Пример использования множественной линейной регрессии. Введение в множественную регрессию

Предположим, что необходимо дать среднестатистический прогноз путевого расхода топлива автомобиля. Для этого имеется возможность воспользоваться множественным регрессионным анализом (на основе анализа параметров большого числа автомобилей) для оценки расхода топлива Q [л/100 км], с использованием следующих переменных (параметров):

m 1 – Объем двигателя автомобиля [см 3 ];
m 2 – Масса автомобиля [кГ];
m 3 – Тип привода, определяемый числом ведущих колес ;
m 4 – Мощность двигателя [л.с.].

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (m 1 , m 2 , m 3 и m 4 ) и зависимой переменной (Q ), то есть расходом топлива. Исходные данные показаны на рисунке.

Настройки для решения поставленной задачи показаны на рисунке окна "Регрессия". Результаты расчетов размещены на отдельном листе в таблице 6 .

В итоге получена следующая математическая модель:

Q = -0,002159246·x 1 + 0,001581937·x 2 + 1,987200675·x 3 + 0,078512695·x 4 - 4,428016498

Теперь можно определить примерный расход топлива у легкового автомобиля с бензиновым двигателем и колесной формулой 4 × 4, если известно, что двигатель автомобиля имеет объем 2700 см 3 , его масса составляет 1950 кг, автомобиль имеет полный привод на колеса – 4 ведущих колеса, мощность двигателя составляет 163 л.с., используя следующую формулу:

Q = -0,002159246·2700 - 0,001581937·1950 + 1,987200675·4 + 0,078512695·163 - 4,428016498

Решив это уравнение, получаем расход топлива у данного автомобиля: Q = 13,57 л/100 км.

В регрессионном анализе наиболее важными результатами являются:

· коэффициенты при переменных и Y-пересечение, являющиеся искомыми параметрами модели;

· множественный коэффициент R, характеризующий точность


модели для имеющихся исходных данных;

· F-критерий Фишера (в рассмотренном примере он значительно превосходит критическое значение, равное 3,54868E-09);

· t-статистика – величины, характеризующие степень значимости отдельных коэффициентов модели.

На t-статистике следует остановиться особо. Очень часто при построении регрессионной модели неизвестно, влияет ли тот или иной фактор Х на Y. Включение в модель факторов, которые не влияют на выходную величину, ухудшает качество модели. Вычисление t-статистики помогает обнаружить такие факторы. Приближенную оценку можно сделать так: если при n>>k величина t-статистики по абсолютному значению существенно больше трех, соответствующий коэффициент следует считать значимым, а фактор включить в модель. В противном случае его необходимо исключить из модели. Таким образом, можно предложить технологию построения регрессионной модели, состоящую из двух этапов:

1) обработать пакетом "Регрессия" все имеющиеся данные, проанализировать значения t-статистики;

2) удалить из таблицы исходных данных столбцы с теми факторами, для которых коэффициенты незначимы, и обработать пакетом "Регрессия" новую таблицу.

Для примера рассмотрим переменную m 4 . В справочнике по математической статистике t-критическое с (n-k-1) = 15-5-1=9 степенями свободы и доверительной вероятностью 0,95 равно 2,26. Поскольку абсолютная величина t, равная 4,17 больше, чем 2,26, мощность двигателя - это важная переменная для оценки расхода топлива. Аналогичным образом можно протестировать все другие переменные на статистическую значимость. Ниже приводятся наблюдаемые t-значения для каждой из независимых переменных:

Из таблицы видно, что значения «Мощности двигателя – m 4 » и «Типа привода – m 3 » имеют абсолютную величину большую, чем 2,26 следовательно, эти переменные, использованные в уравнении регрессии, полезны для предсказания путевого расхода топлива автомобиля. А такие значения как «Масса автомобиля – m 2 » и «Объем двигателя – m 1 » имеют абсолютную величину меньшую чем 2,26. Следовательно, эти переменные, использованные в уравнении регрессии, необходимо исключить из модели. Это позволит повысить качество предсказания путевого расхода топлива автомобиля.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называется научным исследованием;

2. Что является объектом научного исследования. Приведите примеры;

3. Что включает структура объекта научного исследования;

4. Формулирование цели и постановка задач научного исследования. Приведите примеры;

5. Какие виды научных исследований Вы знаете. Поясните их суть, достоинства и недостатки;

6. Структура экспериментального научного исследования;

7. Какие методики включает в себя экспериментальное научное исследование;

8. Поясните цель и содержание методики планирования экспериментального исследования;

9. Как определить объем выборки методом проверки статистических гипотез;

10. Устройство и тестовые возможности стендов с беговыми барабанами в процессе экспериментальных исследований на автомобильном транспорте;

11. Устройство и тестовые возможности стендов для исследования характеристик шин;

12. Устройство и тестовые возможности стендов для задания тестовых режимов при исследовании автомобильного двигателя;

13. Структура аналитического научного исследования на автомобильном транспорте;

14. Какое оборудование для задания тестовых режимов объектам исследования на автомобильном транспорте Вы знаете;

15. Как устанавливаются причинно-следственные связи на структурной схеме объекта исследования;

16. Как разрабатывается математическая модель исследуемого процесса;

17. Как осуществляется проверка адекватности и настройка математической модели;

18. Какие вопросы позволяет решать регрессионный анализ в процессе научных исследований на автомобильном транспорте;

19. Как построить модель множественной регрессии в среде MIKROSOFT EXCEL.

