Пример оценки для математического ожидания. Оценки математического ожидания и дисперсии

Основные свойства точечных оценок

Для того чтобы оценка имела практическую ценность, она должна обладать следующими свойствами.

1. Оценка параметра называется несмещенной, если ее математическое ожидание равно оцениваемому параметру, т.е.

Если равенство (22.1) не выполняется, то оценка может либо завышать значение (М>), либо занижать его (М <) . Естественно в качестве приближенного неизвестного параметра брать несмещенные оценки для того, чтобы не делать систематической ошибки в сторону завышения или занижения.

2. Оценка параметра называется состоятельной, если она подчиняется закону больших чисел, т.е. сходится по вероятности к оцениваемому параметру при неограниченном возрастании числа опытов (наблюдений) и, следовательно, выполняется следующее равенство:

где > 0 сколько угодно малое число.

Для выполнения (22.2) достаточно, чтобы дисперсия оценки стремилась к нулю при, т.е.

и кроме того, чтобы оценка была несмещенной. От формулы (22.3) легко перейти к (22.2) , если воспользоваться неравенством Чебышева.

Итак, состоятельность оценки означает, что при достаточно большом количестве опытов и со сколько угодно большой достоверностью отклонение оценки от истинного значения параметра меньше любой наперед заданной величины. Этим оправдано увеличение объема выборки.

Так как - случайная величина, значение которой изменяется от выборки к выборке, то меру ее рассеивания около математического ожидания будем характеризовать дисперсией D. Пусть и - две несмещенные оценки параметра, т.е. M = и M = , соответственно D и D и, если D < D , то в качестве оценки принимают.

3. Несмещенная оценка, которая имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра, вычисленных по выборкам одного и того же объема, называется эффективной оценкой.

На практике при оценке параметров не всегда удается удовлетворить одновременно требованиям 1, 2, 3. Однако выбору оценки всегда должно предшествовать ее критическое рассмотрение со всех точек зрения. При выборке практических методов обработки опытных данных необходимо руководствоваться сформулированными свойствами оценок.

Оценка математического ожидания и дисперсии по выборке

Наиболее важными характеристиками случайной величины являются математическое ожидание и дисперсия. Рассмотрим вопрос о том, какие выборочные характеристики лучше всего оценивают математическое ожидание и дисперсию в смысле несмещенности, эффективности и состоятельности.

Теорема 23.1. Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет математическое ожидание M = , является несмещенной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию M = , а т.к. являются случайными величинами и имеют тот же закон распределения, то тогда. По определению средняя арифметическая

Рассмотрим математическое ожидание средней арифметической. Используя свойство математического ожидания, имеем:

т.е. . В силу (22.1) является несмещенной оценкой. ?

Теорема 23.2 . Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет M = и, является состоятельной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. Тогда в силу теоремы 23.1 имеем M = .

Для средней арифметической запишем неравенство Чебышева:

Используя свойства дисперсии 4,5 и (23.1), имеем:

т.к. по условию теоремы.

Следовательно,

Итак, дисперсия средней арифметической в n раз меньше дисперсии случайной величины. Тогда

а это значит, что является состоятельной оценкой.

Замечание : 1 . Примем без доказательства весьма важный для практики результат. Если N (a,), то несмещенная оценка математического ожидания a имеет минимальную дисперсию, равную, поэтому является эффективной оценкой параметра а. ?

Перейдем к оценке для дисперсии и проверим ее на состоятельность и несмещенность.

Теорема 23.3 . Если случайная выборка состоит из n независимых наблюдений над случайной величиной с

M = и D = , то выборочная дисперсия

не является несмещенной оценкой D - генеральной дисперсии.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию и для всех. Преобразуем формулу (23.3) выборочной дисперсии:


Упростим выражение

Принимая во внимание (23.1), откуда

Необходимость оценивания математического ожидания по результатам испытаний появляется в задачах, когда результат эксперимента описывается случайной величиной и показателем качества исследуемого объекта принято математическое ожидание этой случайной величины. Например, в качестве показателя надежности может быть принято математическое ожидание времени безотказной работы какой-либо системы, а при оценивании эффективности производства продукции - математическое ожидание числа годных изделий и т. д.

Задача оценивания математического ожидания формулируется следующим образом. Предположим, что для определения неизвестного значения случайной величины X предполагается произвести п независимых и свободных от систематических ошибок измерений X v Х 2 ,..., Х п. Требуется выбрать наилучшую оценку математического ожидания.

