стоит на Волге». Эти предложения не являются высказываниями, т.к. о них нельзя сказать, истинны они или ложны. Однако при подстановке конкретных значений переменной х они обращаются в истинные или ложные высказывания. Так, в первом примере при х = 5 получаем истинное высказывание, а при х = 3 – ложное высказывание.

Определение . Предложение с переменными, которое при конкретных значениях переменных обращается в высказывание, называется высказывательной формой или предикатом.



По числу входящих в предикат переменных различают одноместные, двухместные и т.д. предикаты и обозначают А (х ), В (х;у )…

Пример : А (х ): «х делится на 2» – одноместный предикат, В (х ; у ): «прямая х перпендикулярна прямой у » – двухместный предикат.

Следует иметь в виду, что в предикате переменные могут содержаться неявно: «число делится на 2», «студент получил отличную оценку на экзамене по математике».

Задание предиката, как правило, предполагает и задание множества, из которого выбираются значения переменных, входящих в предикат.

Определение . Множеством (областью) определения предиката называется множество Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание.

Так, предикат «х > 2» можно рассматривать на множестве натуральных чисел или действительных чисел.

Каждый предикат А (х ), х Î Х определяет множество Т Ì Х , состоящее из элементов, при подстановке которых в предикат А (х ) вместо х получается истинное высказывание.

Определение . Множество, состоящее из всех тех значений, при подстановке которых в предикат получается истинное высказывание, называется множеством истинности предиката (обозначается Т ).

Пример . Рассмотрим предикат А (х ): «х < 5», заданный на множестве натуральных чисел. Т = {1; 2; 3; 4}.

Предикаты, как и высказывания, бывают элементарными и составными. Составные предикаты образуются из элементарных при помощи логических связок.

Пусть Т А А (х ), Т В – область истинности предиката В (х ).

Определение . Конъюнкцией предикатов А (х ) и В (х ) называется предикат А (х ) Ù В (х х Î Х , для которых оба предиката истинны.

Покажем, что Т А Ù В = Т А ÇТ В .

Доказательство . 1) Пусть а Î Т А Ù В Þ А (а ) Ù В (а ) – истинное высказывание. По определению конъюнкции имеем: А (а ) – истинно, В (а ) – истинно Þ а Î Т А Ù а Î Т В Þ а Î Т А Ç Т В Þ Т А Ù В Ì Т А Ç Т В.

2) Пусть b Î Т А Ç Т В Þ b Î Т А Ù b Î Т В Þ А (b ) – истинно, В (b ) – истинно Þ по определению конъюнкции А (b ) Ù В (b ) – истинное высказывание Þ b Î Т А Ù В Þ Т А Ç Т В Ì Т А Ù В .

Т.к. Т А Ù В Ì Т А Ç Т В и Т А Ç Т В Ì Т А Ù В , то по свойству равенства множеств Т А Ù В = Т А ÇТ В , что и требовалось доказать.

Заметим, что полученное правило справедливо и для предикатов, содержащих более одной переменной.

Пример . Рассмотрим предикаты А (х ): «х < 10», В (х ): «х А (х ) Ù В (х ): «х < 10 и делится на 3».

Т А = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, Т В = {3; 6; 9; 12; 15; …}, тогда Т А Ù В = {3; 6; 9}.

Определение . Дизъюнкцией предикатов А (х ) и В (х ) называется предикат А (х ) Ú В (х ), который истинен для тех и только тех значениях х Î Х , для которых истинен хотя бы один из предикатов.

Можно доказать (самостоятельно), что Т А Ú В = Т А ÈТ В .

Пример . Рассмотрим предикаты А (х ): «х делится на 2 », В (х ): «х делится на 3», заданные на множестве натуральных чисел. Найдем область истинности предиката А (х ) Ú В (х ): «х делится на 2 или на 3».

Т А = {2; 4; 6; 8; 10;…}, Т В = {3; 6; 9; 12; 15; …}, Т А Ú В = {2; 3; 4; 6; 8; 9; …}.

Определение . Отрицанием предиката А (х ) называется предикат . Он истинен для тех и только тех значениях х Î Х , для которых предикат А (х ) ложен и наоборот.

Заметим, что = .

Определение . Импликацией предикатов А (х ) и В (х ) называется предикат А (х ) Þ В (х ) (читают: «Если А (х ), то В (х )»). Он обращается в ложное высказывание при тех значениях х Î Х , для которых предикат А (х ) истинен, а предикат В (х ) ложен.

Из определения имеем, что предикат А (х ) Þ В (х ) ложен на множестве Т А Ç , а следовательно истинен на дополнении к этому множеству. Воспользовавшись законами операций над множествами, имеем: .

Контрольные вопросы

1. Что называется высказывательной формой или предикатом?

2. Какие различают предикаты по числу входящих в них переменных? Приведите примеры.

3. Какое множество называют областью определения предиката?

4. Какое множество называют множеством истинности предиката?

5. Что называют конъюнкцией предикатов? Докажите равенство, связывающее область истинности конъюнкции предикатов с областями истинности этих предикатов.

6. Дайте определения дизъюнкции, отрицания, импликации предикатов. Запишите равенства, связывающие области истинности конъюнкции предикатов с областями истинности этих предикатов.