При зарядке аккумулятора происходит превращение. Химические процессы в аккумуляторе


К атегория:

Электрооборудование автомобилей



-

Химические процессы в аккумуляторе


В заряженном аккумуляторе активная масса положительных пластин состоит из перекиси свинца РЬ02 темно-коричневого цвета, а активная масса отрицательных пластин - из губчатого свинца РЬ серого цвета. При этом плотность электролита в зависимости от времени года и района эксплуатации колеблется в пределах 1,25- 1,31 г/см3.

При разряде аккумулятора активная масса отрицательных пластин преобразуется из губчатого свинца РЬ в сернокислый свинец PbS04 с изменением цвета из серого в светло-серый.

Активная масса положительных пластин аккумулятора преобразуется из перекиси свинца РЬ02 в сернокислый свинец PbS04 с изменением цвета из темно-коричневого в коричневый.



-

Сернокислый свинец PbS04 принято называть сульфатом свинца.

Практически при допустимом разряде аккумулятора в химических реакциях участвует не более 40 - 50% активной массы пластин, так как к глубоким слоям активной массы вследствие недостаточной ее пористости электролит в необходимом количестве не поступает. Отложение кристаллов PbS04 на поверхности стенок пор сужает и даже закупоривает поры активной массы, что затрудняет проникновение электролита к ее внутренним, более глубоким слоям. Ввиду этого часть химической энергии, запасенной в виде РЬ02 и РЬ во внутренних слоях активной массы, не будет вступать в контакт с электролитом, что уменьшит емкость каждого аккумулятора батареи.

Так как в процессе разряда серная кислота идет на образование сернокислого свинца PbS04 при одновременном выделении воды Н20, то плотность электролита соответственно уменьшается с 1,25 - 1,31 до 1,09 - 1,15 г/см3.

Таким образом, плотность электролита при 100%-ном разряде уменьшается на 0,16 г/см3, следовательно, в период разряда аккумулятора уменьшение плотности электролита на 0,01 г/см3 соответствует снижению емкости аккумулятора на 6%.

Изменение плотности электролита является одним из основных показателей степени разряда аккумулятора.

Для заряда аккумулятор включают в цепь параллельно источнику постоянного тока (генератору, выпрямителю), напряжение которого должно превышать э. д. с. заряжаемого аккумулятора.

При заряде активная масса отрицательных пластин постепенно превращается из сернокислого свинца PbS04 в губчатый свинец РЬ (серого цвета), а активная масса положительных пластин превращается из PbS04 в перекись свинца РЬ02 (темно-коричневого цвета). При этом вследствие образования H2S04 при одновременном уменьшении Н20 плотность электролита увеличивается с 1,09 - 1,15 до 1,25 - 1,31 г/см3.

Аккумуляторы иначе называются вторичными элементами, или вторичными источниками электрической энергии. Они отличаются от гальванических элементов тем, что не могут сразу после изготовления отдавать энергию, их нужно сначала зарядить.

При заряде аккумулятора происходит электролиз (распад молекул электролита на положительные и отрицательные ионы, называемые катионами и анионами), сопровождающийся превращением электрическое энергии в химическую. В результате этого процесса на зажимах аккумулятора создается э.д.с. После зарядки аккумулятор может служить источником тока. В процессе разряда аккумулятора происходит превращение запасенной химической энергии в электрическую. Таким образом, аккумулятор запасает (накапливает) электрическую энергию при заряде и отдает ее при разряде.

Кислотные аккумуляторы

Кислотные аккумуляторы широко применяются как для питания радио- и телефонной аппаратуры, так и для питания электрооборудования автотранспорта.

Элемент кислотного аккумулятора состоит из сосуда, наполненного электролитом, в котором находятся отделенные один от другого положительные и отрицательные электроды (в виде пластин). Отдельные элементы, называ емые банками, соединяют в аккумуляторные батареи, которые сокращенно называются аккумуляторами. Устройство кислотного аккумулятора показано на рис. 28. Корпус кислотного аккумулятора изготавливается из электроизоляционно г о и кислотоупорного материала (стекло, эбонит и специальные сорта пластмассы).

Положительные пластины кислотных аккумуляторов изготавливают из запрессованного в свинцовую решетку свинцового сурика (окись свинцу с несколько большим содержанием кислорода). Отрицательные пластины изготавливают из запрессованного в свинцовую решетку свинцового глета (окись свинца).