20. Начертите схему и поясните суть измерения сил тензометрическим методом;

21. Начертите схему и поясните суть измерения давления;

22. Начертите схему и поясните суть измерения моментов силы тензометрическим методом;

23. Как калибруется система измерения сил;

24. Начертите схему и поясните суть измерения интервалов времени цифровым методом;

25. Начертите схему и поясните суть измерения скорости вращения;

26. Начертите схему и поясните суть измерения угла поворота вала;

27. Начертите схему и поясните суть измерения угла поворота коленчатого вала двигателя;

28. Начертите схему и поясните суть измерения температуры при помощи сопротивле­ния термопреобразователя;

29. Начертите схему и поясните суть измерения температуры при помощи термоэлектрического преобразователя (термопары);

30. Анализ температурных полей при помощи тепловизора;

31. Начертите схему и поясните суть стробоскопического метода измерения угла опережения зажигания;

32. Начертите схему и поясните суть гироскопического метода измерения углов;

33. Начертите схему и поясните работу расходомера топлива ротационного типа;

34. Начертите схему и поясните работу расходомера топлива объемного типа;

35. Начертите схему расходомера топлива объемного типа и поясните принцип его работы при измерении «мгновенного» и «путевого» расхода топлива;

36. Как осуществляется тарировка расходомера топлива;

37. Дайте определения понятию «абсолютная погрешность измерения». Как она определяется;

38. Дайте определения понятию «относительная погрешность измерения». Как она определяется;

39. Погрешности измерений. Как определяются абсолютная и относительная погрешности измерения силы тензометрическим методом;

40. Какое оборудование для визуализации результатов измерений Вы знаете;

41. Как устроен и как работает электронно-лучевой осциллограф;

42. Как осуществляется калибровка вертикальной шкалы электронно-лучевого осциллографа;

43. Как осуществляется калибровка горизонтальной шкалы электронно-лучевого осциллографа;

44. Аналого-цифровое преобразование. Приведите схему процесса и дайте пояснение;

45. Поясните метод кодирования чисел в виде сочетания нулей и единиц. Дайте определение понятию «логический ноль» и «логическая единица»;

46. Как строится гистограмма и кривая распределения случайной величины;

47. Как осуществляется обработка результатов измерений;

48. Как осуществляется анализ результатов экспериментального исследования;

49. Как выполняется аппроксимация данных функции с использованием метода наименьших квадратов;

50. Как аппроксимировать результаты экспериментального исследования в среде MIKROSOFT EXCEL. Дайте определение понятию «аппроксимация»;

51. Поясните суть коэффициента достоверности аппроксимации R 2 ;

52. Перечислите статистические характеристики случайной величины.

Список основной литературы:

1. Диагностика автомобиля: Учебник для вузов. // Федотов А.И., Изд-во ИрГТУ, Иркутск. 2012. 463 с. Ил. 273. Табл. 22. Библиограф.: 64 назв.

2. Электрические измерения физических величин: Методы измерения: Учебное пособие для вузов // С.А.Спектор., : Л. Энергоатомиздат. Ленинградское отделение,1987.- 320 с.

3. Основы технологии полигонных испытаний и сертификация автомобилей // Безверхий С.Ф., Яценко Н.Н., М.: ИПК Издательство стандартов, 1996. – 600

4. Прочность и долговечность автомобиля // Под общей ред. Б.В. Гольда, М., Машиностроение, 1974. 328 с., ил.

5. Статистическое оценивание и проверка гипотез на ЭВМ // Петрович М.Л., Давидович М.И. - М.: Финансы и статистика,1989. -191 с.: ил. (Мат. обеспечение прикладной статистики).

6. Методы оптимизации. Вводный курс // Банди Б.: Пер. с англ. – М.: Радио и связь, 1988. – 128 с.: ил.

7. Методы оптимизации в технической диагностике машин // Харазов А.М., Цвид С.Ф. М.: Машиностроение, 1983. – 132 с., ил.

8. Планирование эксперимента и анализ данных // Монтгомери Д., Пер. с англ. – Л.: Судостроение, 1980. – 384 с., ил.

9. Методы обработки экспериментальных данных при измерениях // Грановский В.А., Сирая Т.Н., Энергоатомиздат. Ленингр. отд-ние, 1990. – 288 с.: ил.

10. Шор. Я. Б. Статистические методы анализа и контроля качества и надежности. М.: Госэнергоиздат, 1962, с. 552, С. 92-98.

Список дополнительной литературы:

11. Диагностическое обеспечение технического обслуживания и ремонта автомобилей: Справ. пособие. – М.: Высш. шк., 1990. – 208 с.: ил.

12. Испытание автомобилей // Учебник для машиностроительных техникумов по специальности «Автомобилестроение» / Балабин И.В., Куров Б.А., Лаптев С.А. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1988. – 192 с.: ил.

13. Технологическое оборудование для технического обслуживания и ремонта легковых автомобилей: Справочник/ Р.А. Попржедзинский, А.М. Харазов и др. – М.: Транспорт, 1988. – 176 с., ил., табл.

14. Измерения в электро- и радиотехнике: Учеб. Пособие. для средн. проф.-техн. училищ. – М.: Выс. шк., 1984. – 207 с., ил.

