Проверка статистических гипотез в MS EXCEL о равенстве среднего значения распределения (дисперсия неизвестна). Проверка гипотезы о равенстве средних

Проверка статистических гипотез: гипотеза о равенстве средних для двух выборки

Работа носит вспомогательный характер, должна служить фрагментом других лабораторных работ.

Ни одно грамотное социологическое исследование не может обойтись без выдвижения гипотез. По большому счету можно вообще сказать, что главная его цель - это опровержение или подтверждение какого-либо предположения исследователя о социальной реальности на основе собранных им эмпирических данных. Мы выдвигаем гипотезу, собираем данные и делаем на основе статистического материала вывод. Но именно эта цепочка гипотеза-данные-вывод и содержит в себе массу вопросов, с которыми сталкивается практически любой начинающий исследователь. Основной из таких вопросов заключается в следующем: как перевести выдвинутую нами гипотезу на математический язык для того, чтобы ее потом можно было соотнести со статистическим массивом и, обработав с помощью методов математической статистики, опровергнуть или подтвердить? Здесь мы постараемся ответить на этот вопрос на примере проверки гипотез о равенстве средних.

Проверка статистических гипотез о равенстве средних

Под статистической гипотезой понимаются различного рода предположения относительно характера или параметров распределения случайной переменной, которые можно проверить, опираясь на результаты в случайной выборке.

Следует иметь в виду, что проверка статистической гипотезы имеет вероятностный характер. Также как мы никогда не можем на 100% быть уверены в том, что какой-либо выборочный параметр совпадает с параметром генеральной совокупности, мы никогда не можем абсолютно точно сказать, верна или ложна выдвинутая нами гипотеза.

Для того чтобы проверить статистическую гипотезу необходимо следующее:

1. Преобразовать содержательную гипотезу в статистическую: сформулировать нулевую и альтернативную статистические гипотезы.

2. Определить зависимые или независимые у нас выборки.

3. Определить объем выборок.

4. Выбрать критерий.

5. Выбрать уровень значимости, контролирующий допустимую вероятность ошибки первого рода, и определить область допустимых значений.

7. Отвергнуть или принять нулевую гипотезу.

Теперь рассмотрим каждый из шести пунктов более подробно.

Формулировка гипотезы

В статистических задачах часто бывает нужно сравнить средние двух разных выборок . Например, нас может интересовать разница средних зарплат мужчин и женщин, средних возрастов неких групп <А> и <В> и т.д. Или же, сформировав две независимые экспериментальные группы, мы можем сравнивать их средние с целью проверить, насколько различается, скажем, воздействие двух разных лекарств на кровяное давление или насколько размер группы влияет на отметки студентов. Иногда бывает так, что мы разбиваем совокупность на две группы попарно, то есть, имеем дело с близнецами, супружескими парами или одним и тем же человеком до и после какого-либо эксперимента и т.д. Чтобы стало более ясно, рассмотрим характерные примеры, где применяются различные критерии о равенстве средних.

Пример №1. Фирма разработала два разных препарата, понижающих давление (назовем их препараты Х и Y ) и хочет узнать различается или нет воздействие данных лекарств на больных, страдающих гипертонией. Из 50 человек с соответствующим заболеванием случайно выбираются 20 и случайно эти 20делятся на две группы по 10 человек. Первая группа в течение недели пользуется препаратом Х , вторая - препаратом Y . Затем у всех больных измеряется давление. Выдвигаемая содержательная гипотеза: препараты Х и Y по-разному влияют на кровяное давление больных .

Пример №2. Исследователь хочет узнать, как влияет продолжительность лекции на успеваемость студентов. Допустим, он избрал следующий путь: из 200 студентов случайно выбрал 50 человек и в течение месяца наблюдал за их успеваемостью. Далее он увеличил продолжительность лекций на 10 минут и в течение следующего месяца смотрел на успеваемость все тех же50 студентов. Потом он сравнил результаты каждого студента до и после увеличения продолжительности лекции. Выдвигаемая содержательная гипотеза: продолжительность лекции влияет на успеваемость студента .

