Принцип возможных перемещений равновесие механической системы. Принцип возможных перемещений

Принцип возможных перемещений сформулирован для решения задач статики методами динамики.

Определения

Связями называются все тела, ограничивающие перемещение рассматриваемого тела.

Идеальными называются связи, работа реакций которых на любом возможном перемещении равна нулю.

Числом степеней свободы механической системы называется число таких независимых между собой параметров, с помощью которых однозначно определяется положение системы.

Например, шар, расположенный на плоскости имеет пять степеней свободы, а цилиндрический шарнир - одну степень свободы.

В общем случае механическая система может иметь бесконечное число степеней свободы.

Возможными перемещениями будем называть такие перемещения, которые, во-первых, допускаются наложенными связями, и, во-вторых, являются бесконечно малыми.

Кривошипно-ползунный механизм имеет одну степень свободы. В качестве возможных перемещений могут приниматься параметры -  , x и др.

Для любой системы число независимых друг от друга возможных перемещений равно числу степеней свободы.

Пусть некоторая система находится в равновесии и связи, наложенные на эту систему, являются идеальными. Тогда для каждой точки системы можно записать уравнение

, (102)

где
- равнодействующая активных сил, приложенных к материальной точке;

- равнодействующая реакций связей.

Умножим (102) скалярно на вектор возможного перемещения точки

,

так как связи идеальные, то всегда
, останется сумма элементарных работ активных сил, действующих на точку

. (103)

Уравнение (103) можно записать для всех материальных точек, суммируя которые получим

. (104)

Уравнение (104) выражает следующий принцип возможных перемещений.

Для равновесия системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Число уравнений (104) равно числу степеней свободы данной системы, что является достоинством этого метода.

Общее уравнение динамики (принцип Даламбера-Лагранжа)

Принцип возможных перемещений позволяет решать задачи статики методами динамики, с драгой стороны, принцип Даламбера дает общий метод решения задач динамики методами статики. Объединяя два эти принципа можно получить общий метод решения задач механики, который называется принципом Даламбера-Лагранжа.

. (105)

При движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равно нулю.

В аналитической форме уравнение (105) имеет вид

Уравнения Лагранжа II рода

Обобщенными координатами (q ) называются такие независимые друг от друга параметры, которые однозначно определяют поведение механической системы.

Число обобщенных координат всегда равно числу степеней свободы механической системы.

В качестве обобщенных координат могут быть выбраны любые параметры, имеющие любую размерность.

Н
апример, при изучении движения математического маятника, имеющего одну степень свободы, в качестве обобщенной координатыq могут быть приняты параметры:

x (м), y (м) – координаты точки;

s (м) – длина дуги;

 (м 2) – площадь сектора;

 (рад) – угол поворота.

При движении системы ее обобщенные координаты будут с течением времени непрерывно изменяться

Уравнения (107) – это уравнения движения системы в обобщенных координатах.

Производные от обобщенных координат по времени называются обобщенными скоростями системы

. (108)

Размерность обобщенной скорости зависит от размерности обобщенной координаты.

Через обобщенные координаты могут быть выражены любые другие координаты (декартовы, полярные и др.).

Наряду с понятием обобщенной координаты вводится понятие обобщенной силы.

Под обобщенной силой понимают величину равную отношению суммы элементарных работ всех сил, действующих на систему на некотором элементарном приращении обобщенной координаты, к этому приращению

, (109)

где S – индекс обобщенной координаты.

Размерность обобщенной силы зависит от размерности обобщенной координаты.

Для нахождения уравнений движения (107) механической системы с геометрическими связями в обобщенных координатах используются дифференциальные уравнения в форме Лагранжа II рода

. (110)

В (110) кинетическая энергия T системы выражена через обобщенные координаты q S и обобщенные скорости .

Уравнения Лагранжа дают единый и достаточно простой метод решения задач динамики. Вид и число уравнений не зависит от количества тел (точек), входящих в систему, а только от числа степеней свободы. При идеальных связях эти уравнения позволяют исключить все заранее неизвестные реакции связей.

Принцип возможных перемещений : для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю. или в проекциях: .

Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики .

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Принцип возможных перемещений удобен тем, что при рассмотрении системы с идеальными связями их реакции не учитываются и необходимо оперировать только активными силами.

