Приведение плоской системы сил к равнодействующей. Приведение плоской системы сил к простейшему виду

Предположим, что произвольная плоская система сил приводится к одной силе, равной главному вектору и приложенной к центру приведения, и к одной паре с моментом, равным главному моменту
(рисунок 57, а ). Докажем, что рассматриваемая произвольная плоская система сил приводится в этом общем случае к равнодействующей силе
, линия действия которой проходит через точку А , отстоящую от выбранного центра приведения О на расстоянии
. Для этого преобразуем пару с моментом
так, чтобы силы и
, составляющие эту пару, оказались равными по модулю главному вектору R". При этом нужно подобрать плечо пары так, чтобы ее момент т
оставался равным М 0 .Для этого плечо пары
нужно, очевидно, находить из равенства

. (1)

Пользуясь тем, что пару всегда можно перемещать в ее плоскости действия как угодно, переместим пару
так, чтобы ее сила
оказалась приложенной в центре приведения О и противоположно направленной главному вектору
(рисунок 57, б ).

Рассматриваемая произвольная плоская система сил эквивалентна, таким образом, силе
и паре
. Отбрасывая силы
и
как уравновешенные, получим, что вся рассматриваемая система сил заменяется одной силой
, являющейся, следовательно, равнодействующей. При этом линия действия равнодействующей будет проходить через точку А , положение которой относительно выбранного центра приведения определяется формулой (1).

Если же в результате приведения произвольной плоской системы сил окажется, что
, а
, то в этом частном случае эта система сил сразу заменяется одной силой, т. е. равнодействующей
, линия действия которой проходит через выбранный центр приведения.

Задача 7 . К точкам В и С тела соответственно приложены равные по модулю и взаимно перпендикулярные силы и
, отстоящие от точки О тела на равных расстояниях
. Привести эту систему сил к точке О (рисунок 58).

Решение. Перенесем силы ипараллельно самим себе в точкуО . В результате такого переноса получим (рисунок 58) силы
и
, приложенные в точке О , и присоединенные пары
и
, лежащие в одной плоскости с моментами
и
(силы, образующие эти пары отмечены на рисунке 58 черточками). От геометрического сложения сили, приложенных в точкеО , получим главный вектор данной системы сил

модуль которого, очевидно, равен

От сложения присоединенных пар получим равнодействующую пару, момент которой равен главному моменту
данной системы сил относительно точкиО :

Следовательно, данная система двух сил иимеет равнодействующую

,

приложенную в точке А , которая отстоит от точки О на расстоянии

.

;
,

т. е. равнодействующая образует с обеими данными силами иравные углы по 45 0 .

Задача 8. На мостовую ферму (рисунок 59) действуют вертикальные силы
т и
т соответственно на расстоянии 10м и 40 м от левого конца фермы и горизонтальная сила
т на уровне верхнего пояса фермы, высота фермы равна 6м . Привести систему сил ,ипростейшему виду.

Решение. Проводим оси координат так, как показано на рисунке 59, взяв начало координат в точке А. Найдем проекции главного вектора заданной системы сил на оси выбранной системы координат:

откуда находим модуль главного вектора
:

т
.

Найдем теперь главный момент заданной системы сил относительно начала координат А:

т·м
.

Следовательно, данная система сил имеет равнодействующую
, модуль которой
т.

Теперь найдем линию действия равнодействующей. Момент равнодействующей относительно начала координат А определится но формуле

,

где х и y - координаты точки, лежащей на линии действия равнодействующей. Так как
т и
т, то

.

С другой стороны, по теореме Вариньона о моменте равнодействующей (5, § 11) имеем

Следовательно,

.

Это и есть уравнение линии действия равнодействующей.

Полагая в этом уравнении
, находим, что точка пересечения линии действия равнодействующейс верхним поясом фермы находится на расстоянии
м от левого конца фермы. Полагая же
м , находим, что точка пересечения линии действия равнодействующей с нижнем поясом фермы находится на расстоянии
м от левого конца фермы. Соединения определенные таким образом точки пересечения линий действия равнодействующей с верхним и нижнем поясом фермы прямой линией, находим линию действия равнодействующей.

Плоская система произвольно расположенных сил.

Условия равновесия пар сил.

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.

Рассмотрим случай переноса силы в произвольную точку,не лежащую на линии действия силы.

