Примеры ковалентной неполярной химической связи. §2 Химическая связь

Ковалентная связь образуется при взаимодействии неметаллов . Атомы неметаллов имеют высокую электроотрицательность и стремятся заполнить внешний электронный слой за счёт чужих электронов. Два таких атома могут перейти в устойчивое состояние, если объединят свои электроны.

Рассмотрим возникновение ковалентной связи в простых веществах.

1. Образование молекулы водорода.

Каждый атом водорода имеет один электрон. Для перехода в устойчивое состояние ему необходим ещё один электрон.

При сближении двух атомов электронные облака перекрываются. Образуется общая электронная пара, которая связывает атомы водорода в молекулу.

В пространстве между двумя ядрами общие электроны бывают чаще, чем в других местах. Там формируется область с повышенной электронной плотностью и отрицательным зарядом. Положительно заряженные ядра притягиваются к ней, и образуется молекула.

При этом каждый атом получает завершённый двухэлектронный внешний уровень и переходит в устойчивое состояние.

Ковалентная связь за счёт образования одной общей электронной пары называется одинарной .

Общие электронные пары (ковалентные связи) образуются за счёт неспаренных электронов , расположенных на внешних энергетических уровнях взаимодействующих атомов.

У водорода - один неспаренный электрон. Для других элементов их число равно 8 – № группы .

Неметаллы VII А группы (галогены) имеют на внешнем слое один неспаренный электрон.

У неметаллов VI А группы (кислород, сера) таких электронов два .

У неметаллов V А группы (азот, фосфор) - три неспаренных электрона.

2. Образование молекулы фтора.

Атом фтора на внешнем уровне имеет семь электронов. Шесть из них образуют пары, а седьмой неспаренный.

При соединении атомов образуется одна общая электронная пара, то есть возникает одна ковалентная связь. Каждый атом получает завершённый восьмиэлектронный внешний слой. Связь в молекуле фтора тоже одинарная. Такие же одинарные связи существуют в молекулах хлора, брома и иода .

Если атомы имеют несколько неспаренных электронов, то образуются две или три общие пары.

3. Образование молекулы кислорода.

У атома кислорода на внешнем уровне - два неспаренных электрона.

При взаимодействии двух атомов кислорода возникают две общие электронные пары. Каждый атом заполняет свой внешний уровень до восьми электронов. Связь в молекуле кислорода двойная .

Определение

Ковалентной связью называется химическая связь, образующаяся за счёт обобществления атомами своих валентных электронов. Обязательным условием образования ковалентной связи является перекрывание атомных орбиталей (АО), на которых расположены валентные электроны. В простейшем случае перекрывание двух АО приводит к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО:

Образование связи

Ковалентная связь (атомная связь, гомеополярная связь) - связь между двумя атомами за счёт обобществления (electron sharing) двух электронов - по одному от каждого атома:

A. + В. -> А: В

По этой причине гомеополярная связь имеет направленный характер. Пара электронов, осуществляющая связь, принадлежит одновременно обоим связываемым атомам, например:

.. .. ..
: Cl : Cl : H : O : H
.. .. ..

Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом ее образования:

1. Простая ковалентная связь . Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными. Если атомы, образующие простую ковалентную связь одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующиеся связь в равной степени владеют обобществленной электронной парой, такая связь называется неполярной ковалентной связью. Если атомы различны, тогда степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов, атом с большей электроотрицательностью в большей степени обладает парой электронов связи, и поэтому его истинный заряд имеет отрицательный знак, атом с меньшей электроотрицательностью приобретает соответственно такой же по величине заряд, но с положительным знаком.

Сигма (σ)-, пи (π )-связи - приближенное описание видов ковалентных связей в молекулах органических соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен , ацетилен и бензол .

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π -связью.

В линейной молекуле ацетилена

Н-С≡С-Н (Н: С::: С: Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π -связи между этими же атомами углерода. Две π -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π -связи, а единая π -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи:

  • Ковалентная неполярная связь образуется между атомами неметалла одного и того же химического элемента. Такую связь имеют простые вещества , например О 2 ; N 2 ; C 12 .
  • Ковалентная полярная связь образуется между атомами различных неметаллов.

См. также

Литература

  • «Химический энциклопедический словарь», М., «Советская энциклопедия», 1983, с.264.
Органическая химия
Список органических соединений

Wikimedia Foundation . 2010 .

И двухэлектронную трёхцентровую связь .

С учётом статистической интерпретации волновой функции М. Борна плотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). В теории отталкивания электронных пар рассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):

0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона .

Характерные свойства ковалентной связи

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

  • Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы.

Углы между двумя связями называют валентными.

  • Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
  • Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов.

По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

  • Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов . Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 А и является центром симметрии молекулярного иона водорода H 2 + .