Тема 1. Методологические основы научного познания и творчества …………
Формулирование цели и постановка задач исследования….………………………
Тема 2. Теоретические и эмпирические методы исследования…………………………
Тема 3.Методика планирования экспериментального исследования …………………..
Тема 4.Оборудование для задания тестовых режимов…………………………………..
Тема 5.Измерительные приборы и системы, используемые при проведении научных исследований ………………………………………………..……………………………….
Измерение сил с помощью тензорезисторного моста …………………………………
Измерение крутящего момента ……………………………………………………………….
Тарировка тензометрических измерителей силовых параметров ……………………….
Тарировка тензометрических измерителей крутящего момента ……………….……
Измерение давления …………………………………………………………….……………………
Измерение интервалов времени …………….…………………………….……………………
Измерение скорости вращения ……………………………………….…………………….
Измерение угла поворота вала ………………………………………………………………….
Измерение скорости вращения коленчатого вала………………………………………….
Измерение температуры………………………………………………….……………………. .
Термопреобразователи сопротивле­ния………………………………………………….……
Термоэлектрические преобразователи………………………………………………….………
Анализ температурных полей………………………………………………….…………………
Стробоскопический метод измерения угла опережения зажигания………….………
Гироскопический метод измерения углов………………………………….………………….
Измерение расхода топлива расходомером ротационного типа……………….……...
Измерение расхода топлива расходомером поршневого типа ………………….…….
Измерение мгновенного расхода топлива.………………………………….………………
Измерение путевого расхода топлива.……………………………… ….……………………
Тарировка расходомеров топлива.………………………………………………………………
Тема 6.Оборудование для визуализации результатов измерений ……………………….
Тема 7.Аналого-цифровое преобразование измеряемых сигналов …………………….
Метрологические характеристики аналого-цифрового преобразования …………...
ТЕМА 8. Теория и методология научно-технического творчества …………………..
Прикладные методы математической обработки экспериментальных данных …….
ТЕМА 9. Аналитические научные исследования на автомобильном транспорте …….
Проверка адекватности математической модели …………………….……………….….
Тема10. Аппроксимация данных с использованием метода наименьших квадратов
Построение трендовых моделей при помощи диаграмм ………………………………..
Коэффициент достоверности аппроксимации R 2 ……………………………………………..
Тема11. Регрессионный анализ ………………………………………………………………..
Контрольные вопросы ……………………………………………………………………………….
Список литературы……………………………………………………………………………………
Оглавление

Федотов Александр Иванович

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

Учебно-методическое пособие

для студентов вузов, обучающихся по профилю «Эксплуатация транспортно-технологических машин и комплексов», направления подготовки 190600.62 эксплуатация транспортно-технологических машин и комплексов, квалификации – «магистр», а также 190600.68 степени - «магистр»

Подписано в печать 2015. Формат 60х84 1/16

Бумага типографская. Печать офсетная. Усл. печ. л. 6,25

Уч.- изд. л. 5,9 Тираж 200 экз. Зак

ИД № 06506 от 26.12.2001

Задачей множественной линейной регрессии является построение линейной модели связи между набором непрерывных предикторов и непрерывной зависимой переменной. Часто используется следующее регрессионное уравнение:

Здесь а i - регрессионные коэффициенты, b 0 - свободный член(если он используется), е - член, содержащий ошибку - по поводу него делаются различные предположения, которые, однако, чаще сводятся к нормальности распределения с нулевым вектором мат. ожидания и корреляционной матрицей .

Такой линейной моделью хорошо описываются многие задачи в различных предметных областях, например, экономике, промышленности, медицине. Это происходит потому, что некоторые задачи линейны по своей природе.

Приведем простой пример. Пусть требуется предсказать стоимость прокладки дороги по известным ее параметрам. При этом у нас есть данные о уже проложенных дорогах с указанием протяженности, глубины обсыпки, количества рабочего материала, числе рабочих и так далее.

Ясно, что стоимость дороги в итоге станет равной сумме стоимостей всех этих факторов в отдельности. Потребуется некоторое количество, например, щебня, с известной стоимостью за тонну, некоторое количество асфальта также с известной стоимостью.

Возможно, для прокладки придется вырубать лес, что также приведет к дополнительным затратам. Все это вместе даст стоимость создания дороги.

При этом в модель войдет свободный член, который, например, будет отвечать за организационные расходы (которые примерно одинаковы для всех строительно-монтажных работ данного уровня) или налоговые отчисления.

Ошибка будет включать в себя факторы, которые мы не учли при построении модели (например, погоду при строительстве - ее вообще учесть невозможно).

Пример: множественный регрессионный анализ

Для этого примера будут анализироваться несколько возможных корреляций уровня бедности и степень, которая предсказывает процент семей, находящихся за чертой бедности. Следовательно мы будем считать переменную характерезующую процент семей, находящихся за чертой бедности, - зависимой переменной, а остальные переменные непрерывными предикторами.

Коэффициенты регрессии

Чтобы узнать, какая из независимых переменных делает больший вклад в предсказание уровня бедности, изучим стандартизованные коэффициенты (или Бета) регрессии.

Рис. 1. Оценки параметров коэффициентов регрессии.

Коэффициенты Бета это коэффициенты, которые вы бы получили, если бы привели все переменные к среднему 0 и стандартному отклонению 1. Следовательно величина этих Бета коэффициентов позволяет сравнивать относительный вклад каждой независимой переменной в зависимую переменную. Как видно из Таблицы, показанной выше, переменные изменения населения с 1960 года (POP_ CHING), процент населения, проживающего в деревне (PT_RURAL) и число людей, занятых в сельском хозяйстве (N_Empld) являются самыми главными предикторами уровня бедности, т.к. только они статистически значимы (их 95% доверительный интервал не включает в себя 0). Коэффициент регрессии изменения населения с 1960 года (Pop_Chng) отрицательный, следовательно, чем меньше возрастает численность населения, тем больше семей, которые живут за чертой бедности в соответствующем округе. Коэффициент регрессии для населения (%), проживающего в деревне (Pt_Rural) положительный, т.е., чем больше процент сельских жителей, тем больше уровень бедности.