Пластины во избежание замыкания отделяются одна от другой пористой изоляционной прокладкой - сепаратором. Для изготовления сепараторов применяют дерево (ольха, сосна, кедр), твердую резину с микроскопическими порами (называемую мипор), микропористую пластмассу (мипласт) и др.

Электролитом служит раствор серной кислоты в дистиллированной воде. В зависимости от окружающей температуры в процессе эксплуатации аккумулятора плотность электролита должна быть различной.

Плотность электролита измеряется ареометром, который, представляет собой небольшую, расширяющуюся книзу трубку. В нижней части ареометра имеется строго определенное количество грузика, а верхняя часть имеет шкалу, деления которой показывают плотность. При опускании ареометра в электролит он погружается до того деления, которое соответствует плотности электролита.

Новые заводские аккумуляторы выпускаются в продажу незаряженными, и от правильности их первой зарядки зависит продолжительность их работы. Новый аккумулятор следует залить электролитом плотностью 1,12 при температуре +20°С и оставить на пять-шесть часов для того, чтобы активная масса пластин пропиталась электролитом. Заливка производится через воронку в специальное заливочное отверстие. Уровень электролита должен быть на 10-15 мм выше верхнего края пластин.

Для приготовления электролита используют промышленную серную кислоту плотностью 1,83-1,84, которую разбавляют дистиллированной водой. Концентрированная серная кислота очень ядовита, поэтому обращаться с ней нужно очень осторожно. Электролит изготавливается в следующей последовательности. В стеклянный сосуд наливают нужное количество дистиллированной воды, а затем из бутылки тонкой струйкой и небольшими порциями льют в воду серную кислоту, размешивая раствор стеклянной палочкой.

Категорически запрещается вливать воду в сернугб кислоту, так как при этом начинается бурное кипение и разбрызгивание кислоты во все стороны. Капли кислоты, попавшие на руки и лицо, могут вызвать сильные ожоги.

Зарядка аккумулятора производится постоянным током от сети постоянного тока или специального выпрямителя.

Выпрямитель должен быть снабжен реостатом или автотрансформатором, позволяющим менять величину зарядного тока. Аккумулятор включается в зарядную цепь следующим образом: положительный зажим аккумулятора (+) соединяют с плюсом выпрямителя (сети), а отрицательный зажим (-) с минусом выпрямителя (сети). Схема зарядки аккумулятора приведена на рис. 29.

В цепь заряда включается амперметр для контроля величины тока.

Зарядку аккумуляторов производят током, величина которого указывается заводом-изготовителем в техническом паспорте (для стационарных аккумуляторов величина зарядного тока равна одной пятнадцатой емкости аккумулятора).

Первый заряд обычно продолжается непрерывно 36 часов. После этого делают перерыв на 3 часа и продолжают заряд тем же током еще 12 часов. К концу зарядки электролит «кипит» (происходит обильное выделение пузырьков газов - водорода и кислорода), и уровень электролита может значительно повыситься. Излишки электролита следует отсасывать резиновой грушей.

Когда напряжение на зажимах одной банки поднимется до 2,3-2,5 в, следует замерить плотность электролита и довести ее до величины 1,285.

После окончания зарядки новый аккумулятор следует разрядить током, равным одной двадцатой величины емкости аккумулятора, до тех пор, пока напряжение на каждой банке не станет равным 1,8 е. Затем аккумулятор заряжают 10-12 часов и после этого его можно включать в работу. Напряжение на каждой банке свежезаряженного аккумулятора равно 2,6- 2,86 в. Напряжение на банке следует замерять специальным вольтметром, снабженным нагрузочным сопротивлением, называемым аккумуляторным пробником. В целях предотвращения взрыва гремучего газа, образующегося при заряде в результате электролиза воды, пользоваться пробником можно не раньше двух-трех часов после зарядки.

Напряжение аккумулятора можно замерить обычным вольтметром постоянного тока при нагрузке аккумулятора током, равным Vio его емкости.

В зависимости от назначения различают несколько типов кислотных (свинцовых) аккумуляторов. Для питания стационарных устройств применяются стационарные аккумуляторы, корпус которых обычно выполняется из стекла или дерева, выложенного слоем свинца.

Типы аккумуляторов электрической энергии

Аккумуляторы являются неотъемлемой частью любой системы, ориентированной на получение альтернативных видов энергии.

