Предмет и методы классической электродинамики. Предмет классической электродинамики

Предмет классической электродинамики

Классическая электродинамика – это теория, объясняющая поведение электромагнитного поля, осуществляющего электромагнитное взаимодействие между электрическими зарядами.

Законы классической макроскопической электродинамики сформулированы в уравнениях Максвелла, которые позволяют определять значения характеристик электромагнитного поля: напряженности электрического поля Е и магнитной индукции В в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.

Взаимодействие неподвижных электрических зарядов описывается уравнениями электростатики, которые можно получить как следствие уравнений Максвелла.

Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической электродинамике определяется уравнениями Лоренца-Максвелла, которые лежат в основе классической статистической теории электромагнитных процессов в макроскопических телах. Усреднение этих уравнений приводит к уравнениям Максвелла.

Среди всех известных видов взаимодействия электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных (положительных и отрицательных) частиц, электромагнитное взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационного и слабого, а с другой – является дальнодействующим в отличие от сильного взаимодействия.

Электромагнитным взаимодействием определяется строение атомных оболочек, сцепление атомов в молекулы (силы химической связи) и образование конденсированного вещества (межатомное взаимодействие, межмолекулярное взаимодействие).

Законы классической электродинамики неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн, т.е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики.


1.2. Электрический заряд и его дискретность.
Теория близкодействия

Развитие физики показало, что физические и химические свойства вещества во многом определяются силами взаимодействия, обусловленными наличием и взаимодействием электрических зарядов молекул и атомов различных веществ.

Известно, что в природе существуют два вида электрических зарядов: положительные и отрицательные. Они могут существовать в виде элементарных частиц: электронов, протонов, позитронов, положительных и отрицательных ионов и др., а также "свободного электричества", но только в виде электронов. Поэтому положительно заряженное тело представляет собой совокупность электрических зарядов с недостатком электронов, а отрицательно заряженное тело – с их избытком. Заряды различных знаков компенсируют друг друга, следовательно, в незаряженных телах всегда имеются заряды обеих знаков в таких количествах, что их суммарное действие скомпенсировано.

Процесс перераспределения положительных и отрицательных зарядов незаряженных тел, или среди отдельных частей одного и того же тела, под влиянием различных факторов называется электризацией .

Так как при электризации происходит перераспределение свободных электронов, то электризуются, например, оба взаимодействующих тела, причем одно из них положительно, а другое – отрицательно. Количество же зарядов (положительных и отрицательных) при этом остается неизменным.

Отсюда следует вывод, что заряды не создаются и не исчезают, а лишь перераспределяются между взаимодействующими телами и частями одного и того же тела, в количественном отношении оставаясь неизменными.

В этом заключается смысл закона сохранения электрических зарядов, который математически можно записать так:

т.е. в изолированной системе алгебраическая сумма электрических зарядов остается величиной постоянной.

Под изолированной системой понимают такую систему, через границы которой не проникает никакое другое вещество, за исключением фотонов света, нейтронов, так как они не несут заряда.

Надо иметь в виду, что полный электрический заряд изолированной системы является релятивистки инвариантным, т.к. наблюдатели, находящиеся в любой заданной инерциальной системе координат, измеряя заряд, получают одно и то же значение.

Ряд экспериментов, в частности законы электролиза, опыт Милликена с каплей масла, показали, что в природе электрические заряды дискретны заряду электрона. Любой заряд кратен целому числу заряда электрона.

В процессе электризации заряд изменяется дискретно (квантуется) на величину заряда электрона. Квантование заряда является универсальным законом природы.

В электростатике изучаются свойства и взаимодействия зарядов, неподвижных в той системе отсчета, в которой они находятся.

Наличие у тел электрического заряда вызывает взаимодействие их с другими заряженными телами. При этом тела, заряженные одноименно, отталкиваются, а заряженные разноименно – притягиваются.

Теория близкодействия – одна из теорий взаимодействия в физике. Под взаимодействием в физике понимают всякое воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения.

В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой взаимодействия является потенциальная энергия.

Первоначально в физике утвердилось представление о том, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия. Передача взаимодействия происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состоял смысл так называемой теории взаимодействия, получившей название теория дальнодействия. Однако эти представления были оставлены как не соответствующие действительности после открытия и исследования электромагнитного поля.

Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время.

Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие частицы, т.е. взаимодействие передается через "посредника" – электромагнитное поле. Скорость распространения электромагнитного поля равна скорости распространения света в вакууме. Возникла новая теория взаимодействия теория близкодействия.

Согласно данной теории, взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение посредством гравитационного поля), непрерывно распределенных в пространстве.

После появления квантовой теории поля представление о взаимодействиях существенно изменилось.

Согласно квантовой теории, любое поле является не непрерывным, а имеет дискретную структуру.

Вследствие корпускулярно-волнового дуализма, каждому полю соответствуют определенные частицы. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами (квантами) электромагнитного поля, т.е. фотоны являются переносчиками такого взаимодействия. Аналогично другие виды взаимодействий возникают в результате обмена частиц квантами соответствующих полей.

Несмотря на многообразие воздействий тел друг на друга (зависящих от взаимодействия слагающих их элементарных частиц), в природе, по современным данным, имеется лишь четыре типа фундаментальных взаимодействий: гравитационное, слабое, электромагнитное и сильное (в порядке возрастания интенсивности взаимодействия). Интенсивности взаимодействий определяются константами связи (в частности, электрический заряд для электромагнитного взаимодействия является константой связи).

Современная квантовая теория электромагнитного взаимодействия превосходно описывает все известные электромагнитные явления.

В 60 – 70-х годах века в основном построена единая теория слабого и электромагнитного взаимодействий (так называемое электрослабое взаимодействие) лептонов и кварков.

Современной теорией сильного взаимодействия является квантовая хромодинамика.

Делаются попытки объединения электрослабого и сильного взаимодействий в так называемое "Великое объединение", а также включения их в единую схему гравитационного взаимодействия.


Из истории электродинамики

Курс общей физики (лекции)

Раздел II Электродинамика

Москва, 2003

Лекция 1 «Основы электростатики»

План лекции

1.Введение. Предмет классической электродинамики.

a. Из истории электродинамики.

b. Электродинамика и научно-технический прогресс.

2.Электрические заряды.

a. Свойства электрических зарядов.

b. Закон Кулона.

3.Электрическое поле.

a. Идеи близко – и дальнодействия.

b. Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей.

4.Принцип суперпозиции электрических полей.

a. Поле диполя.

b. Поле бесконечной заряженной нити.

Введение. Предмет классической электродинамики

Из истории электродинамики

Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Однако, «наблюдать» ещё не значит «исследовать».

Первые научные шаги в изучении электричества и магнетизма были сделаны только в конце 16 века врачом английской королевы Елизаветы Уильямом Гильбертом (1540 – 1603). В своей монографии «О магните, магнитных телах и о большом магните - Земля», Гильберт впервые ввёл понятие «магнитное поле Земли»… Экспериментируя с различными материалами, он обнаружил, что свойством притягивать легкие предметы обладает не только янтарь, потёртый о шёлк, но и многие другие тела: алмаз, хрусталь, смола, сера и т.д. Эти вещества он назвал «электрические», то есть «как янтарь». Так возник термин «электричество».

Первую теорию электрических явлений попытался создать французский исследователь Шарль Дюфэ (1698 – 1739). Он установил, что существует электричество двух родов: «Один род, - писал он, - я назвал «стеклянным» электричеством, другой - «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное…» (1733 г.).

Дальнейшее развитие теория электричества получила в работах американского учённого Бенджамина Франклина (1706 – 1790). Он ввёл понятие «положительное» и «отрицательное» электричество, установил закон сохранения электрического заряда, исследовал «атмосферное электричество», предложил идею громоотвода. Целый ряд созданных им экспериментальных установок стали классикой и уже более 200 лет украшают физические лаборатории учебных заведений (например, «колесо Франклина»).

В 1785 году французский исследователь Шарль Кулон (1736 – 1806) экспериментально установил закон взаимодействия неподвижных электрических зарядов и позднее - магнитных полюсов. Закон Кулона - фундамент электростатики. Он позволил, наконец-то, установить единицу измерения электрического заряда и магнитных масс. Открытие этого закона стимулировало разработку математической теории электрических и магнитных явлений.