Возьмем силу F, приложенную в точке С. Требуется перенести эту силу параллельно самой себе в некоторую точку О. Приложимв точке О две силы F" и F", противоположно направленные, равные по значению и параллельные заданной силе F, т. е. F" = F" = F. От приложения в точке О этих сил состояние тела не изменяется, так как они взаимно уравновешиваются. Полученную систему трех сил можно рассматривать как состоящую из силы F", приложенной в точке О, и пары сил FF" с моментом М = Fa. Эту пару сил называют присоединенной , а ее плечо а равно плечу силы F относительно точки О.

Таким образом, при приведении силы F к точке, не лежащей на линии действия силы, получается эквивалентная система, состоящая из силы, такой же по модулю и направлению, как и сила F, и присоединенной пары сил, момент которой равен моменту данной силы относительно точки приведения:

В качестве примера приведения силы рассмотрим действие силы F на конец С защемленного стержня (рис.28,б). После приведения силы F в точку О защемленного сечения обнаруживаем в нем силу F1 равную и параллельную заданной, и присоединенный момент М, равный моменту заданной силы F относительно точки приведения О,

1.4.2 Приведение плоской системы сил к данной точке

Описанный метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, что в точках тела А, В, С и D (рис. 30) приложены силы F1,F2,F3,F4.

Требуется привести эти силы к точке О плоскости. Приведем сначала силу F1 , приложенную в точке А. Приложим в точке О две силы F1" и F1"", параллельные ей и направленные в противоположные стороны. В результате приведения силы F1 получим силу F1" , приложенную в точке О, и пару сил F1" F1"" с плечом a1. Поступив таким же образом с силой F2 , приложенной в точке В, получим силу F2", приложенную в точке О, и пару сил с плечом a2 т. д.

Плоскую систему сил, приложенных в точках А, В, С и D, мы заменили сходящимися силами F1,F2,F3,F4 , приложенными в точке О, и парами сил с моментами, равными моментам заданных сил относительно точки О:



Сходящиеся в точке силы можно заменить одной силой F"гл, равной геометрической сумме составляющих,

Эту силу, равную геометрической сумме заданных сил, называют главным вектором системы сил и обозначают F"гл.

На основании правила сложения пар сил их можно заменить результирующей парой, момент которой равен алгебраической сумме моментов заданных сил относительно точки О и называется главным моментом относительно точки приведения

Следовательно, в общем случае плоская система сил в результате приведения к данной точке О заменяется эквивалентной ей системой, состоящей из одной силы (главного вектора) и одной пары (главного момента).

Необходимо усвоить, что главный вектор F"гл является равнодействующей данной системы сил, так как эта система не эквивалентна одной силе F"гл. Только в частном случае, когда главный момент обращается в нуль, главный вектор будет равнодействующей данной системы сил. Так как главный вектор равен геометрической сумме сил заданной системы, то ни модуль, ни направление его не зависят от выбора центра приведения. Значение и знак главного момента Mгл зависят от положения центра приведения, так как плечи составляющих пар зависят от взаимного положения сил и точки (центра), относительно которой берутся моменты.

Могут встретиться следующие случаи приведения системы сил:
1. - общий случай; система приводится главному вектору и к главному моменту.
2. ; система приводится к одной равнодействующей, равной главному вектору системы.
3. ; система приводится к паре сил, момент которой равен главному моменту.
4. ; система находится в равновесии, т. е. для равновесия плоской системы сил необходимо и достаточно, чтобы ее главный вектор и главный момент одновременно были равны нулю.

Можно доказать, что в общем случае, когда, всегда есть точка, относительно которой главный момент сил равен нулю.

Рассмотрим плоскую систему сил, которая приведена к точке О, т. е. заменена главным вектором , приложенным в точке О, и главным моментом . Для определенности примем, что главный момент направлен по часовой стрелке, т. е. . Изобразим этот главный момент парой сил FF", модуль которых выберем равным модулю главного вектора, т. е. . Одну из сил, составляющих пару, приложим в центре приведения О, другую силу в точке С, положение которой определится из условия: . Следовательно .

Расположим пару сил так, чтобы сила F"" была направлена в сторону, противоположную главному вектору F"гл. В точке О имеем две равные взаимнопротивоположные силы F"гл и F"", направленные по одной прямой; их можно отбросить (согласно третьей аксиоме). Следовательно, относительно точки С главный момент рассматриваемой системы сил равен нулю, и система приводится к равнодействующей .