История термина

Термин "ковалентная связь" был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году . Этот термин относился к химической связи , обусловленной совместным обладанием электронами , в отличие от металлической связи , в которой электроны были свободными, или от ионной связи , в которой один из атомов отдавал электрон и становился катионом , а другой атом принимал электрон и становился анионом .

Образование связи

Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома .

A· + ·В → А: В

В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществлённые электроны располагаются на более низкой по энергии связывающей МО.

Образование связи при рекомбинации атомов

Однако, механизм межатомного взаимодействия долгое время оставался неизвестным. Лишь в 1930 г. Ф. Лондон ввёл понятие дисперсионное притяжение - взаимодействие между мгновенным и наведённым (индуцированными) диполями. В настоящее время силы притяжения, обусловленные взаимодействием между флуктуирующими электрическими диполями атомов и молекул носят название «Лондоновские силы ».

Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости α и обратно пропорциональна расстоянию между двумя атомами или молекулами в шестой степени .

Образование связи по донорно-акцепторному механизму

Кроме изложенного в предыдущем разделе гомогенного механизма образования ковалентной связи, существует гетерогенный механизм - взаимодействие разноименно заряженных ионов - протона H + и отрицательного иона водорода H - , называемого гидрид-ионом :

H + + H - → H 2

При сближении ионов двухэлектронное облако (электронная пара) гидрид-иона притягивается к протону и в конечном счёте становится общим для обоих ядер водорода, то есть превращается в связывающую электронную пару. Частица, поставляющая электронную пару, называется донором, а частица, принимающая эту электронную пару, называется акцептором. Такой механизм образования ковалентной связи называется донорно-акцепторным .

H + + H 2 O → H 3 O +

Протон атакует неподелённую электронную пару молекулы воды и образует устойчивый катион, существующий в водных растворах кислот .

Аналогично происходит присоединение протона к молекуле аммиака с образованием комплексного катиона аммония :

NH 3 + H + → NH 4 +

Таким путём (по донорно-акцепторному механизму образования ковалентной связи) получают большой класс ониевых соединений , в состав которого входят аммониевые , оксониевые, фосфониевые, сульфониевые и другие соединения .

В качестве донора электронной пары может выступать молекула водорода, которая при контакте с протоном приводит к образованию молекулярного иона водорода H 3 + :

H 2 + H + → H 3 +

Связывающая электронная пара молекулярного иона водорода H 3 + принадлежит одновременно трём протонам.

Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

1. Простая ковалентная связь . Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

  • Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью . Такую связь имеют простые вещества , например: 2 , 2 , 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например, в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.
  • Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами , то такое соединение называется ковалентной полярной связью .

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвёртого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π {\displaystyle \pi } -связью.

Химическая связь - электростатическое взаимодействие между электронами и ядрами, приводящее к образованию молекул.

Химическую связь образуют валентные электроны. У s- и p-элементов валентными являются электроны внешнего слоя, у d-элементов - s-электроны внешнего слоя и d-электроны предвнешнего слоя. При образовании химической связи атомы достраивают свою внешнюю электронную оболочку до оболочки соответствующего благородного газа.

Длина связи - среднее расстояние между ядрами двух химически связанных между собой атомов.

Энергия химической связи - количество энергии, необходимое для того, чтобы разорвать связь и отбросить фрагменты молекулы на бесконечно большое расстояние.

Валентный угол - угол между линиями, соединяющими химически связанные атомы.

Известны следующие основные типы химической связи: ковалентная (полярная и неполярная), ионная, металлическая и водородная .

Ковалентной называют химическую связь, образованную за счёт образования общей электронной пары.

Если связь образует пара общих электронов, в равной мере принадлежащая обоим соединяющимся атомам, то её называют ковалентной неполярной связью . Эта связь существует, например, в молекулах H 2 , N 2 , O 2 , F 2 , Cl 2 , Br 2 , I 2 . Ковалентная неполярная связь возникает между одинаковыми атомами, а связующее их электронное облако равномерно распределено между ними.

В молекулах между двумя атомами может формироваться различное число ковалентных связей (например, одна в молекулах галогенов F 2 , Cl 2 , Br 2 , I 2 , три - в молекуле азота N 2).

Ковалентная полярная связь возникает между атомами с разной электроотрицательностью. Образующая её электронная пара смещается в сторону более электроотрицательного атома, но остаётся связанной с обоими ядрами. Примеры соединений с ковалентной полярной связью: HBr, HI, H 2 S, N 2 O и т. д.

Ионной называют предельный случай полярной связи, при которой электронная пара полностью переходит от одного атома к другому и связанные частицы превращаются в ионы.