Наилучшей и наиболее распространенной на практике оценкой математического ожидания является среднее арифметическое результатов испытаний

называемое также статистическим или выборочным средним.

Покажем, что оценка т х удовлетворяет всем требованиям, предъявляемым к оценке любого параметра.

1. Из выражения (5.10) следует, что

т. е. оценка т" х - несмещенная оценка.

2. Согласно теореме Чебышева среднее арифметическое результатов испытаний сходится по вероятности к математическому ожиданию, т. е.

Следовательно, оценка (5.10) есть состоятельная оценка математического ожидания.

3. Дисперсия оценки т х, равная

с ростом объема выборки п неограниченно убывает. Доказано, что если случайная величина X подчинена нормальному закону распределения, то при любом п дисперсия (5.11) будет минимально возможной, а оценка т х - эффективной оценкой математического ожидания. Знание дисперсии оценки позволяет вынести суждение относительно точности определения неизвестного значения математического ожидания с помощью этой оценки.

В качестве оценки математического ожидания среднее арифметическое используется в том случае, если результаты измерений равноточные (дисперсии D, i = 1, 2, ..., п одинаковы в каждом измерении). Однако на практике приходится сталкиваться с задачами, в которых результаты измерений неравноточные (например, в процессе испытаний измерения производятся различными приборами). В этом случае оценка для математического ожидания имеет вид

где - вес г-го измерения.

В формулу (5.12) результат каждого измерения включается со своим весом С .. Поэтому оценку результатов измерений т х называют средневзвешенной.

Можно показать, что оценка (5.12) является несмещенной, состоятельной и эффективной оценкой математического ожидания. Минимальная дисперсия оценки определяется выражением


При проведении экспериментов с моделями на ЭВМ подобные задачи возникают в том случае, когда оценки находят по результатам нескольких серий испытаний и число испытаний в каждой серии различно. Например, проведены две серии испытаний объемом п 1 и п 2 , по результатам которых получены оценки т хi и т х _. С целью повышения точности и достоверности определения математического ожидания результаты этих серий испытаний объединяют. Для этого следует воспользоваться выражением (5.12)

При вычислении коэффициентов С вместо дисперсий D подставляют их оценки, полученные по результатам испытаний в каждой серии.

Аналогичный подход используют и при определении вероятности наступления случайного события по результатам серий испытаний.

Для оценивания математического ожидания случайной величины X, кроме выборочного среднего, могут использоваться и другие статистики. Чаще всего для этих целей используют члены вариационного ряда, т. е. порядковые статистики , на базе которых строят оценки,

удовлетворяющие основным из предъявляемых требований, а именно состоятельности и несмещенности.

Предположим, что вариационный ряд содержит п = 2к членов. Тогда в качестве оценки математического ожидания может быть принято любое из средних:

При этом к-е среднее

есть не что иное, как статистическая медиана распределения случайной величины X, поскольку имеет место очевидное равенство

Преимущество статистической медианы состоит в том, что она свободна от влияния аномальных результатов наблюдений, неизбежного при использовании первого среднего, т. е. среднего из наименьшего и наибольшего числа вариационного ряда.

При нечетном объеме выборки п = - 1 статистической медианой является ее средний элемент, т. е. к -й член вариационного ряда Me = х к.

Существуют распределения, у которых среднее арифметическое не является эффективной оценкой математического ожидания, например, распределение Лапласа. Можно показать, что для распределения Лапласа эффективной оценкой математического ожидания является выборочная медиана.

Доказано, что если случайная величина X имеет нормальное распределение, то при достаточно большом объеме выборки закон распределения статистической медианы близок к нормальному с числовыми характеристиками

Из сравнения формул (5.11) и (5.14) следует, что дисперсия статистической медианы в 1,57 раза больше дисперсии среднего арифметического. Следовательно, среднее арифметическое как оценка математического ожидания во столько же раз эффективнее статистической медианы. Однако из-за простоты вычислений, нечувствительности к аномальным результатам измерений (“засоренности” выборки) на практике в качестве оценки математического ожидания тем не менее используют статистическую медиану.

Следует отметить, что для непрерывных симметричных распределений математическое ожидание и медиана совпадают. Поэтому статистическая медиана может служить хорошей оценкой математического ожидания лишь при симметричном распределении случайной величины.

Для несимметричных распределений статистическая медиана Me имеет существенное смещение относительно математического ожидания, поэтому для его оценивания непригодна.