Принцип возможных перемещений формулируется следующим образом:

Для того, чтобы матер. система, подчиненная идеальным связям находилась в состоянии покоя, необходимо и достаточно, чтобы сумма элементарных работ, производимых активными силами на возможных перемещениях точек системы была положительная

Общее уравнение динамики - при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики.

Последовательность составления:

а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции;

б) сообщают системе возможные перемещения;

в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Следует отметить, что общее уравнение динамики можно применять и для систем с неидеальными связями, только в этом случае реакции неидеальных связей, таких, например, как сила трения или момент трения качения, необходимо отнести к категории активных сил.

Работа на возможном перемещении как активных, так и сил инерций , ищется также как и элементарная работа на действительном перемещении:

Возможная работа силы: .

Возможная работа момента (пары сил): .

Обобщенными координатами механической системы называются независимые между собой параметры q 1 , q 2 , …, q S любой размерности, однозначно определяющие положение системы в любой момент времени.

Число обобщенных координат равно S - числу степеней свободы механической системы. Положение каждой ν-й точки системы, то есть ее радиус вектор в общем случае всегда можно выразить в виде функции обобщенных координат:


Общее уравнение динамики в обобщенных координатах выглядит в виде системы S уравнений следующим образом:

……..………. ;

………..……. ;

здесь - обобщенная сила, соответствующая обобщенной координате :

а - обобщенная сила инерции, соответствующая обобщенной координате :

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например. шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет 6 степеней свободы.

Обобщенные силы. Каждой обобщенной координате можно вычислить соответствующую ей обобщенную силу Q k .

Вычисление производится по такому правилу.

Чтобы определить обобщенную силу Q k , соответствующую обобщенной координате q k , надо дать этой координате приращение (увеличить координату на эту величину), оставив все другие координаты неизменными, вычислить сумму работ всех сил, приложенных к системе, на соответствующих перемещениях точек и поделить ее на приращение координаты :

где - перемещение i -той точки системы, полученное за счет изменения k -той обобщенной координаты.

Обобщенная сила определяется с помощью элементарных работ. Поэтому эту силу можно вычислить иначе:

И так как есть приращение радиуса-вектора за счет приращения координаты при остальных неизменных координатах и времени t , отношение можно определять как частную производную . Тогда

где координаты точек - функции обобщенных координат (5).

Если система консервативная, то есть движение происходит под действием сил потенциального поля, проекции которых , где , а координаты точек - функции обобщенных координат, то

Обобщенная сила консервативной системы есть частная производная от потенциальной энергии по соответствующей обобщенной координате со знаком минус.

Конечно, при вычислении этой обобщенной силы потенциальную энергию следует определять как функцию обобщенных координат

П = П(q 1 , q 2 , q 3 ,…,q s ).

Замечания.

Первое. При вычислении обобщенных сил реакции идеальных связей не учитываются.

Второе. Размерность обобщенной силы зависит от размерности обобщенной координаты.

Уравнения Лагранжа 2-го рода выводятся из общего уравнения динамики в обобщенных координатах. Число уравнений соответствует числу степеней свободы:

Для составления уравнения Лагранжа 2-го рода выбираются обобщенные координаты и находятся обобщенные скорости . Находится кинетическая энергия системы, которая является функцией обобщенных скоростей, и, в некоторых случаях, обобщенных координат. Выполняются операции дифференцирования кинетической энергии, предусмотренные левыми частями уравнений Лагранжа.Полученные выражения приравниваются обобщенным силам, для нахождения которых помимо формул (26) часто при решении задач используют следующие:

В числителе правой части формулы - сумма элементарных работ все активных сил на возможном перемещении системы, соответствующем вариации i-й обобщенной координаты - . При этом возможном перемещении все остальные обобщенные координаты не изменяются. Полученные уравнения являются дифференциальными уравнениями движения механической системы с S степенями свободы.

КЛАССИФИКАЦИЯ СВЯЗЕЙ

Введенное в § 3 понятие о связях охватывает не все их виды. Поскольку рассматриваемые даже методы решения задач механики применимы вообще к системам не с любыми связями, рассмотрим вопрос о связях и об их классификации несколько подробнее.

Связями называются любого вида ограничения, которые налагаются на положения и скорости точекмеханической системы и выполняются независимо от того, какие на систему действуют заданные силы. Рассмотрим, как классифицируются эти связи.

Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со с временем - нестационарными.

Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы - кинематическими или дифференциальными.

Если дифференциальную связь можно представить как геометрическую, т. е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае - неинтегрируемой.