Строго говоря, к соединениям с ионной связью можно отнести лишь соединения, для которых разность в электроотрицательности больше 3, но таких соединений известно очень мало. К ним относят фториды щелочных и щёлочноземельных металлов. Условно считают, что ионная связь возникает между атомами элементов, разность электроотрицательности которых составляет величину больше 1,7 по шкале Полинга . Примеры соединений с ионной связью: NaCl, KBr, Na 2 O. Подробнее о шкале Полинга будет рассказано в следующем уроке.

Металлической называют химическую связь между положительными ионами в кристаллах металлов, которая осуществляется в результате притяжения электронов, свободно перемещающихся по кристаллу металла.

Атомы металлов превращаются в катионы, формируя металлическую кристаллическую решётку. В этой решётке их удерживают общие для всего металла электроны (электронный газ).

Тренировочные задания

1. Ковалентной неполярной связью образовано каждое из веществ, формулы которых

1) O 2 , H 2 , N 2
2) Al, O 3 , H 2 SO 4
3) Na, H 2 , NaBr
4) H 2 O, O 3 , Li 2 SO 4

2. Ковалентной полярной связью образовано каждое из веществ, формулы которых

1) O 2 , H 2 SO 4 , N 2
2) H 2 SO 4 , H 2 O, HNO 3
3) NaBr, H 3 PO 4 , HCl
4) H 2 O, O 3 , Li 2 SO 4

3. Только ионной связью образовано каждое из веществ, формулы которых

1) CaO, H 2 SO 4 , N 2
2) BaSO 4 , BaCl 2 , BaNO 3
3) NaBr, K 3 PO 4 , HCl
4) RbCl, Na 2 S, LiF

4. Металлическая связь характерна для элементов списка

1) Ba, Rb, Se
2) Cr, Ba, Si
3) Na, P, Mg
4) Rb, Na, Cs

5. Соединениями только с ионной и только с ковалентной полярной связью являются соответственно

1) HCl и Na 2 S
2) Cr и Al(OH) 3
3) NaBr и P 2 O 5
4) P 2 O 5 и CO 2

6. Ионная связь образуется между элементами

1) хлором и бромом
2) бромом и серой
3) цезием и бромом
4) фосфором и кислородом

7. Ковалентная полярная связь образуется между элементами

1) кислородом и калием
2) серой и фтором
3) бромом и кальцием
4) рубидием и хлором

8. В летучих водородных соединениях элементов VA группы 3-го периода химическая связь

1) ковалентная полярная
2) ковалентная неполярная
3) ионная
4) металлическая

9. В высших оксидах элементов 3-го периода вид химической связи с увеличением порядкового номера элемента изменяется

1) от ионной связи к ковалентной полярной связи
2) от металлической к ковалентной неполярной
3) от ковалентной полярной связи до ионной связи
4) от ковалентной полярной связи до металлической связи

10. Длина химической связи Э–Н увеличивается в ряду веществ

1) HI – PH 3 – HCl
2) PH 3 – HCl – H 2 S
3) HI – HCl – H 2 S
4) HCl – H 2 S – PH 3

11. Длина химической связи Э–Н уменьшается в ряду веществ

1) NH 3 – H 2 O – HF
2) PH 3 – HCl – H 2 S
3) HF – H 2 O – HCl
4) HCl – H 2 S – HBr

12. Число электронов, которые участвуют в образовании химических связей в молекуле хлороводорода, -

1) 4
2) 2
3) 6
4) 8

13. Число электронов, которые участвуют в образовании химических связей в молекуле P 2 O 5 , -

1) 4
2) 20
3) 6
4) 12

14. В хлориде фосфора (V) химическая связь

1) ионная
2) ковалентная полярная
3) ковалентная неполярная
4) металлическая

15. Наиболее полярная химическая связь в молекуле

1) фтороводорода
2) хлороводорода
3) воды
4) сероводорода

16. Наименее полярная химическая связь в молекуле

1) хлороводорода
2) бромоводорода
3) воды
4) сероводорода

17. За счёт общей электронной пары образована связь в веществе

1) Mg
2) H 2
3) NaCl
4) CaCl 2

18. Ковалентная связь образуется между элементами, порядковые номера которых

1) 3 и 9
2) 11 и 35
3) 16 и 17
4) 20 и 9

19. Ионная связь образуется между элементами, порядковые номера которых

1) 13 и 9
2) 18 и 8
3) 6 и 8
4) 7 и 17

20. В перечне веществ, формулы которых соединения только с ионной связью, это

1) NaF, CaF 2
2) NaNO 3 , N 2
3) O 2 , SO 3
4) Ca(NO 3) 2 , AlCl 3

Данные по энергии ионизации (ЭИ), ПЭИ и составу стабильных молекул - их настоящие значения и сравнения - как свободных атомов, так и атомов, связанных в молекулы, позволяют нам понять как атомы образуют молекулы посредством механизма ковалентной связи.