Важнейшими числовыми характеристиками случайной величины Х являются её математическое ожидание m x =M и дисперсия σ 2 x =D[x] = M[(X – m x) 2 ] = M – . Число m x является средним значением случайной величины, около которого разбросаны значения величин Х , мерой этого разброса являются дисперсия D[x] и среднеквадратическое отклонение:

s x = (1.11)

Мы будем в дальнейшем рассмотривать важную задачу для исследования наблюдаемой случайной величины. Пусть имеется некоторая выборка (будем обозначать её S ) случайной величины Х . Требуется по имеющейся выборке оценить неизвестные значения m x и .

Теория оценок различных параметров занимает в математической статистике значительное место. Поэтому рассмотрим сначала общую задачу. Пусть требуется оценить некоторый параметр a по выборке S . Каждая такая оценка a* является некоторой функцией a*=a*(S) от значений выборки. Значения выборки случайны, поэтому и сама оценка a* является случайной величиной. Можно построить множество различных оценок (то есть функций) a* , но при этом желательно иметь «хорошую» или даже «наилучшую», в некотором смысле, оценку. К оценкам обычно предъявляются следующие три естественных требования.

1. Несмещённость. Математическое ожидание оценки a* должно равняться точному значению параметра: M = a . Другими словами, оценка a* не должна иметь систематической ошибки.

2. Состоятельность. При бесконечном увеличении объёма выборки, оценка a* должна сходиться к точному значению, то есть при увеличении числа наблюдений ошибка оценки стремится к нулю.

3. Эффективность. Оценка a* называется эффективной, если она не смещена и имеет минимально возможную дисперсию ошибки. В этом случае минимален разброс оценки a* относительно точного значения и оценка в определённом смысле является «самой точной».

К сожалению, не всегда удаётся построить оценку, удовлетворяющую всем трём требованиям одновременно.

Для оценки математического ожидания чаще всего применяется оценка.

= , (1.12)

то есть среднее арифметическое по выборке. Если случайная величина X имеет конечные m x и s x , то оценка (1.12) не смещена и состоятельна. Эта оценка эффективна, например, если X имеет нормальное распределение (рис.п.1.4, приложение 1). Для других распределений она может оказаться неэффективной. Например, в случае равномерного распределения (рис.п.1.1, приложение 1) несмещённой, состоятельной оценкой будет

(1.13)

В то же время оценка (1.13) для нормального распределения не будет ни состоятельной, ни эффективной, и будет даже ухудшаться с ростом объёма выборки.

Таким образом, для каждого типа распределения случайной величины Х следовало бы использовать свою оценку математического ожидания. Однако в нашей ситуации тип распределения может быть известен лишь предположительно. Поэтому будем использовать оценку (1.12), которая достаточно проста и имеет наиболее важные свойства несмещённости и состоятельности.

Для оценки математического ожидания по группированной выборке используется следующая формула:

= , (1.14)

которую можно получить из предыдущей, если считать все m i значений выборки, попавших в i –й интервал, равными представителю z i этого интервала. Эта оценка, естественно, грубее, но требует значительно меньшего объёма вычислений, особенно при большом объёме выборки.

Для оценки дисперсии чаще всего используется оценка:

= , (1.15)

Эта оценка не смещена и состоятельна для любой случайной величины Х , имеющей конечные моменты до четвёртого порядка включительно.

В случае группированной выборки используется оценка:

= (1.16)

Оценки (1.14) и (1.16), как правило, смещены и несостоятельны, так как их математические ожидания и пределы, к которым они сходятся, отличны от m x и в силу замены всех значений выборки, попавших в i –й интервал, на представителя интервала z i .

Отметим, что при больших n, коэффициент n /(n – 1) в выражениях (1.15) и (1.16) близок к единице, поэтому его можно опустить.

Интервальные оценки.

Пусть точное значение некоторого параметра равно a и найдена его оценка a*(S) по выборке S . Оценке a* соответствует точка на числовой оси (рис.1.5), поэтому такая оценка называется точечной . Все оценки, рассмотренные в предыдущем параграфе, точечные. Практически всегда, в силу случайности

a* ¹ a , и мы можем надеяться только на то, что точка a* находится где–то вблизи a . Но насколько близко? Любая другая точечная оценка будет иметь тот же недостаток – отсутствие меры надёжности результата.


Рис.1.5. Точечная оценка параметра.