Наибольшее распространение к настоящему времени получили электрохимические аккумуляторы электрической энергии, в которых преобразование химической энергии в электрическую при разряде аккумулятора происходит посредством химической реакции. При зарядке аккумулятора химическая реакция протекает в обратном направлении.

Кроме электрохимических аккумуляторов электроэнергию можно запасать в конденсаторах и соленоидах (катушках индуктивности).

В заряженном конденсаторе энергия хранится в виде энергии электрического поля диэлектрика. Ввиду того что удельная энергия, запасаемая конденсатором, очень невелика (практически от 10 до 400 Дж/кг), а длительность возможного хранения энергии вследствие имеющейся ее утечки небольшая, этот тип аккумулятора энергии применяется только в тех случаях, когда надо отдать электроэнергию потребителю за очень короткое время при кратком сроке ее хранения.

В соленоиде электрическая энергия аккумулируется в виде энергии магнитного поля. Поэтому этот тип накопителя именуется электромагнитным. Но время выдачи энергии электромагнитными аккумуляторами обычно измеряется даже не секундами, а долями секунды.

Для зарядки аккумулятора нужен внешний источник энергии, причем в процессе зарядки могут возникать потери энергии. После зарядки аккумулятор может оставаться в состоянии готовности (в заряженном состоянии), но и в этом состоянии часть энергии может теряться из-за произвольного рассеяния, утечки, саморазряда или других подобных явлений. При отдаче энергии из аккумулятора также могут возникать ее потери; кроме того, иногда невозможно получить обратно всю аккумулированную энергию. Некоторые аккумуляторы устроены так, что в них должна оставаться некоторая остаточная энергия.

Характеристики аккумуляторов

Основной характеристикой аккумулятора является его электрическая ёмкость. Единицей измерения этой ёмкости является ампер-час (А·ч) - внесистемная единица измерения электрического заряда.

Исходя из физического смысла, 1 ампер-час - это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока силой в 1 ампер. Теоретически заряженный аккумулятор с заявленной ёмкостью в 1 А·ч способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 0,1 А в течение 10 часов, или 10 А в течение 0,1 часа).

На практике же емкость аккумулятора рассчитывают исходя из 20-часового цикла разряда до конечного напряжения, которое для автомобильных аккумуляторов составляет 10,8 В. Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

Производители аккумуляторов иногда в качестве емкости указывают в технических характеристиках запасаемую энергию в Вт·ч. Поскольку 1 Вт = 1 А * 1 В, то если запасаемая энергия равна 720 Вт·ч мы можем поделить это значение на величину напряжения (скажем 12 В) и получим емкость в ампер-часах (в нашем примере 720 Вт·ч / 12 В = 60 А·ч.).

Свинцово-кислотные аккумуляторы

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) — из двуокиси свинца РbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

РbO2 + Рb + 2Н2SO4 <—> 2РbSO4 + Н2О

Для заряда аккумулятора теоретически требуется удельная энергия 167 Вт/кг. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Вт/кг. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 1. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.


Рис.1. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Вт ч/кг и даже немногим выше.

Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется

  • возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии,
  • возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 МВт ч).

Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 В до 2,20 В).

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности взрыва должна предусматриваться соответствующая надежная вентиляция.

Другие типы аккумуляторов

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия КОН) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 В до 1,45 В, а удельная аккумулирующая способность — в пределах от 15 Вт ч/кг до 45 Вт ч/кг. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также большим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

В литий-ионных аккумуляторах анод состоит из углерода, содержащего в заряженном состоянии карбид лития Li х C 6 , а катод — из окиси лития и кобальта Li 1-х CoO 2 . В качестве электролита применяются твердые соли лития (LiPF 6 , LiBF 4 , LiClO 4 или другие), растворенные в жидком органическом растворителе (например, в эфире). К электролиту обычно добавляют сгуститель (например, кремнийорганические соединения), благодаря чему он приобретает желеобразный вид. Электрохимические реакции при разряде и заряде заключаются в переходе ионов лития с одного электрода на другой и протекают по формуле

Li x C 6 + Li 1-x CoO 2 <—> C 6 + LiCoO 2

По внешней форме элементы литий-ионных аккумуляторов могут быть плоскими (похожими на четырехугольные пластины) или цилиндрическими (с рулонными электродами). Выпускаются также аккумуляторы, в которых применяются другие материалы анода и катода. Одним из важных направлений развития является разработка быстрозаряжаемых аккумуляторов.