КОВАЛЕНТНАЯ СВЯЗЬ - (от латинского «со» совместно и «vales» имеющий силу) (гомеополярная связь), химическая связь между двумя атомами, возникающая при обобществлении электронов, принадлежавших этим атомам. Ковалентной связью соединены атомы в молекулах простых газов. Связь, при которой имеется одна общая пара электронов, называется одинарной; существуют также двойные и тройные связи.

Рассмотрим несколько примеров, чтобы увидеть, как мы можем использовать наши правила для определения количества ковалентных химических связей, которые может образовать атом, если мы знаем количество электронов на внешней оболочке данного атома и заряд его ядра. Заряд ядра и количество электронов на внешней оболочке определяются экспериментальным путем и включены в таблицу элементов.

Расчет возможного числа ковалентных связей

Для примера, подсчитаем количество ковалентных связей, которые могут образовать натрий (Na), алюминий (Al), фосфор (P), и хлор (Cl) . Натрий (Na) и алюминий (Al) имеют, соответственно 1 и 3 электрона на внешней оболочке, и, по первому правилу (для механизма образования ковалентной связи используется один электрон на внешней оболочке), они могут образовать:натрий (Na) - 1 и алюминий (Al) - 3 ковалентных связи. После образования связей количество электронов на внешних оболочках натрия (Na) и алюминия (Al) равно, соответственно, 2 и 6; т.е., менее максимального количества (8) для этих атомов. Фосфор (P) и хлор (Cl) имеют, соответственно, 5 и 7 электронов на внешней оболочке и, согласно второй из вышеназванных закономерностей, они могли бы образовать 5 и 7 ковалентных связей. В соответствии с четвертой закономерностью образование ковалентной связи, число электронов на внешней оболочке этих атомов увеличивается на 1. Согласно шестой закономерности, когда образуется ковалентная связь, число электронов на внешней оболочке связываемых атомов не может быть более 8. То есть, фосфор (P) может образовать только 3 связи (8-5 = 3), в то время как хлор (Cl) может образовать только одну (8-7 = 1).

Пример: на основании анализа мы обнаружили, что некое вещество состоит из атомов натрия (Na) и хлора (Cl) . Зная закономерности механизма образования ковалентных связей, мы можем сказать, что натрий (Na ) может образовать только 1 ковалентную связь. Таким образом, мы можем предположить, что каждый атом натрия (Na) связан с атомом хлора (Cl) посредством ковалентной связи в этом веществе, и что это вещество состоит из молекул атома NaCl . Формула строения для этой молекулы: Na - Cl. Здесь тире (-) означает ковалентную связь. Электронную формулу этой молекулы можно показать следующим образом:
. .
Na: Cl:
. .
В соответствии с электронной формулой, на внешней оболочке атома натрия (Na) в NaCl имеется 2 электрона, а на внешней оболочке атома хлора (Cl) находится 8 электронов. В данной формуле электроны (точки) между атомами натрия (Na) и хлора (Cl) являются связующими электронами. Поскольку ПЭИ у хлора (Cl) равен 13 эВ, а у натрия (Na) он равен 5,14 эВ, связующая пара электронов находится гораздо ближе к атому Cl , чем к атому Na . Если энергии ионизации атомов, образующих молекулу сильно различаются, то образовавшаяся связь будет полярной ковалентной связью.

Рассмотрим другой случай. На основании анализа мы обнаружили, что некое вещество состоит из атомов алюминия (Al) и атомов хлора (Cl) . У алюминия (Al) имеется 3 электрона на внешней оболочке; таким образом, он может образовать 3 ковалентные химические связи, в то время хлор (Cl) , как и в предыдущем случае, может образовать только 1 связь. Это вещество представлено как AlCl 3 , а его электронную формулу можно проиллюстрировать следующим образом:

Рисунок 3.1. Электронная формула AlCl 3

чья формула строения:
Cl - Al - Cl
Cl

Эта электронная формула показывает, что у AlCl 3 на внешней оболочке атомов хлора (Cl ) имеется 8 электронов, в то время, как на внешней оболочке атома алюминия (Al) их 6. По механизму образования ковалентной связи, оба связующих электрона (по одному от каждого атома) поступают на внешние оболочки связываемых атомов.

Кратные ковалентные связи

Атомы, имеющие более одного электрона на внешней оболочке, могут образовывать не одну, а несколько ковалентных связей между собой. Такие связи называются многократными (чаще кратными ) связями. Примерами таких связей служат связи молекул азота (N = N ) и кислорода (O = O ).

Связь, образующаяся при объединении одинарных атомов называется гомоатомной ковалентной связью,е сли атомы разные, то связь называется гетероатомнной ковалентной связью [греческие префексы "гомо" и "гетеро" соответственно означают одинаковые и разные].

Представим, как в действительности выглядит молекула со спаренными атомами. Самая простая молекула со спаренными атомами - это молекула водорода.