Впрочем, долгое время (ещё со времён Гильберта) считалось, что электричество и магнетизм не имеют ничего общего. Только в 1820 году датчанин Ганс Эрстед (1777 – 1851) обнаружил влияние электрического тока на магнитную стрелку, которое он объяснил тем, что «вокруг проволоки с током образуется магнитный вихрь». Иными словами Эрстед установил, что электрический ток является источником магнитного поля. Это положение стало первым из двух основных законов электродинамики. Второе было установлено экспериментально английским физиком Майклом Фарадеем (1791 – 1867). В 1831 году он впервые наблюдал явление «магнитоэлектрической индукции», когда в проводящем контуре возникал индукционный электрический ток при изменении магнитного потока, пронизывающего этот контур.

В конце 19-го столетия разрозненные результаты исследований электромагнитных явлений обобщил молодой шотландский физик Джемс Кларк Максвелл (1831 – 1879). Он создал классическую теорию электродинамики, в которой в частности предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, вычислил объемную плотность энергии электромагнитной волны, рассчитал давление, которое должна производить электромагнитная волна при падении на поглощающую поверхность.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Донской государственный технический университет»

(ДГТУ)

Контрольная работа

по дисциплине «Концепции современного естествознания»

Тема № 1.25 Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Электродинамическая картина мира.

Выполнила: Онучина А.А.

студентка 1 курса направление подготовки заочное обучение

группа ИЗЭS11 № зачетной книжки 1573242

Проверил ________________

Ростов-на-Дону


План:

1. История электродинамики……………………………………………………..3

2. Становление и развитие классической электродинамики.…………….…… 5

3. Электродинамическая картина мира.…………………..……………………10

Список используемой литературы……..………………………………….……13


История электродинамики.

Классическая электродинамика – это теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля.

История электродинамики – это история эволюции фундаментальных физических понятий. До середины 18 века были установлены важные опытные результаты, обусловленное электричеством: притяжение и отталкивание, открыто деление веществ на проводники и изоляторы, существование двух видов электричества. Достигнуты успехи в изучении магнетизма.

Практическое применение электричества началось со второй половины 18 века. С именем Фраклина (1706-1790гг.) связано появление гипотезы об электричестве как особой материальной субстанции. В 1785 году Ш.Кулоном установлен закон взаимодействия двух точечных зарядов. С именем А.Вольта (1745-1827гг.) связан ряд изобретений электроизмерительных приборов. В 1826 году установлен закон Ома. В 1820 году Эрстедом открыто магнитное действие электрического тока. В 1820 году установлен закон, определяющий механическую силу, с которой магнитное поле действует на внесенный в него элемент электрического тока – закон Ампера. Ампером также установлен закон силового взаимодействия двух токов.

Особое значение в физике имеет гипотеза молекулярных токов, предложенная Ампером в 1820 году.

В 1831 году Фарадеем открыт закон электромагнитной индукции. В 1873 году Джеймс Клерк Максвелл (1831-1879гг.) изложил короткие уравнения, ставшие теоретической основой электродинамики. Одним из следствий уравнений Максвелла явилось предсказание ЭМ природы света, он же предсказал возможность существования ЭМ волн. Постепенно в науке сложилось представление об ЭМ поле как о самостоятельной материальной сущности, являющейся носителем ЭМ взаимодействий в пространстве. Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Чаще всего под термином электродинамика понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля. Электромагнитное поле - это основной предмет изучения электродинамики, вид материи, проявляющийся при взаимодействии с заряженными телами. В 1895 году Попов А.С., сделал величайшее изобретение-радио. Оно оказало колоссальное воздействие на последующее развитие науки и техники. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов.

Становление и развитие классической электродинамики

(М. Фарадей, Д. Максвелл, Г. Герц).

Важным шагом в развитии электродинамики было открытие М.Фарадеем явления электромагнитной индукции - возбуждения переменным магнитным полем электродвижущей силы в проводниках, - ставшей основой электротехники.

