Примеры решения и оформления экспериментальных задач по физике. Измерение размеров бруска

Эксперимент в физике. Физический практикум. Шутов В.И., Сухов В.Г., Подлесный Д.В.

М.: Физматлит, 2005. - 184с.

Описаны экспериментальные работы, входящие в программу физико-математических лицеев в рамках физического практикума. Пособие представляет собой попытку создания единого руководства для проведения практических занятий в классах и школах с углубленным изучением физики, а также для подготовки к экспериментальным турам олимпиад высокого уровня.

Вводный материал традиционно посвящен методам обработки экспериментальных данных. Описание каждой экспериментальной работы начинается с теоретического введения. В экспериментальной части приводятся описания экспериментальных установок и задания, регламентирующие последовательность работы учащихся при проведении измерений. Приводятся образцы рабочих таблиц для записи результатов измерений, рекомендации по методам обработки и представления результатов и требования к оформлению отчетов. В конце описаний предлагаются контрольные вопросы, ответы на которые учащиеся должны подготовить к защите работ.

Для школ и классов с углубленным изучением физики.

Формат: djvu / zip

Размер: 2 ,6 Мб

/ Download файл

ВВЕДЕНИЕ

Физический практикум является неотъемлемой частью курса физики. Ясное и глубокое усвоение основных законов физики и ее методов невозможно без работы в физической лаборатории, без самостоятельных практических занятий. В физической лаборатории учащиеся не только проверяют известные законы физики, но и обучаются работе с физическими приборами, овладевают навыками экспериментальной исследовательской деятельности, учатся грамотной обработке результатов измерений и критическому отношению к ним.

Данное пособие представляет собой попытку создания единого руководства по экспериментальной физике для ведения занятий в физических лабораториях профильных физико-математических школ и лицеев. Оно рассчитано на учащихся, не обладающих опытом самостоятельной работы в физической лаборатории. Поэтому описания работ выполнены подробно и обстоятельно. Особое внимание уделено теоретическому обоснованию применяемых экспериментальных методов, вопросам обработки результатов измерений и оценки их погрешностей.

Описание каждой экспериментальной работы начинается с теоретического введения. В экспериментальной части каждой работы приводятся описания экспериментальных установок и задания, регламентирующие последовательность работы учащихся при проведении измерений, образцы рабочих таблиц для записи результатов измерений и рекомендации по методам обработки и представления результатов. В конце описаний предлагаются контрольные вопросы, ответы на которые учащиеся должны подготовить к защите работ.

В среднем за учебный год каждый учащийся должен выполнить 10–12 экспериментальных работ в соответствии с учебным планом.

Учащийся заранее готовится к выполнению каждой работы. Он должен изучить описание работы, знать теорию в объеме, указанном в описании, порядок выполнения работы, иметь предварительно подготовленный лабораторный журнал с конспектом теории и таблицами, а также, если это необходимо, иметь миллиметровую бумагу для выполнения прикидочного графика.

Перед началом выполнения работы учащийся получает допуск к работе.

Примерный перечень вопросов для получения допуска:

1. Цель работы.

2. Основные физические законы, изучаемые в работе.

3. Схема установки и принцип ее действия.

4. Измеряемые величины и расчетные формулы.

5. Порядок выполнения работы.

Учащиеся, допущенные к выполнению работы, обязаны следовать порядку выполнения строго в соответствии с описанием.

Работа в лаборатории заканчивается выполнением предварительных расчетов и обсуждением их с преподавателем.

К следующему занятию учащийся самостоятельно заканчивает обработку полученных экспериментальных данных, построение графиков и оформление отчета.

На защите работы учащийся должен уметь ответить на все вопросы по теории в полном объеме программы, обосновать принятую методику измерений и обработки данных, вывести самостоятельно расчетные формулы. Выполнение работы на этом завершается, выставляется окончательная итоговая оценка за работу.

Семестровая и годовая оценки выставляются при успешном выполнении всех работ в соответствии с учебным планом.

Курс "Экспериментальная физика" практически реализован на комплексном лабораторном оборудовании, разработанном Учебно-методической лабораторией Московского физико-технического института, включающем в себя лабораторные комплексы по механике материальной точки, механике твердого тела, молекулярной физике, электродинамике, геометрической и физической оптике. Такое оборудование имеется во многих специализированных физико-математических школах и лицеях России.

Введение.

Погрешности физических величин. Обработка результатов измерений.

Практическая работа 1. Измерение объема тел правильной формы.

Практическая работа 2. Исследование прямолинейного движения тел в поле земного тяготения на машине Атвуда.

Практическая работа 3. Сухое трение. Определение коэффициента трения скольжения.

Теоретическое введение к работам по колебаниям.

Практическая работа 4. Изучение колебаний пружинного маятника.

Практическая работа 5. Изучение колебаний математического маятника. Определение ускорения свободного падения.

Практическая работа 6. Изучение колебаний физического маятника.

Практическая работа 7. Определение моментов инерции тел правильной формы методом крутильных колебаний.

Практическая работа 8. Изучение законов вращения твердого тела на крестообразном маятнике Обербека.

Практическая работа 9. Определение отношения молярных теплоемкостей воздуха.

Практическая работа 10. Стоячие волны. Измерение скорости волны в упругой струне.

Практическая работа 11. Определение отношения ср/с ι? для воздуха в стоячей звуковой волне.

Практическая работа 12. Изучение работы электронного осциллографа.

Практическая работа 13. Измерение частоты колебаний путем исследования фигур Лиссажу.

Практическая работа 14. Определение удельного сопротивления нихромовой проволоки.

Практическая работа 15. Определение сопротивления проводников компенсационным методом Уитстона.

Практическая работа 16. Переходные процессы в конденсаторе. Определение емкости.

Практическая работа 17. Определение напряженности электрического поля в цилиндрическом проводнике с током.

Практическая работа 18. Исследование работы источника в цепи постоянного тока.

Практическая работа 19. Изучение законов отражения и преломления света.

Практическая работа 20. Определение фокусных расстояний собирающей и рассеивающей линз.

Практическая работа 21. Явление электромагнитной индукции. Исследование магнитного поля соленоида.

Практическая работа 22. Исследование затухающих колебаний.

Практическая работа 23. Изучение явления резонанса в цепи переменного тока.

Практическая работа 24. Дифракция Фраунгофера на щели. Измерение ширины щели «волновым методом».

Практическая работа 25. Дифракция Фраунгофера. Дифракционная решетка как оптический прибор.

Практическая работа 26. Определение показателя преломления стекла «волновым» методом.

Практическая работа 27. Определение радиуса кривизны линзы в эксперименте с кольцами Ньютона.

Практическая работа 28. Исследование поляризованного света.

Физике»

У читель физики :

Горшенёва Наталья Ивановна

2011 г
Роль эксперимента в обучении физике.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Без эксперимента нет, и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках.

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.


Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;

  • Формирование и развитие познавательной и мыслительной деятельности;

  • Политехническая подготовка;

  • Формирование мировоззрения учащихся.
Функции эксперимента:

  • Познавательная (осваиваются основы наук на практике);

  • Воспитывающая (формирование научного мировоззрения);

  • Развивающая (развивает мышление и навыки).

Виды физических экспериментов .

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь , конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Что можно сказать о приведенных выше формах обучения?

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты , устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента основную деятельность выполняют сам учитель и, в лучшем случае, один - два ученика, остальные учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Лабораторные занятия.

При обучении физике в средней школе экспериментальные умения формируются, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе . Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Выполнение самостоятельных лабораторных работ.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Тут возникает сложность: не всегда в школьном кабинете физики есть достаточное количество комплектов приборов и оборудования для проведения таких работ. Старое оборудование приходит в негодность, а, к сожалению, не все школы могут позволить себе закупку нового. Да и от ограничения по времени никуда не денешься. А если у одной из бригад что-то не получается, не работает какой-то прибор или чего-либо не хватает, тогда они начинают просить о помощи учителя , отвлекая других от выполнения лабораторной работы.