Пример №3. Из 200 студентов случайно были выбраны 80 человек, и эти 80 человек разделили на две группы по 40. Одной группе задавали вопрос без установки: <Сколько вы готовы заплатить за натуральный йогурт?>, а второй группе задавали вопрос с установкой: <Сколько вы готовы заплатить за натуральный йогурт, если известно, что люди, потребляющие йогуртовые культуры, страдают на 10-15% меньше от заболеваний желудка?> Исследователь предполагал, что положительная информация о продукте, содержащаяся во втором вопросе, повлияет на респондента, и люди, отвечающие на вопрос с установкой, будут готовы заплатить за йогурт больше, нежели те, которым был предложен вопрос без установки. Выдвигаемая содержательная гипотеза: постановка вопроса влияет на ответ респондента .

Перед нами три примера, каждый из которых демонстрирует формулировку содержательной гипотезы. Теперь преобразуем наши содержательные гипотезы в статистические, но для начала немного скажем о статистических гипотезах в целом.

Наиболее частый подход к формулировке статистических гипотез - это выдвижение двух двусторонних гипотез :

Как видно из формулы, нулевая гипотеза говорит о том, что какой-либо параметр выборки или, скажем, разница между параметрами двух выборок равна некоему числу а . Альтернативная гипотеза утверждает обратное: интересующий нас параметр не равен а . Таким образом, данные две гипотезы содержат в себе все возможные варианты исходов.

Также возможна формулировка односторонних гипотез :

Иногда такие гипотезы оказываются более осмысленными. Обычно они имеют место в том случае, когда вероятность того, что наш параметр может оказаться больше (или меньше) а равна нулю, то есть такое невозможно.

Теперь сформулируем нулевую и альтернативную статистические гипотезы для наших трех примеров.

Таблица №1.

Пример №1

Пример №2

Пример №3

Препараты Х и Y по-разному влияют на кровяное давление больных

Продолжительность лекции влияет на успеваемость студентов

Постановка вопроса влияет на ответ респондента

Задача исследователя

4.Найти среднее арифметическое разностей для всех студентов, обозначаемое

Нулевая гипотеза

Смысл нулевой гипотезы

исредние генеральных совокупностей, из которых взяты выборки со среднимии. Нулевая гипотеза говорит о том, что влияние обоих лекарств на давление в среднем незначительно, и если даже выборочные средние не равны, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Среднее разностей для студентов в генеральной совокупности. Нулевая гипотеза говорит о том, что на самом деле нет разницы между средним баллом студента до и после увеличения продолжительности лекции, и если даже выборочное среднее разностей отлично от нуля, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Посколькусовпадает св примере №1, то объяснения можно найти в первой колонке (см. пример 1)

Альтернативная гипотеза

Вывод относительно содержательной гипотезы

Если мы принимаем нулевую гипотезу - препараты оказывают одинаковое влияние (разницы между средними нет), то мы отвергаем содержательную гипотезу, в противном случае - мы принимаем содержательную гипотезу

Если мы принимаем нулевую гипотезу - продолжительность лекции не влияет на успеваемость, то мы отвергаем содержательную гипотезу и наоборот

Если мы принимаем нулевую гипотезу - вопрос не влияет на выбор респондента, то мы отвергаем содержательную гипотезу и наоборот.

8.1. Понятие зависимых и независимых выборок.

Выбор критерия для проверки гипотезы

в первую очередь определяется тем, являются ли рассматриваемые выборки зависимыми или независимыми. Введем соответствующие определения.

Опр. Выборки называются независимыми , если процедура отбора единиц в первую выборку никак не связана с процедурой отбора единиц во вторую выборку.

Примером двух независимых выборок могут служить обсуждавшиеся выше выборки мужчин и женщин, работающих на одном предприятии (в одной отрасли и т.д.).

Заметим, что независимость двух выборок отнюдь не означает отсутствие требования определенного рода сходства этих выборок (их однородности). Так, изучая уровень дохода мужчин и женщин, мы вряд ли допустим такую ситуацию, когда мужчины отбираются из среды московских бизнесменов, а женщины – из аборигенов Австралии. Женщины тоже должны быть москвичками и, более того – «бизнесвуменшами». Но здесь мы говорим не о зависимости выборок, а о требовании однородности изучаемой совокупности объектов, которое должно удовлетворяться и при сборе, и при анализе социологических данных.

Опр. Выборки называются зависимыми, или парными, если каждая единица одной выборки «привязывается» к определенной единице второй выборки.

Последнее определение, вероятно, станет более ясным, если мы приведем пример зависимых выборок.