Более определённым в этом отношении являются интервальные оценки . Интервальные оценка представляет собой интервал I b = (a , b) , в котором точное значение оцениваемого параметра находится с заданной вероятностью b . Интервал I b называется доверительным интервалом , а вероятность b называется доверительной вероятностью и может рассматриваться как надёжность оценки .

Доверительный интервал состоится по имеющейся выборке S , он случаен в том смысле, что случайны его границы a(S) и b(S) , которые мы будем вычислять по (случайной) выборке. Поэтому b есть вероятность того, что случайный интервал I b накроет неслучайную точку a . На рис. 1.6. интервал I b накрыл точку a , а I b * - нет. Поэтому не совсем правильно говорить, что a « попадает» в интервал.

Если доверительная вероятность b велика (например, b = 0,999 ), то практически всегда точное значение a находится в построенном интервале.


Рис.1.6. Доверительные интервалы параметра a для различных выборок.

Рассмотрим метод построения доверительного интервала для математического ожидания случайной величины Х, основанный на центральной предельной теореме .

Пусть случайная величина Х имеет неизвестное математическое ожидание m x и известную дисперсию . Тогда, в силу центральной предельной теоремы, среднее арифметическое:

= , (1.17)

результатов n независимых испытаний величины Х является случайной величиной, распределение которой при больших n , близко к нормальному распределению со средним m x и среднеквадратическим отклонением . Поэтому случайная величина

(1.18)

имеет распределение вероятностей, которое можно считать стандартным нормальным с плотностью распределения j(t) , график которой изображён на рис.1.7 (а также на рис.п.1.4, приложение 1).



Рис.1.7. Плотность распределения вероятностей случайной величины t .

Пусть задана доверительная вероятность b и t b - число, удовлетворяющее уравнению

b = Ф 0 (t b) – Ф 0 (-t b) = 2 Ф 0 (t b), (1.19)

где - функция Лапласа . Тогда вероятность попадания в интервал (-t b , t b) будет равна заштрихованной на рис.1.7. площади, и, в силу выражения (1.19), равна b . Следовательно

b = P(-t b < < t b) = P( – t b < m x < + t b ) =

= P( – t b < m x < + t b ) . (1.20)

Таким образом, в качестве доверительного интервала можно взять интервал

I b = ( – t b ; + t b ) , (1.21)

так как выражение (1.20) означает, что неизвестное точное значение m x находится в I b с заданной доверительной вероятностью b . Для построения I b нужно по заданному b найтиt b из уравнения (1.19). Приведём несколько значений t b , необходимых в дальнейшем :

t 0,9 = 1,645; t 0,95 = 1,96; t 0,99 = 2,58; t 0,999 = 3,3.

При выводе выражения (1.21) предполагалось, что известно точное значение среднеквадратического отклонения s х . Однако оно известно далеко не всегда. Воспользуемся поэтому его оценкой (1.15) и получим:

I b = ( – t b ; + t b ) . (1.22)

Соответственно, оценки и , полученные по группированной выборке, дают следующую формулу для доверительного интервала:

I b = ( – t b ; + t b ) . (1.23)

ТЕМА: Точечные оценки математического ожидания. Точечные оценки дисперсии. Точечная оценка вероятности события. Точечная оценка параметров равномерного распределения.

п.1. Точечные оценки математического ожидания.

Предположим, что функция распределения случайной величины ξ зависит от неизвестного параметра θ : P (ξ θ;).

Если x 1 , x 2 …., x n - выборка из генеральной совокупности случайной величиныξ, то оценкой параметра θ называется произвольная функция от выборочных значений

Значение оценки меняется от выборки к выборке и, значит, есть случайная величина. В большинстве экспериментов значение этой случайной величины близки к значению оцениваемого параметра, если для любого значения n математическое ожидание величины равно истинному значению параметра, то оценки , удовлетворяющие условию называются несмещенными . Несмещенность оценки означает, что эта оценка не несет в себе систематической ошибки.

Оценка называется состоятельной оценкой параметра θ , если для любого ξ>0 справедливо

Таким образом, с ростом объема выборки увеличивается точность результата.

Пусть x 1 , x 2 x n – выборка из генеральной совокупности, соответствующей случайной величине ξ с неизвестным математическим ожиданием и известной дисперсией Dξ=σ 2 . Построим несколько оценок неизвестного параметра. Если, то , т.е. рассматриваемая оценка является несмещенной оценкой. Но, поскольку значение вообще не зависит от объема выборки n, то оценка не является состоятельной.