Существует много других видов аккумуляторов (всего около 100). Например, в системах электроснабжения самолетов, где масса оборудования должна быть как можно меньше, находят применение серебряно-цинковые аккумуляторы с удельной аккумулирующей способностью, в среднем, 100 Вт ч/кг. Наивысшую ЭДС (6,1 В) и наибольшую удельную аккумулирующую способность (6270 Вт ч/кг) имеют фторо-литиевые аккумуляторы, серийного производства которых, однако, еще нет.

Первичные гальванические элементы хорошо подходят для работы в длительном режиме, а аккумуляторы могут использоваться как для длительной работы, так и для покрытия кратковременных и толчковых нагрузок. Конденсаторы и катушки индуктивности используются, главным образом, для покрытия импульсных нагрузок и для выравнивания мощности при быстрых изменениях нагрузок. Для выравнивания мощности, отдаваемой в энергосистему ветряными и солнечными электростанциями, могут применяться комбинации аккумуляторов с ультраконденсаторами.

Область применения некоторых аккумулирующих устройств по длительности нагрузки и по отдаваемой мощности характеризует рис. 2.

1.5. Характеристики заряда и разряда аккумуляторной батареи

Основные характеристики аккумулятора - зарядные и разрядные. Процесс, при котором происходит преобразование химической энергии в электрическую, называется разрядом, обратный процесс - зарядом.

После полного восстановления активных веществ плотность электролита перестает повышаться. Это служит признаком конца заряда аккумулятора. В конце заряда также начинается процесс разложения воды нa кислород и водород, характеризующийся появлением на поверхности электролита пузырьков газа.

Разрядными характеристиками аккумулятора называют зависимость изменения ЭДС, напряжения и плотности электролита аккумулятора при постоянной силе разрядного тока от времени заряда (рис. 1.2).

В момент включения аккумулятора на разряд напряжение на его зажимах падает скачком на величину J p R a

вcледствие падения напряжения аккумулятора (см. рис. 1.2)

Рис. 1.2 Характеристики разряда

U p = E a - I p R a ,

где I p - ток разряда; R a - внутреннее сопротивление

Происходящее при разряде поглощение сepной кислоты и выделение взамен ее воды вызывает уменьшение концентрации электролита, находящегося в поpax пластин, вследствие чего ЭДС аккумулятора E a , а слeдoвaтeльно, и напряжение плавно снижаются. Сначала химическим превращениям подвергаются наиболее доступные поверхностные слои активной массы, затем химические реакции распространяются на наиболее глубокие слои пластин. Кроме того, сернокислый свинец PbSO 4 , в который превращается активная масса пластин при разряде, занимает больший объем, чем исходные материалы (PbO 2 и Pb) и, отлагаясь на внутренних поверхностях пор, суживает их сечение. Эти два обстоятельства замедляют диффузию электролита в пластины, и к концу разряда концентрация последнего в порах пластин и с ней ЭДС аккумулятора быстро падают, стремясь к нулю, а значительная часть активной массы, лежащая в глубине пластин, еще не использована. При этом происходят уже необратимые процессы, и сильно ускоряется сульфатация аккумулятора, поэтому аккумулятор нельзя разряжать ниже 1,7 В.

Если разряженный аккумулятор выключить, то его ЭДС будет плавно повышаться. Это восстановление ЭДС называется "отдыхом" аккумулятора.

Плотность электролита по мере разряда уменьшается по закону прямой, так как при постоянной силе разрядного тока количество серной кислоты, замещаемой водой за единицу времени в результате химических реакций, будет одинаково. Признаки, определяющие конец разряда:

1. Понижение напряжения до предельного значения (1,7 В на элемент).

2. Уменьшение плотности электролита до определенного минимума ( 1,15 г/см 3).

На характер зависимости разрядного напряжения аккумулятора от времени влияют температура электролита и сила разрядного тока. При понижении температуры (ниже О °С) резко увеличиваются вязкость и удельное сопротивление электролита. Последнее в диапазоне температур +30...40 о С возрастает в 20 - 30 paз. С повышением вязкости уменьшается скорость диффузии.