Предположим, что мы хотим выяснить, является ли социальный статус отца в среднем ниже социального статуса сына (полагаем, что мы можем измерить эту сложную и неоднозначно понимаемую социальную характеристику человека). Представляется очевидным, что в такой ситуации целессобразно отбрать пары респондентов (отец, сын) и считать, что каждый элемент первой выборки (один из отцов) «привязан» к определенному элементу второй выборки (своему сыну). Эти две выборки и будут называться зависимыми.

8.2. Проверка гипотезы для независимых выборок

Для независимых выборок выбор критерия зависит от того, знаем ли мы генеральные дисперсии s 1 2 и s 2 2 рассматриваемого признака для изучаемых выборок. Будем считать эту проблему решенной, полагая, что выборочные дисперсии совпадают с генеральными. В таком случае в качестве критерия выступает величина:

Прежде, чем переходить к обсуждению той ситуации, когда генеральные дисперсии (или хотя бы одна из них) нам неизвестны, заметим следующее.

Логика использования критерия (8.1) похожа на ту, которая была описана нами при рассмотрении критерия “Хи-квадрат” (7.2). Имеется лишь одно принципиальное отличие. Говоря о смысле критерия (7.2), мы рассматривали бесконечное количество выборок объема n, «черпающихся» из нашей генеральной совокупности. Здесь же, анализируя смысл критерия (8.1), мы переходим к рассмотрению бесконечного количества пар выборок объемом n 1 и n 2 . Для каждой пары и рассчитывается статистика вида (8.1). Совокупности получаемых значений таких статистик, в соответствии с нашими обозначениями, отвечает нормальное распределение (как мы условились, буква z используется для обозначения такого критерия, которому отвечает именно нормальное распределение).

Итак, если генеральные дисперсии нам неизвестны, то мы вынуждены вместо них пользоваться их выборочными оценками s 1 2 и s 2 2 . Однако при этом нормальное распределение должно замениться на распределение Стьюдента – z должно замениться на t (как это имело место в аналогичной ситуации при построения доверительного интервала для математического ожидания). Однако при достаточно больших объемах выборок (n 1 , n 2 ³ 30) , как мы уже знаем, распределение Стьюдента практически совпадает с нормальным. Другими словами, при больших выборках мы можем продолжать пользоваться критерием:

Сложнее обстоит дело с такой ситуацией, когда и дисперсии неизвестны, и объем хотя бы одной выборки мал. Тогда вступает в силу еще один фактор. Вид критерия зависит от того, можем ли мы считать неизвестные нам дисперсии рассматриваемого признака в двух анализируемых выборках равными. Для выяснения этого надо проверить гипотезу:

H 0: s 1 2 = s 2 2 . (8.3)

Для проверки этой гипотезы используется критерий

О специфике использования этого критерия пойдет речь ниже, а сейчас продолжим обсуждать алгоритм выбора критерия, использующего для проверки гипотез о равенстве математических ожиданий.

Если гипотеза (8.3) отвергается, то интересующий нас критерий приобретает вид:

(8.5)

(т.е. отличается от критерия (8.2), использовавшегося при больших выборках, тем, что соответствующая статистика имеет не нормальное распределение, а распределение Стьюдента). Если гипотез (8.3) принимается, то вид используемого критерия меняется:

(8.6)

Подведем итог того, как выбирается критерий для проверки гипотезы о равенстве генеральных математических ожиданий на основе анализа двух независимых выборок.

известны

неизвестны

размер выборок большой

H 0: s 1 = s 2 отвергается

Принимается

8.3. Проверка гипотезы для зависимых выборок

Перейдем к рассмотрению зависимых выборок. Пусть последовательности чисел

X 1 , X 2 , … , X n ;

Y 1 , Y 2 , … , Y n –

это значения рассматриваемой случайной для элементов двух зависимых выборок. Введем обозначение:

D i = X i - Y i , i = 1, ... , n.

Для зависимых выборок критерий, позволяющий проверять гипотезу

выглядит следующим образом:

Заметим, что только что приведенное выражение для s D есть не что иное, как новое выражение для известной формулы, выражающей среднее квадратическое отклонение. В данном случае речь идет о среднем квадратическом отклонении величин D i . Подобная формула часто используется на практике как более простой (по сравнению с «лобовым» подсчетом суммы квадратов отклонений значений рассматриваемой величины от соответствующего среднего арифметического) способ расчета дисперсии.