Майкл Фарадей - английский физик, родился в предместье Лондона в семье кузнеца. Окончив начальную школу, с двенадцати лет он работал разносчиком газет, а в 1804 г. поступил в ученики к переплетчику Рибо, французскому эмигранту, всячески поощрявшему страстное стремление Фарадея к самообразованию. Чтением и посещением лекций Фарадей стремился пополнить свои знания, причем его влекли главным образом естественные науки - химия и физика. В 1813 г. один из заказчиков подарил Фарадею пригласительные билеты на лекции Гемфри Дэви, сыгравшие решающую роль в судьбе юноши. Обратившись с письмом к Дэви, Фарадей с его помощью получил место лабораторного ассистента в Королевском институте.

Научная деятельность Фарадея протекала в стенах Королевского института, где он сначала помогал Дэви в химических экспериментах, а затем начал самостоятельные исследования. Фарадей осуществил сжижение хлора и некоторых других газов, получил бензол. В 1821 году он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. В течение последующих 10 лет Фарадей занимался исследованием связи между электрическими и магнитными явлениями. Его исследования увенчались открытием в 1831 году явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания.

Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Стремление выявить природу электрического тока привело Фарадея к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом этих исследований стало открытие в 1833 г. законов электролиза. В 1845 г. Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле. В том же году он открыл диамагнетизм, в 1847 году - парамагнетизм, также в 1833 году он изобрел вольтметр.

Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики. В 1832 году Фарадей высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью, а в 1845 году он впервые употребил термин «магнитное поле».

Открытия Фарадея завоевали широчайшее признание во всём научном мире. В честь Майкла Фарадея Британское химическое общество учредило медаль Фарадея – одну из почётнейших научных наград.

Пытаясь объяснить явление электромагнитной индукции на основе концепции дальнодействия, но встретившись с затруднениями, он высказал предположение об осуществлении электромагнитных взаимодействий по средством электромагнитного поля, на основе концепции близкодействия. Это положило начало формированию концепции электромагнитного поля, оформленную Д.Максвеллом. Джеймс Клерк Максвелл - английский физик. Родился в Эдинбурге. Под его руководством была создана известная Кавендишская лаборатория в Кембридже, которую он возглавлял до конца своей жизни.

Работы Максвелла посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Наиболее весомый вклад Максвелл сделал в молекулярную физику и электродинамику. В кинетической теории газов, одним из основателей которой он является, установил функции распределения молекул по скоростям, основанный на рассмотрении прямых и обратных столкновений, развил теорию переноса в общем виде, применив ее к процессам диффузии, теплопроводности и внутреннего трения, ввел понятие релаксации. В 1867 году первый показал статистическую природу второго начала термодинамики, в 1878 году ввел термин "статистическая механика".

Самым большим научным достижением Максвелла является созданная им в 1860-1865 годах теория электромагнитного поля. В своей теории электромагнитного поля Максвелл использовал новое понятие - ток смещения, дал определение электромагнитного поля и предсказал новый важный эффект: существование в свободном пространстве электромагнитного излучения, электромагнитных волн и его распространение в пространстве со скоростью света. Ученый также сформулировал теорему в теории упругости, установил соотношения между основными теплофизическими параметрами, развивал теорию цветного зрения, исследовал устойчивость колец Сатурна, показав, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов. Максвелл сконструировал ряд приборов. Он был известным популяризатором физических знаний.

1) магнитное поле порождается движущимися зарядами и переменным электрическим полем (током смещения);

2) электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;

3) силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников - магнитных зарядов, подобных электрическим);

4) электрическое поле с незамкнутыми силовыми линиями (потенциальное поле) порождается электрическими зарядами - источниками этого поля.

Из теории Джеймса Максвелла вытекает конечность скорости распространения электромагнитного взаимодействия и существование электромагнитных волн. Максвелловская теория электромагнитного поля является фундаментальным обобщением электродинамики, поэтому она по праву занимает почётное место в ряду величайших научных достижений человечества, таких как классическая механика, релятивистская физика и квантовая механика. В 1861-1862 годах Джеймс Максвелл публикует свою статью о физических силовых линиях. Основываясь на практическом совпадении скорости распространения электромагнитных возмущений и скорости света, Максвелл предположил, что свет тоже является электромагнитным возмущением. И эта, казалось бы, абсолютно фантастическая для того времени идея вдруг начала обрастать экспериментальными подтверждениями.