В 9-11 классах проводится физический практикум.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Проводится физический практикум, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ.

К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Это должны быть опыты с водой, воздухом, с предметами которые есть в каждом доме. Кто-то может усомниться в научной ценности таких опытов, конечно, она там минимальна. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Для человечества пользы никакой, но какова она для ребенка! Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. Кроме того, учитель обязан провести подробный инструктаж.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Легкость последующего контроля учителем;

Наличие творческой окраски.
Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Этапы проведения эксперимента:


  1. Обоснование постановки эксперимента.

  2. Планирование и проведение эксперимента.

  3. Оценка полученного результата.
Любой эксперимент должен начинаться с гипотезы, а заканчиваться выводом.


  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.

  2. Определение цели эксперимента.

  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.

  4. Планирование эксперимента, включающего ответ на вопросы:

    • какие наблюдение провести

    • какие величины измерить

    • приборы и материалы, необходимые для проведения опытов

    • ход опытов и последовательность их выполнения

    • выбор формы записи результатов эксперимента

  5. Отбор необходимых приборов и материалов

  6. Сбор установки.

  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов

  8. Математическая обработка результатов измерений

  9. Анализ результатов эксперимента, формулировка выводов
Общую структуру физического эксперимента можно представить в виде:

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:


  • Наглядность;

  • Кратковременность;

  • Убедительность, доступность, достоверность;

  • Безопасность.

Кроме вышеперечисленных видов экспериментов, существуют мысленные, виртуальные эксперименты (см. Приложение), которые проводятся в виртуальных лабораториях и имеют большое значение в случае отсутствия оборудования.


Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем рассказ учителя о физическом опыте.

Школа -это самая удивительная лаборатория, потому что в ней создается будущее! И какое оно будет, зависит от нас, учителей!

Я считаю, что если учитель в преподавании физики пользуется экспериментальным методом, при котором учащиеся систематически включаются в поиски путей решения вопросов и задач, то можно ожидать, что результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.

Приложение.
Классификация видов экспериментов .
Полевой

(экскурсии)


Домашний

Школьный


Мысленный

Реальный

Виртуальный

В зависимости от количества и размеров


Лаборатор
Практичес
демонстрационные

По месту проведения

По способу проведения

В зависимости от субъекта

Эксперимент

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование зависимости давления твердых тел от силы давления и от площади поверхности, на которую действует сила давления

В 7 классе мы выполняли задание по расчету давления, которое производит ученик, стоя на полу. Задание интересное, познавательное и имеет большое практическое значение в жизни человека. Мы решили изучить этот вопрос.

Цель: исследовать зависимость давления от силы и площади поверхности, на которую действует тело Оборудование: весы; обувь с разной площадью подошвы; бумага в клетку; фотоаппарат.

Для того чтобы вычислить давление нам необходимо знать площадь и силу Р= F/S P- давление (Па) F- сила (Н) S- площадь (м кв.)

ЭКСПЕРИМЕНТ-1 З ависимость давления от площади, при неизменной силе Цель: определить зависимость давления твердого тела от площади опоры. Методика вычисления площади тел неправильной формы такова: - подсчитываем количество квадратов целых, - подсчитываем количество квадратов известной площади не целых и делим пополам, -суммируем площади целых и нецелых квадратов Для этого я мы должны с помощью карандаша обвести края подметки и каблука; посчитать число полных (В) и неполных клеток (С) и определить площадь одной клетки (S к); S 1 = (В + С/2) · S к Ответ получим в см кв., которые нужно перевести в м кв. 1см кв.=0,0001 м кв.

Для того чтобы вычислить силу нам понадобиться масса исследуемого тела F=m*g F – сила тяжести m - масса тела g – ускорение свободно падения

Данные для нахождения давления № опыта Обувь с разной S S (м кв.) F (Н) P (Па) 1 Туфли на шпильке 2 Туфли на платформе 3 Туфли на плоской подошве

Давление, оказываемое на поверхность Туфли на шпильке р= Туфли на платформе р= Туфли на плоской подошве р= Вывод: давление твёрдого тела на опору с увеличением площади уменьшается

Какую обувь носить? - Учёные выяснили, что давление, оказываемое одной шпилькой приблизительно равно давлению, которое оказывают 137 гусеничных тракторов. - Слон давит на 1 квадратный сантиметр поверхности в 25 раз с меньшим весом, чем женщина на 13 сантиметровом каблуке. Каблуки – главнейшая причина возникновения плоскостопии у женщин

ЭКСПЕРИМЕНТ-2 Зависимость давления от массы, при неизменной площади Цель: определить зависимость давления твердого тела от его массы.

Как зависит давление от массы? Масса ученика m= Р= Масса ученика с ранцем на спине m= Р=


По теме: методические разработки, презентации и конспекты

Организация опытно-экспериментальной работы по внедрению системы мониторинга качества обучения в практику работы учителя-предметника

Мониторинг в образовании не заменяет и не ломает традиционную систему внутришкольного управления и контроля, а способствует обеспечению ее стабильности, долгосрочности и надежности. Он проводится там,...

1. Пояснительная записка к экспериментальной работе по теме «Формирование грамматической компетенции у дошкольников в условиях логопункта".2. Календарно-тематический план логопедических занятий...

Программа даёт чёткую систему изучения творчества Ф.И. Тютчева в 10 классе....

фЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

ИМЕНИ а. н. рАДИЩЕВА

Г. кУЗНЕЦК - 12

ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАДАНИЯ ПО ФИЗИКЕ

1. Измерение модуля начальной скорости и времени торможения тела, движущегося под действием силы трения

Приборы и материалы: 1) брусок от лабораторного трибометра, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями.

1. Положите брусок на стол и заметьте его начальное поло­жение.

2. Толкните слегка брусок рукой и заметьте его новое поло­жение на столе (см. рис.).

3. Измерьте тормозной путь бруска относительно стола._________

4. Измерьте модуль веса бруска и вычислите его массу.__

5. Измерьте модуль силы трения скольжения бруска по столу.___________________________________________________________

6. Зная массу, тормозной путь и модуль силы трения скольжения, вычислите модуль начальной скорости и время торможения бруска.______________________________________________

7. Запишите результаты измерений и вычислений.__________

2. Измерение модуля ускорения тела, движущегося под действием сил упругости и трения

Приборы и материалы: 1) трибометр лабораторный, 2) динамометр учебный с фиксатором.

Порядок выполнения работы

1. Измерьте модуль веса бруска с помощью динамометра._______

_________________________________________________________________.

2. Зацепите динамометр за брусок и положите их на линейку трибометра. Указатель динамометра установите на нулевое деление шкалы, а фиксатор - около упора (см. рис.).

3. Приведите брусок в равномерное движение вдоль линейки трибометра и измерьте модуль силы трения скольжения. ________

_________________________________________________________________.

4. Приведите брусок в ускоренное движение вдоль линейки трибометра, подействовав на него силой, большей модуля силы трения скольжения. Измерьте модуль этой силы. __________________

_________________________________________________________________.

5. По полученным данным вычислите модуль ускорения бруска._

_________________________________________________________________.

__________________________________________________________________

2. Переместите брусок с грузами равномерно вдоль линейки трибометра и запишите показания динамометра с точностью до 0,1 Н.__________________________________________________________.

3. Измерьте модуль перемещения бруска с точностью до 0,005 м

относительно стола. ___________________________________________.

__________________________________________________________________

5. Вычислите абсолютную и относительную погрешности измерения работы._______________________________________________

__________________________________________________________________

6. Запишите результаты измерений и вычислений.__________

__________________________________________________________________

_________________________________________________________________

Ответьте на вопросы:

1. Как направлен вектор силы тяги относительно вектора перемещения бруска?_____________________________________________

_________________________________________________________________.

2. Какой знак имеет работа, совершенная силой тяги по перемещению бруска?____________________________________________

__________________________________________________________________

Вариант 2.

1. Положите брусок с двумя грузами на линейку трибометра. За крючок бруска зацепите динамометр, расположив его под углом 30° к линейке (см. рис.). Угол наклона динамометра проверьте с помощью угольника.