Если сравнить приведенные формулы с теми, которые мы использовали при обсуждении принципов построения доверительного интервала, нетрудно заметить, что проверка гипотезы о равенстве средних для случая зависимых выборок по существу является проверкой равенства нулю математического ожидания величин D i . Величина

есть среднее квадратическое отклонение для D i . Поэтому значение только что описанного критерия t n -1 по существу равно величине D i , выраженной в долях среднего квадратического отклонения. Как мы говорили выше (при обсуждении способов построения доверительных интервалов), по такому показателю можно судить о вероятности рассматриваемого значения D i . Отличие состоит в том, что выше шла речь о простом среднем арифметическом, распределенном нормально, а здесь – о средних разностей, такие средние имеют распределение Стьюдента. Но рассуждения о взаимосвязи вероятности отклонения выборочного среднего арифметического от нуля (при математическом ожидании, равном нулю) с тем, сколько единиц s это отклонение составляет, остаются в силе.

5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г. Лекция 6. Сравнение двух выборок 6-1. Гипотеза о равенстве средних. Парные выборки 6-2.Доверительный интервал для разности средних. Парные выборки 6-3. Гипотеза о равенстве дисперсий 6-4. Гипотеза о равенстве долей 6-5. Доверительный интервал для разности долей


2 Иванов О.В., 2005 В этой лекции… В предыдущей лекции мы проверяли гипотезу о равенстве средних двух генеральных совокупностей и построили доверительный интервал для разности средних для случая независимых выборок. Теперь мы рассмотрим критерий проверки гипотезы о равенстве средних и построим доверительный интервал для разности средних в случае парных (зависимых) выборок. Затем в секции 6-3 будет проверяться гипотеза о равенстве дисперсий, в секции 6-4 – гипотеза о равенстве долей. В заключение мы построим доверительный интервал для разности долей.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве средних. Парные выборки Постановка проблемы Гипотезы и статистика Последовательность действий Пример


4 Иванов О.В., 2005 Парные выборки. Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух генеральных совокупностей. Выборки являются парными (зависимыми). 2. Обе выборки имеют объем n 30. Если нет, то обе выборки взяты из нормально распределенных генеральных совокупностей. Что мы хотим Проверить гипотезу о разности средних двух генеральных совокупностей:


5 Иванов О.В., 2005 Статистика для парных выборок Для проверки гипотезы используется статистика: где - разность между двумя значениями в одной паре - генеральное среднее для парных разностей - выборочное среднее для парных разностей - стандартное отклонение разностей для выборки - число пар


6 Иванов О.В., 2005 Пример. Тренинг студентов Группа из 15 студентов прошла тест до тренинга и после. Результаты теста в таблице. Проверим гипотезу для парных выборок на отсутствие влияния тренинга на подготовку студентов на уровне значимости 0,05. Решение. Подсчитаем разности и их квадраты. СтудентДоПосле Σ= 21 Σ= 145


7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145. 2,145."> 2,145."> 2,145." title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145."> title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145.">




9 Иванов О.В., 2005 Решение Статистика принимает значение: Шаг 5. Сравним полученное значение с критической областью. 1,889


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности средних. Парные выборки Постановка задачи Метод построения доверительного интервала Пример


11 Иванов О.В., 2005 Описание проблемы Что мы имеем Имеем две случайные парные (зависимые) выборки объема n из двух генеральных совокупностей. Генеральные совокупности имеют нормальный закон распределения с параметрами 1, 1 и 2, 2 либо объемы обеих выборок 30. Что мы хотим Оценить среднее значение парных разностей для двух генеральных совокупностей. Для этого построить доверительный интервал для среднего в виде:






5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве дисперсий Постановка проблемы Гипотезы и статистика Последовательность действий Пример


15 Иванов О.В., 2005 В ходе исследования… Исследователю может понадобиться проверить предположение, о равенстве дисперсий двух изучаемых генеральных совокупностей. В случае, когда эти генеральные совокупности имеют нормальное распределение, для этого существует F-критерий, называемый также критерием Фишера. В отличие от Стьюдента, Фишер не работал на пивном заводе.