Значимость эффектов предиктора

Просмотрим Таблицу с критериями значимости.

Рис. 2. Одновременные результаты для каждой заданной переменной.

Как показывает эта Таблица, статистически значимы только эффекты 2 переменных: изменение населения с 1960 года (Pop_Chng) и процент населения, проживающего в деревне (Pt_Rural), p < .05.

Анализ остатков. После подгонки уравнения регрессии, почти всегда нужно проверять предсказанные значения и остатки. Например, большие выбросы могут сильно исказить результаты и привести к ошибочным выводам.

Построчный график выбросов

Обычно необходимо проверять исходные или стандартизованные остатки на большие выбросы.

Рис. 3. Номера наблюдений и остатки.

Шкала вертикальной оси этого графика отложена по величине сигма, т.е., стандартного отклонения остатков. Если одно или несколько наблюдений не попадают в интервал ± 3 умноженное на сигма, то, возможно, стоит исключить эти наблюдения (это можно легко сделать через условия выбора наблюдений) и еще раз запустить анализ, чтобы убедится, что результаты не изменяются этими выбросами.

Расстояния Махаланобиса

Большинство статистических учебников уделяют много времени выбросам и остаткам относительно зависимой переменной. Тем не менее роль выбросов в предикторах часто остается не выявленной. На стороне переменной предиктора имеется список переменных, которые участвуют с различными весами (коэффициенты регрессии) в предсказании зависимой переменной. Можно считать независимые переменные многомерным пространством, в котором можно отложить любое наблюдение. Например, если у вас есть две независимых переменных с равными коэффициентами регрессии, то можно было бы построить диаграмму рассеяния этих двух переменных и поместить каждое наблюдение на этот график. Потом можно было отметить на этом графике среднее значение и вычислить расстояния от каждого наблюдения до этого среднего (так называемый центр тяжести) в двумерном пространстве. В этом и заключается основная идея вычисления расстояния Махаланобиса . Теперь посмотрим на гистограмму переменной изменения населения с 1960 года.

Рис. 4. Гистограмма распределения расстояний Махаланобиса.

Из графика следует, что есть один выброс на расстояниях Махаланобиса.

Рис. 5. Наблюдаемые, предсказанные и значения остатков.

Обратите внимание на то, что округ Shelby (в первой строке) выделяется на фоне остальных округов. Если посмотреть на исходные данные, то вы обнаружите, что в действительности округ Shelby имеет самое большое число людей, занятых в сельском хозяйстве (переменная N_Empld). Возможно, было бы разумным выразить в процентах, а не в абсолютных числах, и в этом случае расстояние Махаланобиса округа Shelby, вероятно, не будет таким большим на фоне других округов. Очевидно, что округ Shelby является выбросом .

Удаленные остатки

Другой очень важной статистикой, которая позволяет оценить серьезность проблемы выбросов, являются удаленные остатки . Это стандартизованные остатки для соответствующих наблюдений, которые получаются при удалении этого наблюдения из анализа. Помните, что процедура множественной регрессии подгоняет поверхность регрессии таким образом, чтобы показать взаимосвязь между зависимой и переменной и предиктором. Если одно наблюдение является выбросом (как округ Shelby), то существует тенденция к "оттягиванию" поверхности регрессии к этому выбросу. В результате, если соответствующее наблюдение удалить, будет получена другая поверхность (и Бета коэффициенты). Следовательно, если удаленные остатки очень сильно отличаются от стандартизованных остатков, то у вас будет повод считать, что регрессионный анализа серьезно искажен соответствующим наблюдением. В этом примере удаленные остатки для округа Shelby показывают, что это выброс, который серьезно искажает анализ. На диаграмме рассеяния явно виден выброс.

Рис. 6. Исходные остатки и Удаленные остатки переменной, означающей процент семей, проживающих ниже прожиточного минимума.

Большинство из них имеет более или менее ясные интерпретации, тем не менее обратимся к нормальным вероятностным графикам.

Как уже было упомянуто, множественная регрессия предполагает, что существует линейная взаимосвязь между переменными в уравнении и нормальное распределение остатков. Если эти предположения нарушены, то вывод может оказаться неточным. Нормальный вероятностный график остатков укажет вам, имеются ли серьезные нарушения этих предположений или нет.

Рис. 7. Нормальный вероятностный график; Исходные остатки.

Этот график был построен следующим образом. Вначале стандартизованные остатки ранжируюся по порядку. По этим рангам можно вычислить z значения (т.е. стандартные значения нормального распределения) на основе предположения, что данные подчиняются нормальному распределению. Эти z значения откладываются по оси y на графике.

Если наблюдаемые остатки (откладываемые по оси x) нормально распределены, то все значения легли бы на прямую линию на графике. На нашем графике все точки лежат очень близко относительно кривой. Если остатки не являются нормально распределенными, то они отклоняются от этой линии. Выбросы также становятся заметными на этом графике.

Если имеется потеря согласия и кажется, что данные образуют явную кривую (например, в форме буквы S) относительно линии, то зависимую переменную можно преобразовать некоторым способом (например, логарифмическое преобразование для "уменьшения" хвоста распределения и т.д.). Обсуждение этого метода находится за пределами этого примера (Neter, Wasserman, и Kutner, 1985, pp. 134-141, представлено обсуждение преобразований, убирающих ненормальность и нелинейность данных). Однако исследователи очень часто просто проводят анализ напрямую без проверки соответствующих предположений, что ведет к ошибочным выводам.