2. Переместите равномерно брусок с грузами по линейке, сохраняя первоначальное направление силы тяги. Запишите показания динамометра с точностью до 0,1 Н.____________________

_________________________________________________________________.

3. Измерьте модуль перемещения бруска с точностью до 0,005 м относительно стола._______________________________________________

4. Вычислите работу силы тяги по перемещению бруска относительно стола._______________________________________________

__________________________________________________________________

__________________________________________________________________.

5. Запишите результаты измерений и вычислений.__________

__________________________________________________________________

Ответьте на вопросы:

1. Как направлен вектор силы тяги относительно вектора перемещения бруска? ____________________________________________

_________________________________________________________________.

2. Какой знак имеет работа силы тяги по перемещению бруска?

_________________________________________________________________.

_________________________________________________________________

4. Измерение КПД подвижного блока

П риборы и материалы : 1) блок, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) грузы массой по 100 г с двумя крючками – 3 шт., 5) штатив с лапкой, 6) нить длиной 50 см с петлями на концах.

Порядок выполнения работы

1. Соберите установку с подвижным блоком, как показано на рисунке. Через блок перебросьте нить. Один конец нити зацепите за лапку штатива, второй - за крючок динамометра. К обойме блока подвесьте три груза массой по 100 г.

2.Возьмите динамометр в руку, расположите его вертикально так, чтобы блок с грузами повис на нитях, и измерьте модуль силы натяжения нити._____________

___________________________________________

3.Поднимите равномерно грузы на некоторую высоту и измерьте модули перемещений грузов и динамометра относительно стола. ___________________________________________________________

_________________________________________________________________.

4.Вычислите полезную и совершенную работы относительно стола. ___________________________________________________________

__________________________________________________________________

5.Вычислите КПД подвижного блока. ________________________

Ответьте на вопросы:

1.Какой выигрыш в силе дает подвижный блок?______________

2.Можно ли при помощи подвижного блока получить выигрыш в работе? _______________________________________________

_________________________________________________________________

3.Как повысить КПД подвижного блока?_____________________

____________________________________________________________________________________________________________________________________________________________________________________________________.

5. Измерение момента силы

П риборы и материалы : 1) желоб лабораторный, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) петля из прочной нити.

Порядок выполнения работы

1.Наденьте петлю на конец желоба и зацепите ее динамометром, как показано на рисунке. Поднимая динамометр, поворачивайте желоб вокруг горизонтальной оси, проходящей через другой его конец.

2.Измерьте модуль силы, необходимой для вращения желоба._

3.Измерьте плечо этой силы. ________________________________.

4.Вычислите момент этой силы.______________________________

__________________________________________________________________.

5.Передвиньте петлю в середину желоба, и снова измерьте модуль силы, необходимой для вращения желоба, и ее плечо.______

___________________________________________________________________________________________________________________________________.

6.Вычислите момент второй силы. ___________________________

_________________________________________________________________.

7.Сравните вычисленные моменты сил. Сделайте вывод. _____

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________.

6. «Измерение жесткости пружины.

Цель работы: найти жесткость пружины.

Материалы : 1) штатив с муфтами и лапкой; 2) спиральная пружина.

Порядок выполнения работы:

Закрепите на штативе конец спиральной пружины (другой конец пружины снабжен стрелкой - указателем и крючком).

Рядом с пружиной или за ней установите и закрепите линейку с миллиметровыми делениями.

Отметьте и запишите то деление линейки, против которого приходится стрелка-указатель пружины. __________________________

Подвесьте к пружине груз известной массы и измерьте вызванное им удлинение пружины.________________________________

___________________________________________________________________

К первому грузу добавьте второй, третий и т. д. грузы, записывая каждый раз удлинение /х/ пружины. По результатам измерений заполните таблицу _____________________________________

___________________________________________________________________

__________________________________________________________________.

DIV_ADBLOCK195">

_______________________________________________________________.

3. Взвесьте брусок и груз.______________________________________

________________________________________________________________.

4.К первому грузу добавьте второй, третий грузы, каждый раз взвешивая брусок и грузы и измеряя силу трения. _______________

____________________________________________________________________________________________________________________________________________________________________________________________.


5. По результатам измерений постройте график зависимости силы трения от силы давления и, пользуясь им, определите среднее значение коэффициента трения μ ср. ______________________________-

_____________________________________________________________________________________________________________________________________________________________________________________________________.

Лабораторная работа

Измерение жесткости пружины

Цель работы : найти жесткость пружины с помощью измерения удлинения пружины при уравновешивании силы тяжести груза силой упругости пружины и построить график зависимости силы упругости данной пружины от ее удлинения.

Оборудование: набор грузов; линейка с миллиметровыми делениями; штатив с муфтой и лапкой; спиральная пружина (динамометр).

Вопросы для самоподготовки

1. Как определить силу тяжести груза?_________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

4. Груз неподвижно висит на пружине. Что можно сказать в этом случае о силе тяжести груза и о силе упругости пружины? _________

__________________________________________________________________

__________________________________________________________________

5. Как с помощью указанного оборудования можно измерить жесткость пружины? _____________________________________________

__________________________________________________________________

__________________________________________________________________

6. Как, зная жесткость, построить график зависимости силы упругости от удлинения пружины?________________________________

__________________________________________________________________

__________________________________________________________________

Примечание . Примите ускорение свободного падения равным (10 ±0,2) м/с2, массу одного груза (0,100 ± 0,002) кг, массу двух грузов - (0,200±0,004) кг и т. д. Достаточно сделать три опыта.

Лабораторная работа

«Измерение коэффициента трения скольжения»

Цель работы : определить коэффициент трения.

Материалы: 1) деревянный брусок; 2) деревянная линейка; 3) набор грузов.

Порядок выполнения работы

Положите брусок на горизонтально расположенную деревянную линейку. На брусок поставьте груз.

Прикрепив к бруску динамометр, как можно более равномерно тяните его вдоль линейки. Заметьте при этом показание динамометра. ____________________________________________________

__________________________________________________________________

Взвесьте брусок и груз._________________________________________

К первому грузу добавьте второй, третий грузы, каждый раз взвешивая бру­сок и грузы и измеряя силу трения._________________

_________________________________________________________________

_________________________________________________________________

По результатам измерений заполните таблицу:


5. По результатам измерений постройте график зависимости силы трения от силы давления и, пользуясь им, определите среднее значение коэффициента трения μ. ________________________________

__________________________________________________________________

__________________________________________________________________

6. Сделайте вывод.

Лабораторная работа

Изучение капиллярных явлений, обусловленных поверхностным натяжением жидкости.

Цель работы : измерить средний диаметр капилляров.

Оборудование : сосуд с подкрашенной водой, полоска фильтровальной бумаги размером 120 х 10 мм, полоска хлопчатобумажной ткани размером 120 х 10 мм, линейка измерительная.

Смачивающая жидкость втягивается внутрь капилляра. Подъём жидкости в капилляре происходит до тех пор, пока результирующая сила, действующая на жидкость вверх, Fв не уравновесится силой тяжести mg столба жидкости высотой h:

По третьему закону Ньютона сила Fв, действующая на жидкость, равна силе поверхностного натяжения Fпов, действующей на стенку капилляра по линии соприкосновения её с жидкостью:

Таким образом, при равновесии жидкости в капилляре (рисунок 1)

Fпов = mg. (1)

Будем считать, что мениск имеет форму полусферы, радиус которой r равен радиусу капилляра. Длина контура, ограничивающего поверхность жидкости, равна длине окружности:

Тогда сила поверхностного натяжения равна:

Fпов = σ2πr, (2)

где σ – поверхностное натяжение жидкости.

рисунок 1

Масса столба жидкости объёмом V = πr2h равна:

m = ρV = ρ πr2h. (3)

Подставляя выражение (2) для Fпов и массы (3) в условие равновесия жидкости в капилляре, получим

σ2πr = ρ πr2hg,

откуда диаметр капилляра

D = 2r = 4σ/ ρgh. (4)

Порядок выполнения работы.