16 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. 2. Выборки являются независимыми. Это значит, что между субъектами выборок нет связи. Что мы хотим Проверить гипотезу о равенстве дисперсий генеральных совокупностей:














23 Иванов О.В., 2005 Пример Исследователь-медик хочет проверить, есть ли различие между частотой биения сердца курящих и некурящих пациентов (кол-во ударов в минуту). Результаты двух случайно отобранных групп приведены ниже. Используя α = 0,05, выясните, прав ли медик. КурящиеНе курящие


24 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для количества степеней свободы числителя 25 и знаменателя 17 находим критическое значение f = 2,19 и критическую область: f > 2,19. Шаг 4. По выборке вычисляем значение статистики: 2,19. Шаг 4. По выборке вычисляем значение статистики:">




5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве долей Постановка проблемы Гипотезы и статистика Последовательность действий Пример


27 Иванов О.В., 2005 Вопрос Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 случайно отобранных студентов-экономистов 90 посещают спецкурсы. Отличается ли доля студентов, посещающих спецкурсы, на социологическом и экономическом факультетах? Похоже, что существенно не отличается. Как это проверить? Доля посещающих спецкурсы – доля признака. 43 – количество «успехов». 43/100 – доля успехов. Терминология такая же, как в схеме Бернулли.


28 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. Выборки являются независимыми. 2. Для выборок выполнено np 5 и nq 5. Это означает, что, по крайней мере, 5 элементов выборки имеют изучаемое значение признака, и, по крайней мере, 5 не имеют. Что мы хотим Проверить гипотезу о равенстве долей признака в двух генеральных совокупностях:






31 Иванов О.В., 2005 Пример. Спецкурсы двух факультетов Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 студентов-экономистов 90 человек посещают спецкурсы. На уровне значимости = 0,05, проверьте гипотезу о том, что нет различия между долей посещающих спецкурсы на двух этих факультетах. 33 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице нормального распределения находим критические значения z = – 1,96 и z = 1,96 строим критическую область: z 1,96. Шаг 4. По выборке вычисляем значение статистики.


34 Иванов О.В., 2005 Решение Шаг 5. Сравним полученное значение с критической областью. Полученное значение статистики не попало в критическую область. Шаг 6. Формулируем вывод. Нет оснований отвергнуть основную гипотезу. Доля посещающих спецкурсы не отличается статистически значимо.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности долей Постановка задачи Метод построения доверительного интервала Пример





Рассмотрим ту же задачу, что и в предыдущем пункте 3.4, но только при условии, что объемы выборок и Невелики (меньше 30). В этом случае замена генеральных дисперсий и , входящих в (3.15), на исправленные выборочные дисперсии и может привести к большой ошибке в величине , а следовательно, к большой ошибке в установлении области принятия гипотезы Н0 . Однако если есть уверенность в том, что неизвестные генеральные и Одинаковы (например, если сравниваются средние размеры двух партий деталей, изготовленных на одном и том же станке), то можно, используя распределение Стьюдента, и в этом случае построить критерий проверки гипотезы Н0 X и Y . Для этого вводят случайную величину

, (3.16)

(3.17)

Среднее из исправленных выборочных дисперсий и , служащее точечной оценкой обеих одинаковых неизвестных генеральных дисперсий и . Как оказывается (см. , стр.180), при справедливости нулевой гипотезы Н0 случайная величина Т имеет распределение Стьюдента с степенями свободы независимо от величин и объемов выборок. Если гипотеза Н0 верна, то разница должна быть невелика. То есть экспериментальное значение T Эксп. величины Т должно быть невелико. А именно, должно заключаться в некоторых границах . Выход же его за эти границы мы будем считать опровержением гипотезы Н0 , и допускать это будем с вероятностью, равной задаваемому уровню значимости α .

Таким образом, областью принятия гипотезы Н0 будет являться некоторый интервал , в который значения случайной величины Т должны попадать с вероятностью 1- α :

Величину , определяемую равенством (3.18), для различных уровней значимости α и различных числах K степеней свободы величины Т можно найти в таблице критических точек распределения Стьюдента (таблице 4 Приложения). Тем самым будет найден интервал принятия гипотезы Н0 . И если экспериментальное значение T Эксп величины Т попадет в этот интервал – гипотезу Н0 принимают. Не попадает - не принимают.