Вопросы:

4. Оценка параметров линейной модели множественной регрессии.

5. Оценка качества множественной линейной регрессии.

6. Анализ и прогнозирование на основе многофакторных моделей.

Множественная регрессия является обобщением парной регрессии. Она используется для описания зависимости между объясняемой (зависимой) переменой У и объясняющими (независимыми) переменными Х 1 ,Х 2 ,…,Х k . Множественная регрессия может быть как линейная, так и нелинейная, но наибольшее распространение в экономике получила линейная множественная регрессия.

Теоретическая линейная модель множественной регрессии имеет вид:

соответствующую выборочную регрессию обозначим:

Как и в парной регрессии случайный член ε должен удовлетворять основным предположениям регрессионного анализа. Тогда с помощью МНК получают наилучшие несмещенные и эффективные оценки параметров теоретической регрессии. Кроме того переменные Х 1 ,Х 2 ,…,Х k должны быть некоррелированы (линейно независимы) друг с другом. Для того, чтобы записать формулы для оценки коэффициентов регрессии (2), полученные на основе МНК, введем следующие обозначения:

Тогда можно записать в векторно-матричной форме теоретическую модель:

и выборочную регрессию

МНК приводит к следующей формуле для оценки вектора коэффициентов выборочной регрессии:

(3)

Для оценки коэффициентов множественной линейной регрессии с двумя независимыми переменными , можно решить систему уравнений:

(4)

Как и в парной линейной регрессии для множественной регрессии рассчитывается стандартная ошибка регрессии S:

(5)

и стандартные ошибки коэффициентов регрессии:

(6)

значимость коэффициентов проверяется с помощью t-критерия.

имеющего распространение Стьюдента с числом степеней свободы v= n-k-1.

Для оценки качества регрессии используется коэффициент (индекс) детерминации:

, (8)

чем ближе к 1, тем выше качество регрессии.

Для проверки значимости коэффициента детерминации используется критерий Фишера или F- статистика.



(9)

с v 1 =k, v 2 =n-k-1 степенями свободы.

В многофакторной регрессии добавление дополнительных объясняющих переменных увеличивает коэффициент детерминации. Для компенсации такого увеличения вводится скорректированный (или нормированный) коэффициент детерминации:

(10)

Если увеличение доли объясняемой регрессии при добавлении новой переменной мало, то может уменьшиться. Значит, добавлять новую переменную нецелесообразно.

Пример 4:

Пусть рассматривается зависимость прибыли предприятия от затрат на новое оборудование и технику и от затрат на повышение квалификации работников. Собраны статистические данные по 6 однотипным предприятиям. Данные в млн. ден. ед. приводятся в таблице 1.

Таблица 1

Построить двухфакторную линейную регрессию и оценить ее значимость. Введем обозначения:

Транспонируем матрицу Х:

Обращение этой матрицы:

таким образом зависимость прибыли от затрат на новое оборудование и технику и от затрат на повышение квалификации работников можно описать следующей регрессией:

Используя формулу (5), где k=2 рассчитаем стандартную ошибку регрессии S=0,636.

Стандартные ошибки коэффициентов регрессии рассчитаем, используя формулу (6):

Аналогично:

Проверим значимость коэффициентов регрессии а 1 , а 2 . посчитаем t расч.

Выберем уровень значимости , число степеней свободы

значит коэффициент а 1 значим.

Оценим значимость коэффициента а 2:

Коэффициент а 2 незначим.

Рассчитаем коэффициент детерминации по формуле (7) . Прибыль предприятия на 96% зависит от затрат на новое оборудование и технику и повышение квалификации на 4% от прочих и случайных факторов. Проверим значимость коэффициента детерминации. Рассчитаем F расч.:

т.о. коэффициент детерминации значим, уравнение регрессии значимо.

Большое значение в анализе на основе многофакторной регрессии имеет сравнение влияния факторов на зависимый показатель у. Коэффициенты регрессии для этой цели не используется, из-за различий единиц измерения и различной степени колеблемости. От этих недостатков свободные коэффициенты эластичности:

Эластичность показывает, на сколько процентов в среднем изменяется зависимый показатель у при изменении переменной на 1% при условии неизменности значений остальных переменных. Чем больше , тем больше влияние соответствующей переменной. Как и в парной регрессии для множественной регрессии различают точечный прогноз и интервальный прогноз. Точечный прогноз (число) получают при подстановке прогнозных значений независимых переменных в уравнение множественной регрессии. Обозначим через:

(12)

вектор прогнозных значений независимых переменных, тогда точечный прогноз

Стандартная ошибка предсказания в случае множественной регрессии определяется следующим образом:

(15)

Выберем уровень значимости α по таблице распределения Стьюдента. Для уровня значимости α и числа степеней свободы ν = n-k-1 найдем t кр. Тогда истинное значение у р с вероятностью 1- α попадает в интервал:


Тема 5:

Временные ряды.

Вопросы:

4. Основные понятия временных рядов.

5. Основная тенденция развития – тренд.

6. Построение аддитивной модели.

Временные ряды представляют собой совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени.

Момент (или период) времени обозначают t, а значение показателя в момент времени обозначают у(t) и называют уровнем ряда .

Каждый уровень временного ряды формируется под воздействием большого числа факторов, которые можно разделить на 3 группы:

Длительные, постоянно действующие факторы, оказывающие на изучаемое явление определяющее влияние и формирующие основную тенденцию ряда – тренд T(t).