Полосками фильтровальной бумаги и хлопчатобумажной ткани одновременно прикоснитесь к поверхности подкрашенной воды в стакане (рисунок 2), наблюдая поднятие воды в полосках.

Как только прекратится подъём воды, полоски выньте и измерьте линейкой высоты h1 и h2 поднятия в них воды.

Абсолютные погрешности измерения Δ h1 и Δ h2 принимают равными удвоенной цене деления линейки.

Δ h1 = 2 мм; Δ h2 = 2 мм.

Рассчитайте диаметр капилляров по формуле (4).

D2 = 4σ/ ρgh2.

Для воды σ ± Δσ = (7, 3 ± 0, 05)х10-2 Н/ м.

Рассчитайте абсолютные погрешности Δ D1 и Δ D2 при косвенном измерении диаметра капилляров.

рисунок 2

Δ D1 = D1(Δσ/ σ + Δ h1/ h1);

Δ D2 = D2(Δσ/ σ + Δ h2/ h2).

Погрешностями Δ g и Δ ρ можно пренебречь.

Окончательный результат измерения диаметра капилляров представьте в виде

1.Пояснительная записка.

Обучение физике в старшей школе строится на базе курса физики основной школы при условии дифференциации. Содержание образования должно способствовать осуществлению разноуровневого подхода. Лицей № 44 нацелен на оптимальное развитие творческих способностей учащихся, проявляющих особый интерес в области физики; этот уровень преподавания осуществляется в классах с углубленным изучением физики.

Объектами изучения в курсе физики на доступном для учащихся уровне наряду с фундаментальными физическими понятиями и законами должны быть эксперимент как метод познания, метод построения моделей и метод их теоретического анализа. Выпускники лицея должны понимать, в чем суть моделей природных объектов (процессов) и гипотез, как делаются теоретические выводы, как экспериментально проверять модели, гипотезы и теоретические выводы.

В лицее количество часов по физике в углубленных классах не соответствует новому статусу физико-математического лицея: в 9 классах – 2 часа. В связи с этим предлагается уроки технологии в 9 классе (1 час в неделю с делением на две группы) заменить на практическую экспериментальную физику дополнительно к основным урокам по сетке часов.

Цель курса - предоставление учащимся возможности удовлетворить индивидуальный интерес к изучению практических приложений физики в процессе познавательной и творческой деятельности при проведении самостоятельных экспериментов и исследований.

Основная задача курса - помощь учащимся в обоснованном выборе профиля дальнейшего обучения.

Программа состоит из следующих частей: а) погрешности; б) лабораторные работы; в) экспериментальные работы; г) экспериментальные задачи; д) тестирование.

На элективных занятиях школьники на практике познакомятся с теми видами деятельности, которые являются ведущими во многих инженерных и технических профессиях, связанных с практическим применением физики. Опыт самостоятельного выполнения сначала простых физических экспериментов, затем заданий исследовательского и конструкторского типа позволит либо убедиться в правильности предварительного выбора, либо изменить свой выбор и попробовать себя в каком-то ином направлении.

При этом теоретические занятия целесообразны лишь на первом этапе при формировании группы и определении интересов и способностей учащихся.

Основными формами занятий должны стать практические работы учащихся в физической лаборатории и выполнение простых экспериментальных заданий в домашних условиях.

На практических занятиях при выполнении лабораторных работ учащиеся смогут приобрести навыки планирования физического эксперимента в соответствии с поставленной задачей, научатся выбирать рациональный метод измерений, выполнять эксперимент и обрабатывать его результаты. Выполнение практических и экспериментальных заданий позволит применить приобретенные навыки в нестандартной обстановке, стать компетентными во многих практических вопросах.

Все виды практических заданий рассчитаны на использование типового оборудования кабинета физики и могут выполняться в форме лабораторных работ или в качестве экспериментальных заданий по выбору.

Элективный курс направлен на воспитание у школьников уверенности в своих силах и умение использовать разнообразные приборы и устройства бытовой техники в повседневной жизни, а также на развитие интереса к внимательному рассмотрению привычных явлений, предметов. Желание понять, разобраться в сущности явлений, в устройстве вещей, которые служат человеку всю жизнь, неминуемо потребует дополнительных знаний, подтолкнет к самообразованию, заставит наблюдать, думать, читать, изобретать.

Методы измерения физических величин (2 часа).

Основные и производные физические величины и их измерения. Единицы и эталоны величин. Абсолютные и относительные погрешности прямых измерений. Измерительные приборы, инструменты, меры. Инструментальные погрешности и погрешности отсчета. Классы точности приборов. Границы систематических погрешностей и способы их оценки. Случайные погрешности измерений и оценка их границ.

Этапы планирования и выполнения эксперимента. Меры предосторожности при проведении эксперимента. Учет влияния измерительных приборов на исследуемый процесс. Выбор метода измерений и измерительных приборов.

Способы контроля результатов измерений. Запись результатов измерений. Таблицы и графики. Обработка результатов измерений. Обсуждение и представление полученных результатов.

Лабораторные работы (16 часов).

  1. Расчет погрешностей измерений физических величин.
  2. Изучение равноускоренного движения.
  3. Определение ускорения тела при равноускоренном движении.
  4. Измерение массы тела.
  5. Изучение второго закона Ньютона.
  6. Определение жесткости пружины.
  7. Определение коэффициента трения скольжения.
  8. Изучение движения тела, брошенного горизонтально.
  9. Изучение движения тела по окружности под действием нескольких сил.
  10. Выяснение условий равновесия тел под действием нескольких сил.
  11. Определение центра тяжести плоской пластины.
  12. Изучение закона сохранения импульса.
  13. Измерение КПД наклонной плоскости.
  14. Сравнение произведенной работы с изменением энергии тела.
  15. Изучение закона сохранения энергии.
  16. Измерение ускорения свободного падения с помощью маятника.

Экспериментальные работы (4 часа).

  1. Расчет средней и мгновенной скорости.
  2. Измерение скорости внизу наклонной плоскости.
  3. Расчет и измерение скорости шара, скатывающегося по наклонному желобу.
  4. Изучение колебаний пружинного маятника.

Экспериментальные задачи(10 часов).

  1. Решение экспериментальных задач 7 класса (2 часа).
  2. Решение экспериментальных задач 8 класса (2 часа).
  3. Решение экспериментальных задач 9 класса (2 часа).
  4. Решение экспериментальных задач при помощи компьютера (4 часа).

Тестированное задание (1 час).

Обобщающее занятие (1 час).

3.Аттестация учащихся.

Особенностям элективных занятий наиболее соответствует зачетная форма оценки достижений учащихся. Зачет по выполненной лабораторной работе целесообразно выставлять по представленному письменному отчету, в котором кратко описаны условия эксперимента. В систематизированном виде представлены результаты измерений и сделаны выводы.

По результатам выполнения творческих экспериментальных заданий, кроме письменных отчетов, полезно практиковать сообщения на общем занятии группы с демонстрацией выполненных экспериментов, изготовленных приборов. Для проведения общих итогов занятий всей группы возможно проведение конкурса творческих работ. На этом конкурсе учащиеся смогут не только продемонстрировать экспериментальную установку в действие, но и рассказать о ее оригинальности и возможностях. Здесь особенно важно оформить свой доклад графиками, таблицами, кратко и эмоционально рассказать о самом главном. В этом случае появляется возможность увидеть и оценить свой труд и себя на фоне других интересных работ и таких же увлеченных людей.

Итоговый зачет учеником по всему элективному курсу можно выставлять, например, по таким критериям: выполнение не менее половины лабораторных работ; выполнение не менее одного экспериментального задания исследовательского или конструкторского типа; активное участие в подготовке и проведении семинаров, дискуссий, конкурсов.

Предлагаемые критерии оценки достижения учащихся могут служить лишь ориентиром, но не являются обязательными. На основе своего опыта учитель может устанавливать иные критерии.