И все бы вроде ничего, да вот в 1885 году некий преподаватель школы для девочек в Базеле Иоганн Якоб Бальмер, после своих экспериментов, пишет коротенькую, буквально на пару страничек, статью где говорится: «Обратите внимание на спектральные линии водорода». Которая ввела физиков-теоретиков в состояние ступора на ближайшие два десятилетия. Четкие спектральные линии серии Бальмера наглядно продемонстрировали мировому физическому научному сообществу, что не всё так просто в этом мире.

Развитие классической электродинамики после Максвелла шло по нескольким направлениям, из которых отметим два основных. Во-первых, совершенствовалась математическая сторона теории Максвелла и были получены некоторые новые результаты. Во-вторых, произошло объединение теории электромагнитного поля с основными идеями теории строения вещества. Последнее направление привело к созданию электронной теории.

Также хочу отметить выдающегося немецкого физика Генриха Рудольф Герца. Окончил Берлинский университет, с 1885 года по 1889 год был профессором физики Университета в Карлсруэ. С 1889 года - профессор физики университета в Бонне.

Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн.

Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу создания радио. В 1886 году Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонансного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. Именем Герца с 1933 года называется единица измерения частоты Герц, которая входит в международную метрическую систему единиц СИ.

Физика - одна из важнейших наук, изучаемых человеком. Ее присутствие заметно во всех сферах жизни, иногда открытия даже меняют ход истории. Поэтому великие физики так интересны и значимы для людей.

Электродинамика - это область физики, в которой изучаются свойства и закономерности по­ведения электромагнитного поля и движение электрических зарядов, взаимодействующих друг с другом посредством этого поля.

Многие великие учёные физики посвятили свои жизни попыткам найти ответы на необходимые человечеству вопросы. Мир не стоит на месте, все течет и меняется, планета вращается вокруг оси, гроза всегда приходит с молнией и громом, а листья падают на землю. И именно простые на первый взгляд вещи пробудили в человеке интерес к точным и естественным наукам.


Похожая информация.


ЭЛЕКТРИЧЕСТВО

И ЭЛЕКТРОМАГНЕТИЗМ

Курс лекций по физике

для студентов инженерно-технических

специальностей

ЭЛЕКТРОСТАТИКА

Лекция 1. Электрическое поле в вакууме

План лекции

1.1. Предмет классической электродинамики.

1.2. Электростатика. Закон Кулона. Напряженность.

1.3. Теорема Гаусса для электростатического поля и ее применение к расчету электростатических полей.

Предмет классической электродинамики

Еще в глубокой древности были известны опыты по электризации трением (сам термин появился позднее) и особенности силового взаимодействия тел после электризации (притяжение и отталкивание). Было установлено, что существуют только два типа электрических зарядов, названных условно положительными и отрицательными, и что заряды одного знака отталкиваются, разноименные – притягиваются. К этой (в основном качественной) информации с конца восемнадцатого века начали добавляться выявленные количественные соотношения и закономерности, определяющие электрические явления.

Было установлено, что электрический заряд дискретен , то есть заряд любого тела составляет целое кратное от элементарного электрического заряда «е » (е = 1,6·10 19 Кл). Элементарные частицы: электрон и протон являются соответственно носителями элементарных отрицательного и положительного заряда. Обобщение опытных данных позволило сформулировать закон сохранения заряда : алгебраическая сумма зарядов любой замкнутой системы (не обменивающейся зарядами с внешними телами) остается неизменной. Оказалось, что электрические заряды инвариантны к преобразованиям координат, т.е. не зависят от системы отсчета. Единица электрического заряда в «СИ» – 1 Кулон (производная единица, определяемая через силу тока) – это заряд, проходящий через поперечное сечение проводника за одну секунду при силе тока в 1А.

1.2. Электростатика. Закон Кулона.
Напряженность

В 1785 году французским ученым Ш.Кулоном был установлен закон взаимодействия неподвижных точечных зарядов (размеры которых малы по сравнению с расстояниями до других зарядов): сила взаимодействия F между двумя точечными зарядами Q 1 , и Q 2 пропорциональна величинам зарядов и обратно пропорциональна квадрату расстояния между ними.