Кратковременные периодические факторы, формирующие сезонные колебания ряда S(t).

Случайны факторы, которые формируют случайные изменения уровней ряда ε(t).

Аддитивной моделью временного ряда называется модель, в которой каждый уровень ряда представлен суммой тренда, сезонной и случайной компоненты:

Мультипликативная модель – это модель, в которой каждый уровень ряда представляет собой произведение перечисленных компонент:

Выбор одной из моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний примерно постоянна, то строят аддитивную модель. Если амплитуда возрастает, то мультипликативную модель.

Основная задача эконометрического анализа заключается в выявлении каждой из перечисленных компонент.

Основной тенденцией развития (трендом) называют плавное и устойчивое изменение уровней ряда во времени свободное от случайных и сезонных колебаний.

Задача выявления основных тенденций развития называется выравниванием временного ряда .

К методам выравнивания временного ряда относят:

1) метод укрупнения интервалов,

2) метод скользящей средней,

3) аналитическое выравнивание.

1) Укрупняются периоды времени, к которым относятся уровни ряда. Затем по укрупненным интервалам суммируются уровни ряда. Колебания в уровнях, обусловленные случайными причинами, взаимно погашаются. Более четко обнаружится общая тенденция.

2) Для определения числа первых уровней ряда рассчитывается средняя величина. Затем рассчитывается средняя из такого же количества уровней ряда, начиная со второго уровня и т.д. средняя величина скользит по ряду динамики, продвигаясь на 1 срок (момент времени). Число уровней ряда, по которому рассчитывается средняя, может быть четным и нечетным. Для нечетного скользящую среднюю относят к середине периода скольжения. Для четного периода нахождение среднего значения не сопоставляют с определением t, а применяют процедуру центрирования, т.е. вычисляют среднее из двух последовательных скользящих средних.

3) Построение аналитической функции, характеризующей зависимость уровня ряда от времени. Для построения трендов применяют следующие функции:

Параметры трендов определяются с помощью МНК. Выбор наилучшей функции осуществляется на основе коэффициента R 2 .

Построение аддитивной модели проведем на примере.

Пример 7:

Имеются поквартальные данные об объеме потребления электроэнергии в некотором районе за 4 года. Данные в млн. кВт в таблице 1.

Таблица 1

Построить модель временного ряда.

В этом примере в качестве независимой переменной рассматриваем номер квартала , а в качестве зависимой переменной y(t) потребление электроэнергии за квартал.

Из диаграммы рассеяния можно увидеть, что тенденция (тренд) носит линейный характер. Видно также наличие сезонных колебаний (период = 4) одинаковой амплитуды, поэтому будем строить аддитивную модель.

Построение модели включает следующие шаги:

1. Проведем выравнивание исходного ряда методом скользящей средней за 4 квартала и проведем центрирование:

1.1. Просуммируем уровни ряда последовательно за каждые 4 квартала со сдвигом на 1 момент времени.

1.2. Разделив полученные суммы на, 4 найдем скользящие средние.

1.3. Приводим эти значения в соответствие с фактическими моментами времени, для чего найдем среднее значение из двух последовательных скользящих средних – центрированные скользящие средние.

2. Рассчитаем сезонную вариацию. Сезонная вариация (t) = y(t) – центрированная скользящая средняя. Построим таблицу 2 .

Таблица 2

Сквозной № квартала t Потребление электроэнергии Y(t) Скользящая средняя за 4 квартала Центрированная скользящая средняя Оценка сезонной вариации
6,0 - - -
4,4 6,1 - -
5,0 6,4 6,25 -1,25
9,0 6,5 6,45 2,55
7,2 6,75 6,625 0,575
: : : : :
6,6 8,35 8,375 -1,775
7,0 - - -
10,8 - - -

3. На основе сезонной вариации в таблице 3 рассчитывается сезонная компонента.

Показатели Год Номер квартала в году I II III IV
- - -1,250 2,550
0,575 -2,075 -1,100 2,700
0,550 -2,025 -1,475 2,875
0,675 -1,775 - -
Итого 1,8 -5,875 -3,825 8,125 Сумма
Среднее 0,6 -1,958 -1,275 2,708 0,075
Сезонная компонента 0,581 -1,977 -1,294 2,690

4. Устраняем сезонную компоненту из исходных уровней ряда:

Вывод:

Аддитивная модель объясняет 98,4% общей вариации уровней исходного временного ряда.

I have a big bookshelf including many books divided in many varieties. On the top shelf are religious books like Fiqh books, Tauhid books, Tasawuf books, Nahwu books, etc. They are lined up neatly in many rows and some of them are lined up neatly according to the writers. On the second level are my studious books like Grammar books, Writing books, TOEFL books, etc. These are arranged based on the sizes. On the next shelf are many kinds of scientific and knowledgeable books; for example, Philosophies, Politics, Histories, etc. There are three levels for these. Eventually, in the bottom of my bookshelf are dictionaries, they are Arabic dictionaries and English dictionaries as well as Indonesian dictionaries. Indeed, there are six levels in my big bookshelf and they are lined up in many rows. The first level includes religious books, the second level includes my studious books, the third level having three levels includes many kinds of scientific and knowledgeable books and the last level includes dictionaries. In short, I love my bookshelf.