4. Литература:

  1. Демонстрационный эксперимент по физике в средней школе./Под ред. А. А. Покров
    ского. Ч. 1.- М.:Просвещение,1978.
  2. Методика преподавания физики в 7-11 классах средней школы./Под редакцией В.П.
    Орехова и А.В. Усовой. - М.:Просвещение,1999.
  3. Мартынов И.М., Хозяинова Э.Н. Дидактический материал по физике. 9 класс. - М.:
    Просвещение,1995.
  4. В.А.Буров, А.И.Иванов, В.И.Свиридов. Фронтальные экспериментальные задания по
    физике.9 класс.– М: Просвещение.1988.
  5. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 9 – 11 классов. – М.: Про
    свещение, 2000.
  6. Степанова Г.Н. Сборник задач по физике: Для 9-11 классов общеобразовательных уч
    реждений. - М.: Просвещение,1998.
  7. Городецкий Д.Н., Пеньков И.А. Проверочные работы по физике. – Минск “Вышэйш
    школа”, 1987
  8. В.А.Буров,С.Ф.Кабанов, В.И.Свиридов. “Фронтальные экспериментальные задания по
    физике”. – М: Просвещение.1988
  9. Кикоин И.К.,Кикоин А.К.Физика: Учебник для 10 классов – М.: Просвещение, 2003

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ПО ФИЗИКЕ В 9 В КЛАССЕ

Элективный курс: “Практическая и экспериментальная физика”

(углубленное изучение - 34 часа)

Ступень – третья

Уровень – углубленный

Вид урока Часы Содержание урока Д/з
1 Лекция Техника безопасности. Конспект
2 Лекция Погрешности измерений физических величин. Конспект
3 Лабораторная работа № 1 Расчет погрешностей измерений физических величин Закончить расчеты
4 задачи
5 Экспериментальная работа Расчет средней и мгновенной скорости Закончить расчеты
6 Лабораторная работа № 2 Изучение равноускоренного движения Закончить расчеты
7 Лабораторная работа № 3. 1ч. Определение ускорения тела при равноускоренном движении. Закончить расчеты
8 Экспериментальная работа 1ч. Измерение скорости внизу наклонной плоскости. Закончить расчеты
9 Лабораторная работа № 4 Измерение массы тел Закончить расчеты
10 Лабораторная работа № 5 Изучение второго закона Ньютона Закончить расчеты
11 Лабораторная работа № 6 1ч. Определение жесткости пружины. Закончить расчеты
12 Лабораторная работа № 7 1ч. Определение коэффициента трения скольжения. Закончить расчеты
13 Лабораторная работа № 8 1ч. Изучение движения тела, брошенного горизонтально. Закончить расчеты
14 Лабораторная работа № 9 1ч. Изучение движения тела по окружности под действием нескольких сил”. Закончить расчеты
15 Решение экспериментальных задач Решение экспериментальных задач 7 класса задачи
16 Лабораторная работа № 10 1ч. Выяснение условий равновесия тел под действием нескольких сил. Закончить расчеты
17 Лабораторная работа № 11 1ч. Определение центра тяжести плоской пластины. Закончить расчеты
18 Решение экспериментальных задач задачи
19 Решение экспериментальных задач Решение экспериментальных задач 8 класса задачи
20 Лабораторная работа № 12 Изучение закона сохранения импульса Закончить расчеты
21 Лабораторная работа № 13 Измерение КПД наклонной плоскости Закончить расчеты
22 Лабораторная работа №14 1ч. Сравнение произведенной работы с изменением энергии тела” Закончить расчеты
23 Лабораторная работа № 15 Изучение закона сохранения энергии Закончить расчеты
24 Экспериментальная работа Расчет и измерение скорости шара, скатывающегося по наклонному желобу Закончить расчеты
25 Решение экспериментальных задач Задачи
26 Решение экспериментальных задач Решение экспериментальных задач 9 класса задачи
27 Экспериментальная работа Изучение колебаний пружинного маятника Закончить расчеты
28 Лабораторная работа № 16 Измерение ускорения свободного падания с помощью маятника Закончить расчеты
29 Решение экспериментальных задач 9 класса Закончить расчеты
30 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
31 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
32 Решение экспериментальных задач с помощью компьютера Решение экспериментальных задач с помощью компьютера Закончить расчеты
33 Тестированное задание Тест
34 Обобщающее занятие Подведение итогов и задачи на следующий год

ЛИТЕРАТУРА:

  1. Демонстрационный эксперимент по физике в средней школе./Под ред. А. А. Покровского. Ч. 1.- М.:Просвещение,1978.
  2. Методика преподавания физики в 7-11 классах средней школы./Под редакцией В.П. Орехова и А.В. Усовой. - М.:Просвещение,1999.
  3. Енохович А.С. Справочник по физике. - М.: Просвещение, 1978.
  4. Мартынов И.М., Хозяинова Э.Н. Дидактический материал по физике. 9 класс. - М.: Просвещение,1995.
  5. Скрелин Л.И. Дидактический материал по физике. 9 класс. – М.: Просвещение, 1998.
  6. Хрестоматия по физике /Под ред. Б.И. Спасского. – М.: Просвещение, 1982.
  7. Рымкевич А.П., Рымкевич П.А. Сборник задач по физике для 9 – 11 классов. – М.: Просвещение, 2000.
  8. Степанова Г.Н. Сборник задач по физике: Для 9-11 классов общеобразовательных учреждений. - М.: Просвещение,1998.
  9. Городецкий Д.Н., Пеньков И.А. Проверочные работы по физике. – Минск “Вышэйшая школа”, 1987.

Приложение 1

Урок № 1: “Измерение физических величин и оценка погрешностей измерения”.

Цели урока: 1. Познакомить учащихся с математической обработкой результатов измерения и научить представлять экспериментальные данные;

2. Развитие вычислительных способностей, памяти и внимания.

Ход урока

Результаты любого физического эксперимента необходимо уметь проанализировать. Это значит, что в лаборатории необходимо научиться не только измерять различные физические величины, но и проверять и находить связь между ними, сопоставлять результаты эксперимента с выводами теории.

Но что значит измерить физическую величину? Как быть, если искомую величину нельзя измерить непосредственно и ее значение находится по значению других величин?

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Измерение подразделяют на прямые и косвенные.

При прямых измерениях определяемую величину сравнивают с единицей измерения непосредственно или при помощи измерительного прибора, проградуированного в соответствующих единицах.

При косвенных измерениях искомая величина определяется (вычисляется) из результатов прямых измерений других величин, которые связаны с измеряемой величиной определенной функциональной зависимостью.

При измерении любой физической величины обычно приходится выполнять три последовательные операции:

  1. Выбор, проверку и установку приборов;
  2. Наблюдение показаний приборов и отсчет;
  3. Нычисление искомой величины из результатов измерений, проведение оценки погрешностей.

Погрешности результатов измерений.

Истинное значение физической величины обычно абсолютно точно определить невозможно. Каждое измерение дает значение определяемой величины х с некоторой погрешностью?х. Это значит, что истинное значение лежит в интервале

х изм - dх < х ист < х изм + dх, (1)

где х изм - значение величины х, полученная при измерении; ?х характеризует точность измерения х. Величину?х называют абсолютной погрешностью, с которой определяется х.

Все погрешности подразделяют на систематические, случайные и промахи(ошибки). Причина возникновения погрешностей самые разнообразные. Понять возможные причины погрешностей и свести их к минимуму - это и означает грамотно поставить эксперимент. Ясно, что это непростая задача.

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной о той же величины.

Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, неточности метода исследования, каких-либо упущений экспериментатора, а также при применении для вычислений неточных формул, округленных констант.

Измерительным прибором называют такое устройство, с помощью которого осуществляется сравнение измеряемой величины с единицей измерения.

В любом приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть.

Систематические погрешности либо увеличивают, либо уменьшают результаты измерений, то есть эти погрешности характеризуются постоянством знака.

Случайные погрешности-ошибки, появление которых не может быть предупреждено.

Поэтому они могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности - чрезмерно большие ошибки, явно искажающие результат измерения.

Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.

Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.

В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, наперед заданного значения, определяемого погрешностью примененной измерительной аппаратуры.