Эффективной оценкой математического ожидания нормально распределенной случайной величины является оценка

Впредь для оценки неивестного математического ожидания случайной величины будем использовать выборочное среднее, т. е.

Существуют стандартные (регулярные) методы получения оценок неизвестных параметров распределения. Наиболее известные из них: метод моментов , метод максимального правдоподобия и метод наименьших квадратов.

п.2 Точечные оценки дисперсии.

Для дисперсии σ 2 случайной величины ξ можно предложить следующую оценку:

где - выборочное среднее.

Доказано, что эта оценка состоятельная, но смещенная.

В качестве состоятельной несмещенной оценки дисперсии исполь­зуют величину

Именно несмещенностью оценки s 2 объясняется ее более частое использование в качестве оценки величины D ξ.

Заметим, что Mathcad предлагает в качестве оценки дисперсии величину , а не s 2: функция var (x ) вычисляет величину

где mean (x ) -выборочное среднее .

ЗАДАНИЕ 6.5

Μξ и дисперсии D ξ случайной величины ξ по приведенным в задании выборочным значениям .

Порядок выполнения задания

    Прочитайте с диска файл, содержащий выборочные значения, или введите заданную выборку с клавиатуры.

    Вычислите точечные оценки Μξ и D ξ.

Пример выполнения задания

Найдите состоятельные несмещенные оценки математического ожи­дания Μξ и дисперсии D ξ случайной величины ξ по выборочным значениям, заданным следующей таблицей.

Для выборки, заданной таблицей такого типа (приведено выборочное значение и число, указывающее, сколько раз это значение встречается в выборке), формулы для состоятельных несмещенных оценок математического ожидания и дисперсии имеют вид:

, ,

где k - количество значений в таблице; n i - количество значений x i в выборке; n - объем выборки.

Фрагмент рабочего документа Mathcad с вычислениями точечных оценок приведен ниже.

Из приведенных вычислений видно, что смещенная оценка дает заниженное значение оценки дисперсии.

п.3. Точечная оценка вероятности события

Предположим, что в некотором эксперименте событие А (благоприят­ный исход испытания) происходит с вероятностью p и не происходит с вероятностью q = 1 - р. Задача состоит в получении оценки неизвест­ного параметра распределения p по результатам серии n случайных экспериментов. При заданном числе испытаний n количество бла­гоприятных исходов m в серии испытаний - случайная величина, имеющая распределение Бернулли. Обозначим ее буквой μ.

Если событие А в серии из n независимых испытаний произошло

m раз, то оценку величины p предлагается вычислять по формуле

Выясним свойства предлагаемой оценки. Поскольку случайная ве­личина μ имеет распределение Бернулли, то Μμ= np и M = M = р , т.е. налицо несмещенная оценка.

Для испытаний Бернулли справедлива теорема Бернулли, согласно которой, т.е. оценка p состоятельная.

Доказано, что эта оценка эффективна, так как обладает при прочих равных условиях минимальной дисперсией.

В Mathcad для моделирования выборки значений случайной ве­личины, имеющей распределение Бернулли, предназначена функция rbinom(fc,η,ρ), которая формирует вектор из к случайных чисел, κα­ ι ждое из которых равно числу успехов в серии из η независимых испы­таний с вероятностью успеха ρ в каждом.

ЗАДАНИЕ 6.6

Смоделируйте несколько выборок значений случайной величины, име­ющей распределение Бернулли с заданным значением параметра р . Вычислите для каждой выборки оценку параметра p и сравните с за­данным значением. Представьте результаты вычислений графически.

Порядок выполнения задания

1. Используя функцию rbinom(1, n , p ), опишите и сформируй­те последовательность значений случайной величины, име­ющей распределение Бернулли с заданными p и n для n = 10, 20, ..., Ν, как функцию объема выборки п.

2. Вычислите для каждого значения n точечные оценки веро­ятности р.

Пример выполнения задания

Пример получения точечных оценок выборок объема n = 10, 20,..., 200 значений случайной величины μ, имеющей распределение Бернулли с параметром p = 0.3, приведен ниже.

Указание. Поскольку значением функции является вектор , число успехов в серии n независимых испытаний с вероятностью успеха p в каждом испытании содержится в первой компоненте вектора rbinom(1,n , p ) , т.е. число успехов равно rbinom(1, n , p ). В приведенном выше фрагменте k - я компонента вектора Ρ содержит число успехов в серии 10k независимых испытаний для k = 1,2,..., 200.