Specific-to-general order

The skills needed to write range from making the appropriate graphic marks, through utilizing the resources of the chosen language, to anticipating the reactions of the intended readers. The first skill area involves acquiring a writing system, which may be alphabetic (as in European languages) or nonalphabetic (as in many Asian languages). The second skill area requires selecting the appropriate grammar and vocabulary to form acceptable sentences and then arranging them in paragraphs. Third, writing involves thinking about the purpose of the text to be composed and about its possible effects on the intended readership. One important aspect of this last feature is the choice of a suitable style. Unlike speaking, writing is a complex sociocognitive process that has to be acquired through years of training or schooling. (Swales and Feak, 1994, p. 34)

General-to-specific order

"Working part-time as a cashier at the Piggly Wiggly has given me a great opportunity to observe human behavior. Sometimes I think of the shoppers as white rats in a lab experiment, and the aisles as a maze designed by a psychologist. Most of the rats--customers, I mean--follow a routine pattern, strolling up and down the aisles, checking through my chute, and then escaping through the exit hatch. But not everyone is so dependable. My research has revealed three distinct types of abnormal customer: the amnesiac, the super shopper, and the dawdler. . ."

There are many factors that contribute to student success in college. The first factor is having a goal in mind before establishing a course of study. The goal may be as general as wanting to better educate oneself for the future. A more specific goal would be to earn a teaching credential. A second factor related to student success is self-motivation and commitment. A student who wants to succeed and works towards this desire will find success easily as a college student. A third factor linked to student success is using college services. Most beginning college students fail to realize how important it can be to see a counselor or consult with a librarian or financial aid officer.

There are three reasons why Canada is one of the best countries in the world. First, Canada has an excellent health care service. All Canadians have access to medical services at a reasonable price. Second, Canada has a high standard of education. Students are taught be well-trained teachers and are encouraged to continue studying at university. Finally, Canada’s cities are clean and efficiently organized. Canadian cities have many parks and lots of space for people to live. As a result, Canada is a desirable place to live.

York was charged by six German soldiers who came at him with fixed bayonets. He drew a bead on the sixth man, fired, and then on the fifth. He worked his way down the line, and before he knew it, the first man was all by himself. York killed him with a single shot.

As he looked around campus, which had hardly changed, he unconsciously relieved those moments he had spent with Nancy. He recalled how the two of them would seat by the pond, chatting endlessly as they fed the fish and also how they would take walks together, lost in their own world. Yes, Nancy was one of the few friends that he had ever had. ….He was suddenly filled with nostalgia as he recalled that afternoon he had bid farewell to Nancy. He sniffed loudly as his eyes filled with tears.

Примеры решения задач по множественной регрессии

Пример 1. Уравнение регрессии, построенное по 17 наблюдениям, имеет вид:

Расставить пропущенные значения, а также построить доверительный интервал для b 2 с вероятностью 0,99.

Решение. Пропущенные значения определяем с помощью формул:

Таким образом, уравнение регрессии со статистическими характеристиками выглядит так:

Доверительный интервал для b 2 строим по соответствующей формуле. Здесь уровень значимости равен 0,01, а число степеней свободы равно n p – 1 = 17 – 3 – 1 = 13, где n = 17 – объём выборки, p = 3 – число факторов в уравнении регрессии. Отсюда

или . Этот доверительный интервал накрывает истинное значение параметра с вероятностью, равной 0,99.

Пример 2. Уравнение регрессии в стандартизованных переменных выглядит так:

При этом вариации всех переменных равны следующим величинам:

Сравнить факторы по степени влияния на результирующий признак и определить значения частных коэффициентов эластичности.

Решение. Стандартизованные уравнения регрессии позволяют сравнивать факторы по силе их влияния на результат. При этом, чем больше по абсолютной величине коэффициент при стандартизованной переменной, тем сильнее данный фактор влияет на результирующий признак. В рассматриваемом уравнении самое сильное воздействие на результат оказывает фактор х 1 , имеющий коэффициент – 0,82, самое слабое – фактор х 3 с коэффициентом, равным – 0,43.

В линейной модели множественной регрессии обобщающий (средний) коэффициент частной эластичности определяется выражением, в которое входят средние значения переменных и коэффициент при соответствующем факторе уравнения регрессии натурального масштаба. В условиях задачи эти величины не заданы. Поэтому воспользуемся выражениями для вариации по переменным:

Коэффициенты b j связаны со стандартизованными коэффициентами β j соответствующим соотношением, которое подставим в формулу для среднего коэффициента эластичности:

.

При этом знак коэффициента эластичности будет совпадать со знаком β j :

Пример 3. По 32 наблюдениям получены следующие данные:

Определить значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра а .

Решение. Значение скорректированного коэффициента детерминации определим по одному из формул для его вычисления:

Частные коэффициенты эластичности (средние по совокупности) вычисляем по соответствующим формулам:

Поскольку линейное уравнение множественной регрессии выполняется при подстановке в него средних значений всех переменных, определяем параметр а :

Пример 4. По некоторым переменным имеются следующие статистические данные:

Построить уравнение регрессии в стандартизованном и натуральном масштабах.

Решение. Поскольку изначально известны коэффициенты парной корреляции между переменными, начать следует с построения уравнения регрессии в стандартизованном масштабе. Для этого надо решить соответствующую систему нормальных уравнений, которая в случае двух факторов имеет вид:

или, после подстановки исходных данных:

Решаем эту систему любым способом, получаем: β 1 = 0,3076, β 2 = 0,62.