При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает однократное ее измерение техническим методом.

Тогда делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное значение измеряемой величины. Затем производят оценку точности результата измерения (учет случайных погрешностей).

Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.

Классы точности приборов.

Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности Е п (класса точности).

Приведенная погрешность это отношение абсолютной погрешности ?х к предельному значению х пр измеряемой величины (то есть наибольшему ее значению, которое может быть измерено по шкале приборов).

Приведенная погрешность, являясь по существу относительной погрешностью, выражается в процентах:

Е п = /dх/ х пр /*100%

По приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4.

Приборы класса точности 0,1; 0,2; 0,5 применяют для точных лабораторных измерений и называют прецизионными.

В технике применяют приборы классов 1, 0; 1,5; 2,5 и 4 (технические). Класс точности прибора указывают на шкале прибора. Если на шкале такого обозначения нет, но данный прибор внеклассный, то есть его приведенная погрешность более 4%. В тех случаях, когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления.

Так, при измерении линейкой, наименьшее деление которой 1 мм, допускается ошибка до 0,5 мм. Для приборов, оснащенных нониусом, за приборную погрешность принимают погрешность, определяемую нониусом (для штангенциркуля-0,1 мм или 0,05 мм; для микрометра-0,01 мм).

Приложение 2

Лабораторная работа: “Измерение КПД наклонной плоскости”.

Оборудование: деревянная доска, деревянный брусок, штатив, динамометр, линейка измерительная.

Задание.Исследуйте зависимость КПД наклонной плоскости и выигрыш в силе, получаемого с ее помощью от угла наклона плоскости к горизонту.

КПД любого простого механизма равен отношению полезной работы А пол, к совершенной работе А сов и выражается в процентах:

n = А пол / А сов *100% (1).

При отсутствии трения КПД простого механизма, в том числе и наклонной плоскости, равен единице. В этом случае совершенная работа А сов силы F т, приложенной к телу и направленной вверх вдоль наклонной плоскости, равна полезной работе А пол.

А пол = А сов.

Обозначив путь, пройденный телом вдоль наклонной плоскости буквой S , высоту подъема? , получим F*S=hgm.

При этом выигрыш в силе будет равен: к = gm/F=l/h.

В реальных условиях действие силы трения снижает КПД наклонной плоскости и уменьшает выигрыш в силе.

Для определения КПД наклонной плоскости выигрыша в силе, полученного с ее помощью, следует использовать выражение:

n = hgm/ F т l*100% (2), к= gm/F т (3).

Целью работы является измерить КПД наклонной плоскости и выигрыш в силе при разных углах? ее наклона к горизонту и объяснить полученный результат.

Порядок выполнения работы.

1. Соберите установку по рис1. Измерьте высоту? и длину l наклонной плоскости (рис.2).

2. Вычислите максимально возможное значение выигрыша в силе, получаемое при заданном наклоне плоскости (a=30).

3. Положите брусок на наклонную плоскость. Прикрепив к нему динамометр, равномерно тяните его вверх вдоль наклонной плоскости. Измерьте силу тяги F т.

4. Измерьте с помощью динамометра силу тяжести mg бруска и найдите экспериментальное значение выигрыша в силе, полученного с помощью наклонной плоскости: к= gm/F т.

5. Вычислите КПД наклонной плоскости при заданном угле ее наклона

n = hgm/ F т l*100%

6. Повторите измерения при других углах наклона плоскости: a 2 =45?, a 3 =60 ?.

7. Результаты измерений и вычислений занесите в таблицу:

a m, кг h, м l, м F , Н к n ,%
1 30
2 45
3 60

8. Дополнительное задание

Полученную теоретическую зависимость n(a) и к(a) сравните с результатами эксперимента.

Контрольные вопросы.

  1. С какой целью применяют наклонную плоскость?
  2. Каким образом можно увеличить КПД наклонной плоскости?
  3. Каким образом можно увеличить выигрыш в силе, полученный с помощью наклонной плоскости?
  4. Зависит ли КПД наклонной плоскости от массы груза?
  5. Объясните качественно зависимость КПД наклонной плоскости и выигрыша в силе, получаемого с ее помощью, от угла наклона плоскости.

Приложение 3

Перечнь эксперементальных заданий для 7 класса

  1. Измерение размеров бруска.
  2. Измерение объема жидкости при помощи мензурки.
  3. Измерение плотности жидкости.
  4. Измерение плотности твердого тела.

Все работы проводятся с расчетом погрешностей и проверкой

размерностей.

  1. Измерение веса тела при помощи рычага.
  2. Вычисления выигрыша в силе инструментов, в которых применен (ножницы, кусачки, плоскогубцы)
  3. Наблюдение зависимости кинетической энергии тела от его скорости и массы.
  4. Выяснить от чего зависит сила трения экспериментально.

Перечень экспериментальных заданий для 8 класса

  1. Наблюдение действий электрического тока (теплового, химичеcкого, магнитного и по возможности физиологического).
  2. Расчет характеристик смешанного соединения проводников.
  3. Определение удельного сопротивления проводника с оценкой погрешностей.
  4. Наблюдение явления электромагнитной индукции.
  1. Наблюдение поглощения энергии при плавлении льда.
  2. Наблюдение выделения энергии при кристаллизации гипосульфита.
  3. Наблюдение поглощения энергии при испарении жидкостей.
  4. Наблюдение зависимости скорости испарения жидкости от рода жидкости, площади ее свободной поверхности, температуры и скорости удаления паров.
  5. Определение влажности воздуха в кабинете.

Перечень экспериментальных работ 9 класса

  1. 1.Измерение модулей угловой и линейной скоростей тела при равномерном движении по окружности.
  2. 2.Измерение модуля центростремительного ускорения тела при равномерном движении по окружности.
  3. 3.Наблюдение зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе.
  4. 4.Изучение третьего закона Ньютона.
  1. Наблюдение изменения модуля веса тела, движущегося с ускорением.
  2. Выяснение условий равновесия тела, имеющего ось вращения, при действии на него сил.
  3. Изучение закона сохранения импульса при упругом соударении тел.
  4. Измерение КПД подвижного блока.

Приложение 4

Экспериментальные задания

Измерение размеров бруска

Приборы и материалы (рис. 2): 1) линейка измерительная, 2) брусок деревянный.

Порядок выполнения работы:

  • Вычислите цену деления шкалы линейки.
  • Укажите предел этой шкалы.
  • Измерьте линейкой длину, ширину, высоту бруска.
  • Результаты всех измерений запишите в тетрадь.

Измерение объема жидкости при помощи мензурки

Приборы и материалы (рис. 3):

  • цилиндр измерительный (мензурка),
  • стакан с водой.

Порядок выполнения работы

  1. Вычислите цену деления шкалы мензурки.
  2. Зарисуйте в тетради часть шкалы мензурки и сделайте запись, поясняющую порядок вычисления цены деления шкалы.
  3. Укажите предел этой шкалы.
  4. Измерьте объем воды в стакане при помощи мензурки. " "
  5. Результат измерения запишите в тетрадь.
  6. Вылейте воду обратно в стакан.

Налейте в мензурку, например, 20 мл воды. После проверки учителем долейте в нее еще воды, доведя уровень до деления, например, 50 мл. Сколько воды было долито в мензурку

Измерение плотности жидкости

Приборы и материалы (рис. 14): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка), 4) стакан с водой.

Порядок выполнения работы

  1. Запишите:цену деления шкалы мензурки; верхний предел шкалы мензурки.
  2. Измерьте массу стакана с водой при помощи весов.
  3. Перелейте воду из стакана в мензурку и измерьте массу пустого стакана.
  4. Вычислите массу воды в мензурке.
  5. Измерьте объем воды в мензурке.
  6. Вычислите плотность воды.

Вычисление массы тела по его плотности и объему

Приборы и материалы (рис. 15): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка) с водой, 4)тело неправильной формы на нити, 5)таблица плотностей.