Геометрические и интегрируемые дифференциальные связи называют связями голсномньши, а неинтегрируемые дифференциальные связи - неголономньши.

По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).

Наконец, различают связи удерживающее (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают (от таких связей, как говорят, система может «освобождаться»). Рассмотрим примеры.

1. Все связи, рассмотренные в § 3, являются геометрическими (голономными) и притом стационарными. Движущийся лнфт, изображенный на рис. 271, а, будет для лежащего в нем груза, когда положение груза рассматривается по отношению к осям Оху, нестационарной геометрической связью (пол кабины, реализующий связь, изменяет со временем свое положение в пространстве).

2 Положение катящегося без скольжения колеса (см. рис. 328) определяется координатой центра С колеса и углом поворота . При качении выполняется условие или

Это дифференциальная связь, но полученное уравнение интегрируется и дает , т. е. сводится к зависимости между координатами. Следовательно, наложенная связь голономная.

3. В отличие от колеса для шара, катящегося без скольжения по шероховатой плоскости, условие того, что скорость точки шара, касающаяся плоскости, равна нулю, не может быть сведено (когда центр шара движется не прямолинейно) к каким-нибудь зависимостям между координатами, определяющими положение шара. Это пример негалоиомной связи. Другой пример дают связи, налагаемые на управляемое движение. Например, если на движение точки (ракеты) налагается условие (связь), что ее скорость в любой момент времени должна быть направлена в другую движущуюся точку (самолет), то это условие к какой-нибудь зависимости между координатами тоже не сводится и связь является неголономной.



4. В § 3 связи, показанные на рис. являются, удерживающими, а на рис. 8 и 9 - неудерживающими (на рис. 8, а шарик может покинуть поверхность, а на рис. 9 - перемещаться в сторону точки А, сминая нить). С учетом особенностей неудерживающих связей мы сталкивались в задачах 108, 109 (§ 90) и в задаче 146 (§ 125).

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условиеравновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета(рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системыс идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.

Принцип возможных перемещений позволяет решать самые разнообразные задачи на равновесие механических систем - находить неизвестные активные силы, определять реакции связей, находить положения равновесия механической системы под действием приложенной системы сил. Проиллюстрируем это на конкретных примерах.

Пример 1. Найти величину силы Р, удерживающей тяжелые гладкие призмы с массами в состоянии равновесия. Угол скоса призм равен (рис. 73).

Решение. Воспользуемся принципом возможных перемещений. Сообщим системе возможное перемещение и вычислим возможную работу активных сил:

Возможная работа силы тяжести равна нулю, так как сила перпендикулярна вектору элементарного перемещения точки приложения силы. Подставляя сюда значение и приравнивая выражение нулю, получаем:

Так как , то равно нулю выражение в скобках:

Отсюда находим

Пример 2. Однородная балка АВ длиной и весом Р, нагруженная парой сил с заданным моментом М, закреплена как показано на рис. 74 и находится в покое. Определить реакцию стержня BD, если он составляет угол а с горизонтом.

Решение. Задача отличается от предыдущей тем, что здесь требуется найти реакцию идеальной связи. Но в уравнение работ выражающее принцип возможных перемещений, реакции идеальных связей не входят. В таких случаях принцип возможных перемещений следует применять совместно с принципом освобождаемости от связей.

Мысленно отбросим стержень BD, а его реакцию S будем считать неизвестной по величине активной силой. После этого сообщим системе возможное перемещение (при условии, что данная связь совершенно отсутствует). Это будет элементарный поворот балки АВ на угол вокруг оси шарнира А в ту или другую сторону (на рис. 74 - против часовой стрелки). Элементарные перемещения точек приложения активных сил и отнесенной к ним реакции S при этом равны:

Составляем уравнение работ

Приравнивая нулю выражение в скобках, отсюда находим

Пример 3. Однородный стержень ОА весом закреплен при помощи цилиндрического шарнира О и пружины АВ (рис. 75). Определить положения, в которых стержень может находиться в равновесии, если жесткость пружины равна к, натуральная длина пружины - и точка В находится на одной вертикали с точкой О.

Решение. К стержню ОА приложены две активные силы - собственный вес и упругая сила пружины где - угол, образуемый стержнем с вертикалью ОВ. Наложенные связи - идеальные (в данном случае имеется единственная связь - шарнир О).