Моментом силы F относительно данной точки О называется произведение величины силы на ее плечо, т. е. на длину перпендикуляра, опущенного из точки О на линию действия этой силы.

Если сила F стремится вращать тело вокруг данной точки О в направлении, обратном движению часовой стрелки, то условимся моменг силы F относительно точки О считать положительным; если же сила стремится вращать тело вокруг точки О в направлении, совпадающем с направлением движения часовой стрелки, то момент силы относительно этой точки будем считать отрицательным. Следовательно,

Если линия действия силы F проходит через данную точку О, то момент силы F относительно этой точки равен нулю.

Сложение сил, расположенных как угодно на плоскости, можно выполнить двумя способами:

1) последовательным сложением;

2) приведением данной системы сил к произвольно выбранному центру.

Первый способ становится громоздким при большом числе слагаемых сил и неприменим для пространственной системы сил, второй же способ является общим, более простым и удобным.

Если задана система сил , расположенных как угодно в одной плоскости, то, перенося все эти силы в произвольно выбранную в этой плоскости точку О, называемую центром приведения, получим приложенную в этом центре силу

и пару с моментом

Геометрическая сумма сил данной системы называется равным вектором этой системы сил.

Алгебраическая сумма моментов сил плоской системы относительно какой-нибудь точки О плоскости их действия называется главным моментом этой системы сил относительно этой точки О.

Главный момент изменяется с изменением центра приведения; зависимость главного момента от выбора центра приведения выражается следующей формулой:

где и - два различных центра приведения.

Так как сила R и пара с моментом , получающаяся в результате приведения данной плоской системы сил к центру О, лежат в одной плоскости, то их можно привести к одной силе , приложенной в некоторой точке . Эта сила является равнодействующей данной плоской системы сил.

Таким образом, если , то система сил приводится к одной равнодействующей, не проходящей через центр приведения О. При этом момент равнедействующей относительно любой точки будет равен алгебраической сумме моментов всех данных сил относительно той же точки (теорема Вариньона).

Если начало координат выбрано в центре приведения и известны проекции всех сил на оси координат и координаты точек приложения этих сил, то момент равнодействующей находим по формуле

Если в результате приведения системы сил к данному центру окажется, что главный вектор этой системы рпвен нулю, а главный момент ее отличен от нуля, то данная система эквивалентна паре сил, причем главный момент системы равен моменту этой пары и не зависит в данном случае от выбора центра приведения. Если то система приводится к равнодействующей, приложенной в центре приведения О.

Если и , то система сил находится в равновесии. Все случаи, встречающиеся при сложении сил плоской системы, можно представить в виде табл. 3.

Таблица 3

Равновесие плоской системы сил рассмотрим в следующем параграфе, а теперь перейдем к решению задач на сложение сил плоской системы.

Пример 13. Дана плоская система четырех сил проекции X и Y этих сил на координатные оси, координаты х, у точек их приложения заданы в табл. 4.

Таблица 4

Привести эту систему к началу координат и затем найти линию действия равнодействующей.

Решение. Найдем проекции главного вектора заданной системы сил на координатные оси по формуле (14)

Главный момент находим по формуле (15)

Пусть - точка линии действия искомой равнодействующей . Тогда

С другой стороны, по теореме Вариньона имеем:

Следовательно,

Это и есть уравнение линии действия равнодействующей.

Пример 14. Найти равнодействующую четырех сил, действующих по сторонам правильного шестиугольника, направление которых указано на рис. 30, если .

Решение. Выберем за центр приведения центр О шестиугольника и найдем главный вектор R и главный момент данной системы сил относительно центра О. Так как , то главный вектор R равен , а главный момент

Для того чтобы найти момент силы , относительно точки О, опустим перпендикуляр СМ, из точки О на линию действия этой силы. Так как сила , стремится вращать шестиугольник вокруг точки О по часовой стрелке, то

Теорема о приведении системы сил:

Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R , равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом L O , равным главному моменту системы сил относительно центра О.

Такая эквивалентная замена данной системы сил силой R и парой сил с моментом L O называютприведением системы сил к центу О .

Рассмотрим здесь частный случай приведения плоской системы сил к центру О, лежащему в той же плоскости. В этом случае система сил заменяется одной силой и одной парой сил, лежащих в плоскости действия сил системы. Момент этой пары сил можно рассматривать как алгебраическую величину L O и изображать на рисунках дуговой стрелкой (алгебраический главный момент плоской системы сил ).