Примечание 1. Если нет оснований считать равными генеральные дисперсии и величин Х и Y , то и в этом случае для проверки гипотезы Н0 о равенстве математических ожиданий величин Х и Y допускается использование изложенного выше критерия Стьюдента. Только теперь у величины Т число K степеней свободы следует считать равным не , а равным (см. )

(3.19)

Если исправленные выборочные дисперсии и различаются существенно, то второе слагаемое в последней скобке (3.19) невелико по сравнению с 0,5, так что выражение (3.19) по сравнению с выражением уменьшает число степеней свободы случайной величины Т почти вдвое. А это ведет к существенному расширению интервала принятия гипотезы Н0 и, соответственно, к существенному сужению критической области непринятия этой гипотезы. И это вполне справедливо, так как степень разброса возможных значений разности Будет, в основном, определяться разбросом значений той из величин Х и Y , которая имеет большую дисперсию. То есть информация от выборки с меньшей дисперсией как бы пропадает, что и ведет к большей неопределенности в выводах о гипотезе Н0 .

Пример 4. По приведенным в таблице данным сравнить средние удои коров, получавших различные рационы. При проверке нулевой гипотезы Н0 о равенстве средних удоев принять уровень значимости α =0,05.

Поголовье коров, получавших рацион

(Голов )

Среднесуточный удой в пересчете на базисную жирность

(Кг/на голову )

Среднеквадратическое отклонение суточной молочной продуктивности коров

(Кг/на голову )

. Так как приведенные табличные данные получены на основании малых выборок объемами =10 и =8, то для сравнения математических ожиданий среднесуточных удоев коров, получавших тот и другой кормовые рационы, мы должны использовать теорию, изложенную в этом пункте. Для этого в первую очередь выясним, позволяют ли найденные исправленные выборочные дисперсии =(3,8)2=14,44 и =(4,2)2=17,64 считать равными генеральные дисперсии и . Для этого используем критерий Фишера-Снедекора (см. пункт 3.3). Имеем:

По таблице критических точек распределения Фишера-Снедекора для α =0,05; K 1 =8-1=7 и K 2 =10-1=9 находим

И так как , то у нас нет оснований при данном уровне значимости α =0,05 отвергать гипотезу H 0 о равенстве генеральных дисперсий и .

Теперь, в соответствии с (3.17) и (3.16), подсчитаем экспериментальное значение величины Т :

Далее, по формуле находим число K степеней свободы величины Т : K =10+8-2=16. После этого для п0+8-2=16. ооды (3.16) подсчитаем экспериментальное значение величины Т: Ы кормовые рационы, мы должны испол α =0,05 и K =16 по таблице критических точек распределения Стьюдента (таблица 4 Приложения) находим : =2,12. Таким образом, интервалом принятия гипотезы H 0 о равенстве средних удоев коров, получавших рационы № 1 и № 2, является интервал =(-2,12; 2,12). И так как = - 0,79 попадает в этот интервал, то у нас нет оснований отвергать гипотезу H 0 . То есть мы вправе считать, что различие кормовых рационов не сказывается на среднесуточном удое коров.

Примечание 2. В рассмотренных выше пунктах 3.4 и 3.5 рассматривалась нулевая гипотеза H 0 о равенстве М(Х)=М(Y ) при альтернативной гипотезе Н1 об их неравенстве: М(Х)≠М(Y ). Но альтернативная гипотеза Н1 может быть и другой, например, М(Y )>М(X ). На практике этот случай будет иметь место, когда вводится некоторое усовершенствование (положительный фактор), который позволяет рассчитывать на увеличение в среднем значений нормально распределенной случайной величины Y по сравнению со значениями нормально распределенной величины Х . Например, в рацион коров введена новая кормовая добавка, позволяющая рассчитывать на увеличение среднего удоя коров; под культуру внесена дополнительная подкормка, позволяющая рассчитывать на увеличение средней урожайности культуры, и т. д. И хотелось бы выяснить, существенен (значим) или незначим этот введенный фактор. Тогда в случае больших объемов и Выборок (см. пункт 3.4) в качестве критерия справедливости гипотезы H 0 рассматривают нормально распределенную случайную величину

При заданном уровне значимости α Гипотеза H 0 о равенстве М(Х) и М(Y ) будет отвергнута, если экспериментальное значение величины Будет положительным и бόльшим , где

Так как при справедливости гипотезы H 0 М(Z )= 0, то