Запишем уравнение регрессии в стандартизованном масштабе:

Теперь перейдем к уравнению регрессии в натуральном масштабе, для чего используем формулы расчета коэффициентов регрессии через бета-коэффициенты и свойство справедливости уравнения регрессии для средних переменных:

Уравнение регрессии в натуральном масштабе имеет вид:

Пример 5. При построении линейной множественной регрессии по 48 измерениям коэффициент детерминации составил 0,578. После исключения факторов х 3 , х 7 и х 8 коэффициент детерминации уменьшился до 0,495. Обоснованно ли было принятое решение об изменении состава влияющих переменных на уровнях значимости 0,1, 0,05 и 0,01?

Решение. Пусть - коэффициент детерминации уравнения регрессии при первоначальном наборе факторов, - коэффициент детерминации после исключения трех факторов. Выдвигаем гипотезы:

;

Основная гипотеза предполагает, что уменьшение величины было несущественным, и решение об исключении группы факторов было правильным. Альтернативная гипотеза говорит о правильности принятого решения об исключении.

Для проверки нуль – гипотезы используем следующую статистику:

,

где n = 48, p = 10 – первоначальное количество факторов, k = 3 – количество исключаемых факторов. Тогда

Сравним полученное значение с критическим F (α ; 3; 39) на уровнях 0,1; 0,05 и 0,01:

F (0,1; 3; 37) = 2,238;

F (0,05; 3; 37) = 2,86;

F (0,01; 3; 37) = 4,36.

На уровне α = 0,1 F набл > F кр , нуль – гипотеза отвергается, исключение данной группы факторов не оправдано, на уровнях 0,05 0,01 нуль – гипотеза не может быть отвергнута, и исключение факторов можно считать оправданным.

Пример 6 . На основе квартальных данных с 2000 г. по 2004 г. получено уравнение . При этом ESS=110,3, RSS=21,4 (ESS – объясненная СКО, RSS – остаточная СКО). В уравнение были добавлены три фиктивные переменные, соответствующие трем первым кварталам года, и величина ESS увеличилась до 120,2. Присутствует ли сезонность в этом уравнении?

Решение . Это задача на проверку обоснованности включения группы факторов в уравнение множественной регрессии. В первоначальное уравнение с тремя факторами были добавлены три переменные, соответствующие первым трем кварталам года.

Определим коэффициенты детерминации уравнений. Общая СКО определяется как сумма факторной и остаточной СКО:

ТSS = ESS 1 + RSS 1 = 110,3 + 21,4 = 131,7

Проверяем гипотезы . Для проверки нуль – гипотезы используем статистику

Здесь n = 20 (20 кварталов за пять лет – с 2000 г. по 2004 г.), p = 6 (общее количество факторов в уравнении регрессии после включения новых факторов), k = 3 (количество включаемых факторов). Таким образом:

Определим критические значения статистики Фишера на различных уровнях значимости:

На уровнях значимости 0,1 и 0,05 F набл > F кр , нуль – гипотеза отвергается в пользу альтернативной, и учет сезонности в регрессии является обоснованным (добавление трех новых факторов оправдано), а на уровне 0,01 F набл < F кр , и нуль – гипотеза не может быть отклонена; добавление новых факторов не оправдано, сезонность в регрессии не является существенной.

Пример 7. При анализе данных на гетероскедастичность вся выборка была после упорядочения по одному из факторов разбита на три подвыборки. Затем по результатам трехфакторного регрессионного анализа было определено, что остаточная СКО в первой подвыборке составила 180, а в третьей – 63. Подтверждается ли наличие гетероскедастичности, если объем данных в каждой подвыборке равен 20?

Решение . Рассчитаем–статистику для проверки нуль–гипотезы о гомоскедастичности по тесту Голдфелда–Квандта:

.

Найдем критические значения статистики по Фишеру:

Следовательно, на уровнях значимости 0,1 и 0,05 F набл > F кр , и гетероскедастичность имеет место, а на уровне 0,01 F набл < F кр , и гипотезу о гомоскедастичности отклонить нельзя.

Пример 8 . На основе квартальных данных получено уравнение множественной регрессии , для которого ESS = 120,32 и RSS = 41,4. Для этой же модели были раздельно проведены регрессии на основе следующих данных: 1 квартал 1991 г. – 1 квартал 1995 г. и 2 квартал 1995 г. – 4 квартал 1996 г. В этих регрессиях остаточные СКО соответственно составили 22,25 и 12,32. Проверить гипотезу о наличии структурных изменений в выборке.

Решение . Задача о наличии структурных изменений в выборке решается с помощью теста Чоу.

Гипотезы имеют вид: , где s 0 , s 1 и s 2 – остаточные СКО соответственно для единого уравнения по всей выборке и уравнений регрессии двух подвыборок общей выборки. Основная гипотеза отрицает наличие структурных изменений в выборке. Для проверки нуль – гипотезы рассчитывается статистика (n = 24; p = 3):

Поскольку F – статистика меньше единицы, нуль – гипотезу нельзя отклонить ни для какого уровня значимости. Например, для уровня значимости 0,05.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

###### ## ## ###### ######
## ### ### ## ##
## #### ## ##### ##
## ## ## ## ## ##
## ## ###### ## ## ## ## ##
#### ## ###### #### ####

Введите число, изображенное выше:

Подобные документы

    Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа , добавлен 10.02.2014

    Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.

    курсовая работа , добавлен 22.01.2015

    Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 01.12.2013

    Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.

    лабораторная работа , добавлен 17.10.2009

    Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа , добавлен 17.01.2016

    Факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге. Составление матрицы парных коэффициентов корреляции исходных переменных. Тестирование ошибок уравнения множественной регрессии на гетероскедастичность. Тест Гельфельда-Квандта.

    контрольная работа , добавлен 14.05.2015

    Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.

    курсовая работа , добавлен 24.06.2015