Порядок выполнения работы (Рис. 15)

  1. Измерьте объем тела при помощи мензурки.
  2. Вычислите массу тела.
  3. Проверьте результат вычисления массы тела при помощи весов.
  4. Результаты измерений и вычислений запишите в тетрадь.

Вычисление объема тела по его плотности и массе

Приборы и материалы (рис. 15): 1) весы учебные, 2) гири, 3) цилиндр измерительный (мензурка) с водой, 4) тело неправильной формы на нити, б) таблица плотностей.

Порядок выполнения работы

  1. Запишите вещество, из которого состоит тело неправильной формы.
  2. Найдите в таблице значение плотности этого вещества.
  3. Измерьте массу тела при помощи весов.
  4. Вычислите объем тела.
  5. Проверьте результат вычисления объема тела при помощи мензурки.
  6. Результаты измерений и вычислений запишите в тетрадь.

Изучение зависимости силы трения скольжения от рода трущихся поверхностей

Приборы и материалы (рис. 23): 1) динамометр, 2) трибометр 3) грузы с двумя крючками -2 шт., 4) лист бумаги, 5) лист наждачной бумаги.

Порядок выполнения работы

1. Подготовьте в тетради таблицу для записи результатов измерений:

2.Вычислите цену деления шкалы динамометра.
3.Измерьте силу трения скольжения бруска с двумя грузами:

4. Результаты измерений запишите в таблицу.

5. Ответьте на вопросы:

  1. Зависит ли сила трения скольжения:
    а) от рода трущихся поверхностей?
    б) от шероховатости трущихся поверхностей?
  2. Какими способами можно увеличить и уменьшить силу трения скольжения?(рис. 24):
    1) динамометр, 2) трибометр.

Изучение зависимости силы трения скольжения от силы давления и независимости от площади трущихся поверхностей

Приборы и материалы: 1) динамометр,2) трибометр;3) грузы с сдвумя крючками - 2 шт.

Порядок выполнения работы

  1. Вычислите цену деления шкалы динамометра.
  2. Положите на линейку трибометра брусок большой гранью, а на него - груз и измерьте силу трения скольжения бруска по линейке (рис. 24, а).
  3. Положите на брусок второй груз и снова измерьте силу трения скольжения бруска по линейке (рис. 24, б).
  4. Положите на линейку брусок меньшей гранью, поставьте на него опять два груза и снова измерьте силу трения скольжения бруска по линейке (рис. 24, в)
  5. 5. Ответьте на вопрос: зависит ли сила трения скольжения:
    а) от силы давления, и если зависит, то как?
    б) от площади трущихся поверхностей при постоянной силе давления?

Измерение веса тела при помощи рычага

Приборы и материалы: 1) рычаг-линейка, 2) линейка измерительная, 3) динамометр, 4) грузе двумя крючками, 5) цилиндр металлический, 6) штатив.

Порядок выполнения работы

  1. Подвесьте рычаг на оси, закрепленной в муфте штатива. Вращая гайки на концах рычага, установите его в горизонтальное положение.
  2. Подвесьте к левой части рычага металлический цилиндр, а к правой - груз, предварительно измерив динамометром его вес. Опытным путем добейтесь равновесия рычага с грузом.
  3. Измерьте плечи сил, действующих на рычаг.
  4. Используя правило равновесия рычага, вычислите вес металлического цилиндра.
  5. Измерьте вес металлического цилиндра при помощи динамометра и полученный результат сравните с расчетным.
  6. Результаты измерений и вычислений запишите в тетрадь.
  7. Ответьте на вопросы: изменится ли результат опыта, если:
  • рычаг уравновесить при другой длине плеч сил, действующих на него?
  • цилиндр подвесить к правой части рычага, а уравновешивающий груз - к левой?

Вычисление выигрыша в силе инструментов, в которых применен рычаг

"Приборы и материалы (рис. 45): 1) ножницы, 2) кусачки, 3) плоскогубцы, 4) линейка измерительная.

Порядок выполнения работы

  1. Ознакомьтесь с устройством предложенного вам инструмента, в котором применен рычаг: найдите ось вращения, точки приложения сил.
  2. Измерьте плечи сил.
  3. Вычислите примерно, в каких пределах может изменяться вы-
    игрыш в силе при пользовании данным инструментом.
  4. Результаты измерений и вычислений запишите в тетрадь.
  5. Ответьте на вопросы:
  • Как нужно располагать разрезаемый материал в ножницах, чтобы получить наибольший выигрыш в силе?
  • Как нужно держать кусачки в руке, чтобы получить наибольший выигрыш в силе?

Наблюдение зависимости кинетической энергии тела от его скорости и массы

Приборы и материалы (рис. 50): I) шары разной массы - 2 шт., 2) желоб, 3) брусок, 4) лента измерительная, 5) штатив. Рис. 50.

Порядок выполнения работы

  1. Укрепите жёлоб в наклонном положении при помощи штатива, как показано на рисунке 50. К нижнему концу желоба приставьте деревянный брусок
  2. Положите на середину желоба шарик меньшей массы и, отпустив его, наблюдайте, как шарик, скатившись с желоба и ударившись о деревянный брусок, передвинет последний на некоторое расстояние,совершая работу по преодолению силы трения.
  3. Измерьте расстояние, на которое переместился брусок.
  4. Повторите опыт, пустив шарик с верхнего конца желоба, и снова измерьте расстояние, на которое переместился брусок.
  5. Пустите с середины желоба шарик большей массы и снова измерьте перемещение бруска.

Измерение модулей угловой и линейной скоростей тела при равномерном движении по окружности

Приборы и материалы* 1) шарик диаметром 25 мм на нити длиной 200 мм, 2) линейка измерительная 30-35 см с миллиметровыми делениями, 3) часы с секундной стрелкой или метроном механический (один на класс).

Порядок выполнения работы

  1. Поднимите шарик за конец нити над линейкой и приведите его в равномерное движение по окружности так, чтобы он при вращении каждый раз проходил через нулевое и, например, десятое деление шкалы (рис. 9). Для получения устойчивого движения шарика локоть руки, удерживающей нить, поставьте на стол
  2. Измерьте время, например, 30 полных оборотов шарика.
  3. Зная время движения, число оборотов и радиус вращения, вычислите модули угловой и линейной скоростей шарика относительно стола.
  4. Результаты измерений и вычислений запишите в тетрадь.
  5. Ответьте на вопросы:

Измерение модуля центростремительного ускорения тела при равномерном движении по окружности

Приборы и материалы те же, что в задании 11.

Порядок выполнения работы

  1. Выполните пп. 1, 2 задания 11.
  2. Зная время движения, число оборотов и радиус вращения, вычислите модуль центростремительного ускорения шарика.
  3. Результаты измерений и вычислений запишите в тетрадь:
  4. Ответьте на вопросы:
  • Как изменится модуль центростремительного ускорения шарика, если число его оборотов в единицу времени увеличить в 2 раза?
  • Как изменится модуль центростремительного ускорения шарика, если радиус его вращения увеличить в 2 раза?

Наблюдение зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе

Приборы и материалы: 1) груз массой 100 г с двумя крючками, 2) динамометры учебные - 2 шт., 3) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы


  • Чему равны модули сил натяжения нитей? Изменялись ли они во время опыта?
  • Чему равен модуль равнодействующей двух сил натяжения нитей? Изменялся ли он во время опыта?
  • Что можно сказать о зависимости модулей сил натяжения нитей от угла между ними при постоянной равнодействующей силе?

Изучение третьего закона Ньютона

Приборы и материалы: I) динамометры учебные - 2 шт., 2) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы


  • С какой силой по модулю левый динамометр действует на правый? В какую сторону направлена эта сила? К какому динамометру она приложена?
  • С какой силой по модулю правый динамометр действует на левый? В какую сторону направлена эта сила? К какому динамометру она приложена?

3. Увеличьте взаимодействие динамометров. Заметьте их новые показания.

4. Соедините динамометры нитью и натяните ее.

5. Ответьте на вопросы:

  • С какой силой по модулю левый динамометр действует на нить?
  • С какой силой по модулю правый динамометр действует на нить?
  • С какой силой по модулю растягивается нить?