, (1.1)

здесь электрическая постоянная ; – диэлектрическая проницаемость среды – безразмерная величина, показывающая во сколько раз сила взаимодействия между зарядами в вакууме ослабляется данной средой (для примера: диэлектрическая проницаемость парафина равна 2; слюды – 6, этилового спирта – 25; дистиллированной воды – 81; воздуха – 1,0003 ≈ 1,0). Кулоновская сила направлена по прямой, соединяющей заряды, то есть является центральной и соответствует притяжению в случае разноименных зарядов и отталкиванию в случае – одноименных зарядов.

В векторной форме закон Кулона имеет вид:

(1.1а)

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила, то есть в пространстве вокруг заряда существует силовое поле . В данном случае говорят об электрическом поле , посредством которого взаимодействуют электрические заряды.

Рассмотрим электрические поля, которые создаются неподвижными зарядами и которые называются электростатическими . Если в некоторую точку А поля, создаваемого зарядом Q , помещать поочередно заряды Q 1 ; Q 2 ;… Q n и определять значения кулоновской силы: , то согласно (1.1) и, это подтверждается экспериментом, отношение . Эта величина принята в качестве силовой характеристики электростатического поля и называется напряженностью

Из (1.2) следует, что при Q = 1 , то есть напряженность электростатического поля в данной точке определяется силой действующей на единичный положительный заряд, помещенный в эту точку поля. В соответствии с (1.1) и (1.2) напряженность поля точечного заряда можно находить по формуле

(1.3)

Направление вектора совпадает с направлением силы, действующей на положительный заряд. Размерность напряженности в СИ – .

В векторном виде:

Графически электростатическое поле изображают с помощью линий напряженности – линий, касательные к которым в каждой точке совпадают с направлением вектора в этой точке. Так как в каждой данной точке пространства вектор имеет только одно направление, то линии напряженности никогда не пересекаются. Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и величину напряженности электростатического поля, их проводят с определенной густотой: число линий напряженности dN пронизывающих единицу площади поверхности dS ,перпендикулярную линиям напряженности, должно быть равно числовому значению вектора . Если приписать величине размерность

Е , то (1.4)

В качестве примера на (рис.1.1 ) представлено графическое изображение (с помощью линий ) электростатических полей: положительного точечного заряда ("а "); отрицательного точечного заряда ("б "); двух точечных зарядов ("в ") и поля двух параллельных равномерно заряженных разноименными зарядами плоскостей ("г ").

Рис.1.1

Электростатическое поле также характеризуется скалярной величиной, называемой поток вектора напряженности сквозь рассматриваемые поверхности Ф Е . Элементарный поток вектора сквозь площадку dS вводится как скалярное произведение по формуле

(см.. рис.1.2 ), здесь dS – площадь элементарной площадки, – единичный вектор нормали к площадке; – угол между векторами и ; – проекция вектора Е на направление ; – условный вектор, модуль которого равен площади dS , а направление совпадает с " ".

Поток Ф E через конечную поверхность S определяется, как

(1.6)

Из выражений (1.5, 1.6) следует, что знак Ф E зависит от знака cos , который в свою очередь зависит от взаимного расположения векторов и .

Направление задается расположением электрических зарядов, а за направление для замкнутой поверхности S – направление нормали, выходящей из области, охватываемой замкнутой поверхностью S . Таким образом, поток вектора напряженности электростатического поля сквозь рассматриваемую поверхность S пропорционален числу линий вектора , пронизывающих эту поверхность.

Рис.1.2

Рассмотрим электростатическое поле, создаваемое системой неподвижных точечных зарядов Q 1 ; Q 2 ;… Q n , в некоторой точке которого находится заряд Q . Эксперимент показывает, что для кулоновских сил справедлив, действующий в механике принцип независимости действия сил – результирующая сила , действующая со стороны поля на заряд Q , равна векторной сумме сил , приложенных к нему со стороны каждого из зарядов Q i:

Согласно (1.2) , где – напряженность результирующего поля; – напряженность поля заряда Q i . Подставляя эти выражения в (1.7) получим соотношение

выражающее принцип суперпозиции (наложения) электростатических полей : напряженность поля системы неподвижных точечных зарядов в некоторой точке равна векторной сумме напряженностей полей, создаваемых в этой точке каждым из зарядов в отдельности. Принцип суперпозиции позволяет рассчитывать электростатические поля любой системы неподвижных зарядов так как, если заряды не точечные, то их всегда можно свести к совокупности точечных зарядов.