п. 4. Точечная оценка параметров равномерного распределения

Обратимся еще к одному поучительному примеру. Пусть - выборка из генеральной совокупности, соответствующей случай­ной величине ξ, имеющей равномерное распределение на отрезке с неизвестным параметром θ . Наша задача - оценить этот неизвестный параметр.

Рассмотрим один из возможных способов построения требуемой оценки. Если ξ - случайная величина, имеющая равномерное распре­деление на отрезке , то Μ ξ = . Поскольку оценка величины известна, Μξ =, то за оценку параметра θ можно взять оценку

Несмещенность оценки очевидна:

Вычислив дисперсию и предел D при n →∞, убедимся в состоятельности оценки :

Для получения другой оценки параметра θ обратимся к другой статистике. Пусть = max). Найдем распределение случайной величины:

Тогда математическое ожидание и дисперсия случайной величины

с распределением равны соответственно:

;

т.е. оценка состоятельная, но смещенная. Однако если вместо = max) рассмотреть = max), то и , и, следовательно, оценка состоятельная и несмещенная.

При этом, поскольку

существенно эффективнее оценки

Например, при п= 97 разброс оценки θ^ в 33 рала меньше разброса оценки

Последний пример еще раз показывает, что выбор статистической оценки неизвестного параметра распределения - важная и нетриви­альная задача.

В Mathcad для моделирования выборки значений случайной величи­ны, имеющей равномерное распределение на отрезке [а, Ь], предназна­чена функция runif(fc,o,b), которая формирует вектор из к случайных чисел, каждое из которых - значение равномерно распределенной на отрезке [а, 6] случайной величины.

Оценки математического ожидания и дисперсии.

С понятием параметров распределения мы познакомились в теории вероятностей. Например, в нормальном законе распределения, задаваемом функцией плотности вероятности

параметрами служат а – математическое ожидание и а – среднее квадратическое отклонение. В распределении Пуассона параметром является число а = пр.

Определение. Статистической оценкой неизвестного параметра теоретического распределения называют его приближенное значение, зависящее от данных выборки (х 1 , х 2 , х 3 , ..., х k ; п 1 , п 2 , п 3 , ..., п k ), т. е. некоторую функцию этих величин.

Здесь х 1 , х 2 , х 3 , ..., х k – значения признака, п 1 , п 2 , п 3 , ..., п k –соответствующие частоты. Статистическая оценка является случайной величиной.

Обозначим через θ – оцениваемый параметр, а через θ * – его статистическую оценку. Величину |θ *–θ | называют точностью оценки. Чем меньше |θ *–θ |, тем лучше, точнее определен неизвестный параметр.

Чтобы оценка θ * имела практическое значение, она не должна содержать систематической ошибки и вместе с тем иметь возможно меньшую дисперсию. Кроме того, при увеличении объема выборки вероятность сколь угодно малых отклонений |θ *–θ | должна быть близка к 1.

Сформулируем следующие определения.

1. Оценка параметра называется несмещенной, если ее математическое ожидание М (θ *) равно оцениваемому параметру θ , т. е.

М (θ *) = θ, (1)

и смещенной, если

М (θ *) ≠ θ, (2)

2. Оценка θ* называется состоятельной, если при любом δ > 0

(3)

Равенство (3) читается так: оценка θ * сходится по вероятности к θ .

3. Оценка θ* называется эффективной, если при заданном п она имеет наименьшую дисперсию.

Теорема 1. Выборочная средняя Х В является несмещенной и состоятельной оценкой математического ожидания.

Доказательство. Пусть выборка репрезентативна, т. е.. все элементы генеральной совокупности имеют одинаковую возможность попасть в выборку. Значения признака х 1 , х 2 , х 3 ,...,х n можно принять за независимые случайные величины Х 1 , Х 2 , Х 3 , ...,Х n с одинаковыми распределениями и числовыми характеристиками, в том числе с равными математическими ожиданиями, равными а,

Так как каждая из величин Х 1 , Х 2 , Х 3 , …, Х п имеет распределение, совпадающее с распределением генеральной совокупности, то М (Х ) = а. Поэтому

откуда следует, что – состоятельная оценка М (Х ).

Используя правило исследования на экстремум, можно доказать, что является и эффективной оценкой М (Х ).