6. Сделайте общий вывод из проделанных опытов.

Наблюдение изменения модуля веса тела, движущегося с ускорением

Приборы и материалы: 1) динамометр учебный, 2) груз массой 100 г с двумя крючками, 3) нить длиной 200 мм с петлями на концах.

Порядок выполнения работы

  • Изменялась ли скорость движения груза при его движении вверх и вниз?
  • Как изменялся модуль веса груза при его ускоренном движении вверх и вниз?

4. Поставьте динамометр на край стола. Отклоните груз в сторону на некоторый угол и отпустите (рис. 18). Наблюдайте за показаниями динамо метра во время колебаний груза.

5. Ответьте на вопросы:

  • Изменяется ли скорость груза при его колебаниях?
  • Изменяются ли ускорение и вес груза при его колебаниях?
  • Как изменяются центро стремительное ускорение и вес груза при его колебаниях?
  • В каких точках траектории центростремительное ускорение и вес груза по модулю наибольшие, в каких наименьшие? Рис 18.

Выяснение условий равновесия тела, имеющего ось вращения, при действии на него сил

Приборы и материалы: 1) лист картона размером 150Х 150 мм с,вумя нитяными петлями, 2) динамометры учебные-2 шт., 3) лист картона размером 240X340 Мм с вбитым гвоздем, 4) угольник ученический, 5) линейка измерительная 30-35 см с миллиметровыми делениями, 6) карандаш.

Порядок выполнения работы

1. Наденьте на гвоздь лист картона. Зацепите динамометры за петли, натяните их с силами примерно 2 и 3 Н и расположите петли под углом 100-120° друг к другу, как показано на рисунке 27. Убедитесь, что лист картона при его отклонении в сторону возвращается в состояние

Рис. 27. Измерьте модули приложенных сил (силой тяжести картона пренебрегите).

2. Ответьте на вопросы:

  • Сколько сил действует на картон?
  • Чему равен модуль равнодействующей приложенных к картону сил?

3. На листе картона проведите отрезки прямых линий, вдоль которых действуют силы, и при помощи угольника постройте плечи этих сил, как показано на рисунке 28.

4. Измерьте плечи сил.

5. Вычислите моменты действующих сил и их алгебраическую сумму. При каком условии тело с закрепленной осью вращения находится в состоянии равновесия? Рис. 28. Ответ запишите в тетрадь.

Изучение закона сохранения импульса при упругом соударении тел

Приборы и материалы: 1) шарики диаметром 25 мм - 2 шт., 2) нить длиной 500 мм, 3) штатив для фронтальных работ.

Порядок выполнения работы

  • Чему равен общий импульс шариков до взаимодействия?
  • Одинаковые ли импульсы по модулю приобрели шарики после взаимодействия?
  • Чему равен общий импульс шариков после взаимодействия?

4. Отпустите отведенный шарик и заметьте отклонения шариков после удара. Опыт повторите 2-3 раза.Отклоните один из шариков на 4-5 см от положения равновесия, а второй оставьте в покое.

5. Ответьте на вопросы п. 3.

6. Сделайте вывод из проделанных опытов

Измерение КПД подвижного блока

Приборы и материалы: 1) блок, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) грузы массой по 100 г с двумя крючками - 3 шт., 5) штатив для фронтальных работ, 6) нить длиной 50 см с петлями на концах.

Порядок выполнения работы

  1. Соберите установку с подвижным блоком, как показано на рисунке 42. Через блок перебросьте нить. Один конец нити зацепите за лапку штатива, второй - за крючок динамометра. К обойме блока подвесьте три груза массой по 100 г.
  2. Возьмите динамометр в руку, расположите его вертикально так, чтобы блок с грузами повис на нитях, и измерьте модуль силы натяжения нити.
  3. Поднимите равномерно грузы на некоторую высоту и измерьте модули перемещений грузов и динамометра относительно стола.
  4. Вычислите полезную и совершенную работы относительно стола.
  5. Вычислите КПД подвижного блока.
  6. Ответьте на вопросы:
  • Какой выигрыш в силе дает подвижный блок?
  • Можно ли при помощи подвижного блока получить выигрыш в работе?
  • Как повысить КПД подвижного блока?

Приложение5

Требования к уровню подготовки выпускников основной школы.

1. Владеть методами научного познания.

1.1. Собирать установки для эксперимента по описанию, рисунку или схеме и проводить наблюдения изучаемых явлений.

1.2. Измерять: температуру, массу, объем, силу (упругости, тяжести, трения скольжения), расстояние, промежуток времени, силу тока, напряжение, плотность, период колебаний маятника, фокусное расстояние собирающей линзы.

1.3. Представлять результаты измерений в виде таблиц, графиков и выявлять эмпирические закономерности:

  • изменения координаты тела от времени;
  • силы упругости от удлинения пружины;
  • силы тока в резисторе от напряжения;
  • массы вещества от его объема;
  • температуры тела от времени при теплообмене.

1.4. Объяснять результаты наблюдений и экспериментов:

  • смену дня и ночи в системе отсчета, связанной с Землей, и в системе отсчета, связанной с Солнцем;
  • большую сжимаемость газов;
  • малую сжимаемость жидкостей и твердых тел;
  • процессы испарения и плавления вещества;
  • испарение жидкостей при любой температуре и ее охлаждение при испарении.

1.5. Применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений:

  • положение тела при его движении под действием силы;
  • удлинение пружины под действием подвешенного груза;
  • силу тока при заданном напряжении;
  • значение температуры остывающей воды в заданный момент времени.

2. Владеть основными понятиями и законами физики.

2.1. Давать определение физических величин и формулировать физические законы.

2.2. Описывать:

  • физические явления и процессы;
  • изменения и преобразования энергии при анализе: свободного падения тел, движения тел при наличии трения, колебаний нитяного и пружинного маятников, нагревания проводников электрическим током, плавления и испарения вещества.

2.3. Вычислять:

  • равнодействующую силу, используя второй закон Ньютона;
  • импульс тела, если известны скорость тела и его масса;
  • расстояние, на которое распространяется звук за определенное время при заданной скорости;
  • кинетическую энергию тела при заданных массе и скорости;
  • потенциальную энергию взаимодействия тела с Землей и силу тяжести при заданной массе тела;
  • энергию, выделяемую в проводнике при прохождении электрического тока (при заданных силе тока и напряжении);
  • энергию, поглощаемую (выделяемую) при нагревании (охлаждении) тел;

2.4. Строить изображение точки в плоском зеркале и собирающей линзе.

3. Воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической).

3.1. Называть:

  • источники электростатического и магнитного полей, способы их обнаружения;
  • преобразования энергии в двигателях внутреннего сгорания, электрогенераторах, электронагревательных приборах.

3.2. Приводить примеры:

  • относительности скорости и траектории движения одного и того же тела в разных системах отсчета;
  • изменение скорости тел под действием силы;
  • деформация тел при взаимодействии;
  • проявление закона сохранения импульса в природе и технике;
  • колебательных и волновых движений в природе и технике;
  • экологических последствий работы двигателей внутреннего сгорания, тепловых, атомных и гидроэлектростанций;
  • опытов, подтверждающих основные положения молекулярно-кинетической теории.

3.4. Выделять главную мысль в прочитанном тексте.

3.5. Находить в прочитанном тексте ответы на поставленные вопросы.

3.6. Конспектировать прочитанный текст.

3.7. Определять:

  • промежуточные значения величин по таблицам результатов измерений и построенным графикам;
  • характер тепловых процессов: нагревание, охлаждение, плавление, кипение (по графикам изменения температуры тела со временем);
  • сопротивление металлического проводника (по графику колебаний);
  • по графику зависимости координаты от времени: в координату тела в заданный момент времени; промежутки времени, в течение которых тело двигалось с постоянной, увеличивающейся, уменьшающейся скоростью; промежутки времени действия силы.

3.8. Сравнивать сопротивления металлических проводников (больше - меньше) по графикам зависимости силы тока от напряжения.