3арядные характеристики аккумулятора - зависимость изменения плотности электролита, ЭДС и напряжения аккумулятора при постоянной силе зарядного тока от времени заряда (рис. 1.3).

В начале заряда резко увеличивается напряжение заряда по отношению к ЭДС на значение падения напряжения на внутреннее сопротивление. Затем напряжение медленно возрастает, что обусловлено увеличением ЭДС в результате повышения плотности электролита. Происходящая химическая реакция при заряде возвращает активную массу пластин в ее первоначальное состояние. При этих реакциях взамен поглощаемой воды выделяется серная кислота, вследствие чего плотность электролита повышается. К концу заряда в ocнoвнoм весь сернокислый свинец превратится в пероксид свинца на положительном и губчатый свинец на отрицательном электродах. Химические реакции прекращаются и вследствие этого напряжение и плотность электролита перестают увеличиваться. Дальнейшее прохождение тока вызывает только разложение воды на водород и кислород, которые энергично выделяются в виде пузырьков. Перезаряд аккумулятора вредно отражается на пластинах.

Рис 1.3. Характеристики заряда аккумулятора

1. Напряжение аккумулятора достигло максимального значения и перестало повышаться.

2.Плотность электролита достигла максимума и перестала увеличиваться.

3.Интенсивно выделяются пузырьки газа (аккумулятор «кипит»)


Как не формулируй название статьи, - оно всё равно будет правильным. Химия и энергия - связаны воедино в конструкции аккумулятора.

Свинцово-кислотные аккумуляторы могут работать несколько лет в режимах заряда-разряда. Они быстро подзаряжаются и быстро отдают запасённую энергию. Секрет этих метаморфоз кроется в химии, ведь именно она помогает преобразовывать электричество, но как?

«Таинство» преобразования энергии в аккумуляторе обеспечивает совокупность реагентов, среди которых есть окислитель и восстановитель, взаимодействующие через электролит. Восстановитель (губчатый свинец РЬ) имеет отрицательный заряд. Во время химической реакции он окисляется, и его электроны странствуют к окислителю, у которого положительный заряд. Окислитель (диоксид свинца РЬО2) восстанавливается, а результатом этого является электрический ток.

В качестве электролита используют жидкость, которая плохо проводит ток, но является хорошим проводником для ионов. Это водный раствор серной кислоты (H2S04). В химической реакции происходит процесс, всем известный со школьной скамьи - электролитическая диссоциация.

В процессе реакции, - положительно заряженные ионы (Н+) направляются к положительному электроду, а отрицательно заряженные ионы (SO42-) к отрицательному. Когда аккумулятор разряжается, то из восстановителя (губчатый свинец), через электролит к положительному электроду, - направляются ионы с положительным зарядом РЬ2+.

Четырехвалентные ионы свинца (РЬ4+) превращаются в двухвалентные (РЬ4+). Однако, это еще не все химические реакции. Когда ионы кислотных остатков с отрицательным зарядом (SO42-) соединяются с положительно заряженными ионами свинца (РЬ2+), то на обоих электродах образуется сульфат свинца (РЬSО4). А вот это уже плохо для аккумулятора. Сульфатация сокращает срок службы аккумулятора и постепенно накапливаясь, может привести к его разрушению. Побочным эффектом химических реакций в обычных свинцово-кислотных аккумуляторах, являются газы.

Что же происходят, когда аккумулятор подзаряжают?

Электроны направляются к электроду с отрицательным зарядом, где выполняют свою функцию - нейтрализуют ионы свинца (РЬ2+). Химические реакции, происходящие в аккумуляторных батареях можно описать такой формулой:

Плотность электролита, и его уровень в аккумуляторе, зависит от того, - заряжен, или разряжен аккумулятор. Изменения плотности электролита можно описать следующей формулой:

Где показатель разрядки аккумулятора, который измеряется в процентах, - Cp. Плотность электролита при полной зарядке - Рз. Плотность электролита при полной разрядке - Pр.

Стандартная температура, при которой делают измерения + 25°С, Плотность электролита в соответствии с температурой + 25°С, г/см3 - Р25.
Во время химической реакции положительные электроды используют в 1,6 раза больше кислоты, чем отрицательные. Когда аккумулятор разряжается, то объем электролита растет, а когда заряжается, наоборот - уменьшается.
Таким вот образом, с помощью химических реакций, аккумулятор принимает, а потом отдаёт электрическую энергию.