Сообщим системе возможное перемещение - элементарный поворот стержня вокруг оси шарнира О на угол , вычислим возможную работу активных сил и приравняем ее нулю:

Подставляя сюда выражение для силы F и значения

после простых преобразований получаем следующее тригонометрическое уравнение для определения угла (р при равновесии стержня:

Уравнение определяет три значения для угла :

Следовательно, стержень имеет три положения равновесия. Так как два первых положения равновесия существуют, если выполняется условие . Равновесие при существует всегда.

В заключение заметим, что принцип возможных перемещений можно применять и к системам с неидеальными связями. Акцент на идеальность связей делается в формулировке принципа с одной единственной целью - показать, что уравнения равновесия механических систем можно составлять, не включая в них реакции идеальных связей, упрощая этим расчеты.

Для систем с неидеальными связями принцип возможных перемещений следует переформулировать так: для равновесия механической системы с удерживающими связями, среди которых имеются неидеальные связи, необходимо и достаточно, чтобы возможная работа активных сил и реакций неидеальных связей была равна нулю. Можно, однако, обойтись без переформулировки принципа, условно относя реакции неидеальных связей в число активных сил.

Вопросы для самопроверки

1. В чем основная особенность несвободной механической системы по сравнению со свободной?

2. Что называется возможным перемещением? Приведите примеры.

3. Как определяются вариации координат точек системы при ее возможном перемещении (укажите три способа)?

4. Как классифицируются связи по виду их уравнений? Приведите примеры связей удерживающих и не удерживающих, стационарных и нестационарных.

5. В каком случае связь называется идеальной? Неидеальной?

6. Приведите словесную формулировку и математическую запись принципа возможных перемещений.

7. Как формулируется принцип возможных перемещений для систем, содержащих неидеальные связи?

8. Перечислите основные типы задач, решаемые при помощи принципа возможных перемещений.

Упражнения

При помощи принципа возможных перемещений решить следующие задачи из сборника И.В. Мещерского 1981 г. издания: 46.1; 46.8; 46.17; 2.49; 4.53.


Рисунок 2.4

Решение

Заменим распределенную нагрузку сосредоточенной силой Q = q∙DH . Эта сила приложена в середине отрезка DH – в точке L .

Силу F разложим на составляющие, спроецировав ее на оси : горизонтальную F x cosα и вертикальную F y sinα .

Рисунок 2.5

Чтобы решить задачу с помощью принципа возможных перемещений, необходимо, чтобы конструкция могла перемещаться и при этом чтобы в уравнении работ была одна неизвестная реакция . В опоре A реакция раскладывается на составляющие X A , Y A .

Для определения X A изменим конструкцию опоры A так, чтобы точка A могла перемещаться только по горизонтали. Выразим перемещения точек конструкции через возможный поворот части CDB вокруг точки B на угол δφ 1 , часть AKC конструкции в этом случае поворачивается вокруг точки C V1 — мгновенного центра вращения (рисунок 2.5) на угол δφ 2 , и перемещения точек L и C – будут

δS L = BL∙δφ 1 ;
δS C = BC∙δφ 1
.

В то же время

δS C = CC V1 ∙δφ 2

δφ 2 = δφ 1 ∙BC/CC V1 .

Уравнение работ удобнее составить через работу моментов заданных сил , относительно центров вращений.

Q∙BL∙δφ 1 + F x ∙BH∙δφ 1 + F y ∙ED∙δφ 1 +
+ M∙δφ 2 — X A ∙AC V1 ∙δφ 2 = 0
.

Реакция Y A работу не совершает. Преобразуя это выражение, получим

Q∙(BH + DH/2)∙δφ 1 + F∙cosα∙BD∙δφ 1 +
+ F∙sinα∙DE∙δφ 1 + M∙δφ 1 ∙BC/CC V1 —
— X A ∙AC V1 ∙δφ 1 ∙BC/CC V1 = 0
.

Сократив на δφ 1 , получим уравнение, из которого легко находится X A .

Для определения Y A конструкцию опоры A изменим так, чтобы при перемещении точки A работу совершала только сила Y A (рисунок 2.6). Примем за возможное перемещение части конструкции BDC поворот вокруг неподвижной точки B δφ 3 .

Рисунок 2.6

Для точки C δS C = BC∙δφ 3 , мгновенным центром вращения для части конструкции AKC будет точка C V2 , и перемещение точки C выразится.