В результате приведения плоской системы сил к центру возможны следующие случаи:

    если R = 0, L O = 0, то заданная система является равновесной ;

    если хотя бы одна из величин R или L O не равна нулю, то система сил не находится в равновесии . При этом:

16 Вопрос. Уравнение равновесия

Для равновесия твердрго тела, находящегося под действием плоской системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее алгебраический главный момент были равны нулю, то есть R = 0, L O = 0, где О - любой центр, расположенный в плоскости действия сил системы.

Вытекающие отсюда аналитические условия равновесия (уравнения равновесия) плоской системы сил можно сформулировать в следующих трех формах:

    Основная форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из координатных осей и сумма их алгебраических моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю:

F ix = 0; F iy = 0; M O (F i) = 0. (I)

    Вторая форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно двух центров А и В и сумма их проекций на ось Ox, не перпендикулярную оси Ox, были равны нулю:

F ix = 0; M А (F i) = 0; M В (F i) = 0. (II)

    Третья форма уравнений равновесия (уравнения трех моментов):

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно любых трех центров А,В и С, не лежащих на одной прямой, были равны нулю:

M А (F i) = 0; M В (F i) = 0; M С (F i) = 0. (III)

Уравнения равновесия в форме (I) считаются основными, так как при их использовании нет никаких ограничений на выбор координатных осей и центра моментов.

17 Вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O 1 . Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: M O1Z =åM o1z (F k) (5.11). С другой стороны, имеем M O1Z =M Olz (R), (5.12) так как главный момент для центра приведения О равен нулю (M Oz =0). Сравнивая соотношения (5.11) и (5.12), получаем M O1z (R)=åM OlZ (F k); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R 1 приложена в какой-либо точке О 1 с координатами х и у (рис. 5.5) и известны главный вектор F o и главный момент М Оя при центре приведения в начале координат. Так как R 1 =F o , то составляющие равнодей­ствующей по осям х и у равны R lx =F Ox =F Ox i и R ly =F Oy =F oy j. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. М оz =M Oz (R 1)=xF Oy –yF Ox . (5.14). Величины M Oz , F Ox и F oy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При F ox ≠0 его можно переписать в виде y=(F oy /F ox)x–(M oz /F ox).

Решим теперь задачу о приведении произвольней системы сил к данному центру, т. е. о замене данной системы сил другой, ей эквивалентной, но значительно более простой, а именно состоящей, как мы увидим, только из одной силы и пары.

Пусть на твердое тело действует произвольная система сил (рис. 40, а).

Выберем какую-нибудь точку О за центр приведения и, пользуясь теоремой, доказанной в § 11, перенесем все силы в центр О, присоединяя при этом соответствующие пары (см. рис. 37, б). Тогда на тело будет действовать система сил

приложенных в центре О, и система пар, моменты которых согласно формуле (18) равны:

Сходящиеся силы, приложенные в точке О, заменяются одной силой R, приложенной в точке О. При этом или, согласно равенствам (19),

Чтобы сложить все полученные пары, надо сложить векторы моментов этих пар. В результате система пар заменится одной парой, момент которой или, согласно равенствам (20),

Как известно, величина R, равная геометрической сумме всех сил, называется главным вектором системы величина равная геометрической сумме моментов всех сил относительно центра О, называется главным моментом системы сил относительно этого центра.

Таким образом, мы доказали следующую теорему о приведении системы сил: любая система сил, действующих на абсолютно твердое тело, при приведении к произвольно выбранному центру О заменяется одной силой R, равной главному вектору системы сил и приложенной в центре приведения О, и одной парой с моментом равным главному моменту системы сил относительно центра О (рис. 40, б).

Заметим, что сила R не является здесь равнодействующей данной системы сил, так как заменяет систему сил не одна, а вместе с парой.

Из доказанной теоремы следует, что две системы сил, имеющие одинаковые главные векторы и главные моменты относительно одного и того же центра, эквивалентны (условия эквивалентности систем сил).

Отметим еще, что значение R от выбора центра О, очевидно, не зависит. Значение же при изменении положения центра О может в общем случае изменяться вследствие изменения значений моментов отдельных сил. Поэтому всегда необходимо указывать, относительно какого центра определяется главный момент.