Проверьте что векторы образуют базис. Координаты и векторы

Базисом пространства называют такую систему векторов в которой все остальные векторы пространства можно представить в виде линейной комбинации векторов, входящих в базис.
На практике это все реализуется достаточно просто. Базис, как правило, проверяют на плоскости или в пространстве, а для этого нужно найти определитель матрицы второго, третьего порядка составленный из координат векторов. Ниже схематически записаны условия, при которых векторы образуют базис

Чтобы разложить вектор b по базисным векторам
e,e...,e[n] необходимо найти коэффициенты x, ..., x[n] при которых линейная комбинация векторов e,e...,e[n] равна вектору b:
x1*e+ ... + x[n]*e[n] = b.

Для этого векторное уравнение следует преобразовать к системе линейных уравнений и найти решения. Это также достаточно просто реализовать.
Найденные коэффициенты x, ..., x[n] называются координатами вектора b в базисе e,e...,e[n].
Перейдем к практической стороне темы.

Разложение вектора по векторам базиса

Задача 1. Проверьте, образуют ли векторы a1, a2 базис на плоскости

1) a1 (3; 5), a2 (4; 2)
Решение: Составляем определитель из координат векторов и вычисляем его


Определитель не равен нулю , следовательно векторы линейно независимы, а значит образуют базис .

2) a1 (2; -3), a2 (5;-1)
Решение: Вычисляем детерминант составленный из векторов

Определитель равен 13 (не равен нулю) - из этого следует что векторы a1, a2 является базисом на плоскости.

---=================---

Рассмотрим типичные примеры из программы МАУП по дисциплине "Высшая математика".

Задача 2. Показать, что векторы a1, a2, a3 образуют базис трехмерного векторного пространства, и разложить вектор b по этому базису (при решении системы линейных алгебраических уравнений использовать метод Крамера).
1) a1 (3; 1; 5), a2 (3; 2; 8), a3 (0; 1; 2), b (−3; 1; 2) .
Решение: Сначала рассмотрим систему векторов a1, a2, a3 и проверим определитель матрицы А

построенной на векторах отличных от нуля. Матрица содержит один нулевой элемент, поэтому детерминант целесообразнее вычислять как расписание по первому столбцу или третей строчке.

В рекзультаье вычислений получили что определитель отличен от нуля, следовательно векторы a1, a2, a3 линейно независимы .
Согласно определению векторы образуют базис в R3 . Запишем расписание вектора b по базису

Векторы равны, когда их соответствующие координаты равны.
Поэтому из векторного уравнения получим систему линейных уравнений

Решим СЛАУ методом Крамера . Для этого запишем систему уравнений в виде

Главный определитель СЛАУ всегда равен определителю составленному из векторов базиса

Поэтому на практике его не исчисляют дважды. Для нахождения вспомогательных определителей ставим столбец свободных членов на место каждого столбца главного определителя. Определители вычисляем по правилу треугольников



Подставим найденые определители в формулу Крамера



Итак, разложение вектора b по базису имеет вид b=-4a1+3a2-a3 . Координатами вектора b в базисе a1, a2, a3 будут (-4,3, 1).

2) a1 (1; -5; 2), a2 (2; 3; 0), a3 (1; -1; 1), b (3; 5; 1).
Решение: Проверяем векторы на базис - составляем определитель из координат векторов и вычисляем его

Определитель не равен нулю, следовательно векторы образуют базис в пространстве . Осталось найти расписание вектора b через данный базис. Для этого записываем векторное уравнение

и преобразуем к системе линейных уравнений

Записываем матричное уравнение

Далее для формул Крамера находим вспомогательные определители



Применяем формулы Крамера



Итак заданный вектора b имеет расписание через два вектора базиса b=-2a1+5a3, а его координаты в базисе равны b(-2,0, 5).

Векторы могут быть графически представлены направленными отрезками. Длина выбирается по определенной шкале, чтобы обозначить величину вектора , а направление отрезка представляетнаправление вектора . Например, если мы примем, что 1 см представляет 5 км/час, тогда северо-восточный ветер со скоростью 15 км/час будет представлен направленным отрезком длиной 3 cм, как показано на рисунке.

Вектор на плоскости это направленный отрезок. Два вектора равны если они имеют одинаковуювеличину и направление .

Рассмотрим вектор, нарисованный из точки A к точке B. Точка называется начальной точкой вектора, а точка B называется конечной точкой . Символическим обозначением для этого вектора есть (читается как “вектора AB”). Векторы также обозначается жирными буквами, такими как U, V и W. Четыре вектора на рисунке слева имеют одинаковую длину и направление. Поэтому они представляют равные веторы; то есть,

В контексте векторов мы применяем = чтобы обозначить их равность.

Длина, или величина выражается как ||. Для того, чтобы определить, равны ли векторы, мы находим их величины и направления.

Пример 1 Векторы u, , w показаны на рисунке внизу. Докажите, что u = = w.

Решение Сначала мы находим длину каждого вектора с использованием формулы расстояния:
|u| = √ 2 + (4 - 3) 2 = √9 + 1 = √10 ,
|| = √ 2 + 2 = √9 + 1 = √10 ,
|w| = √(4 - 1) 2 + [-1 - (-2)] 2 = √9 + 1 = √10 .
Отсюда
|u| = | = |w|.
Векторы u, , и w, как видно из рисунка, вроде бы имеют одно и то же направление, но мы проверим их наклон. Если прямые, на которых они находятся, имеют одинаковые наклоны, то векторы имеют одно и то же направление. Рассчитываем наклоны:
Так как u, , и w имеют равные величины и одно и то же напраывление,
u = = w.

Имейте в виду, что равность векторов требует только одинаковой величины и одинакового направления, а не расположения в одном месте. На самом верхнем рисунке - пример равности векторов.

Предположим, что человек делает 4 шага на восток, а затем 3 шага на север. Тогда человек будет в 5 шагах от начальной точки в направлении, показанном слева. Вектор в 4 единицы длиной и с направление направо представляет 4 шага на восток и вектор 3 единицы длиной направление вверх представляет 3 шага на север. Сумма двух этих векторов есть вектор 5-ти шагов величины и в показанном направлении. Сумма также называется результирующим двух векторов.

В общем, два ненулевых вектора u и v могут быть сложены геометрически расположением начальной точки вектора v в конечную точку вектора u, и затем нахождением ветора, который имеет ту же самую начальную точку, что и вектор u и ту же самую конечную точку что и вектор v, как показано на рисунке внизу.

Суммой есть вектор, представленный направленным отрезком из точки A вектора u в конечную точку C вектора v. Таким образом, если u = и v = , тогда
u + v = + =

Мы также можем описать сложение векторов как совместное размещение начальных точек векторов, построением параллелограмма и нахождением диагонали параллелограмма. (на рисунке внизу.) Это сложение иногда называется как правило параллелограмма сложения векторов. Векторное сложение коммутативно. Как показано на рисунке, оба вектора u + v и v + u представлены одним и тем же направленным отрезком.

Если две силы F 1 и F 2 действуют на один объект, результирующая сила есть сумма F 1 + F 2 этих двух отдельных сил.

Пример Две силы в 15 ньютонов и 25 ньютонов действуют на один объект перпендикулярно друг другу. Найдите их сумму, или результирующую силу и угол, которая она образовывает с большей силой.

Решение Нарисуем условие задачи, в этом случае - прямоугольник, используя v или для представления результирующей. Чтобы найти ее величину, используем теорему Пифагора:
|v| 2 = 15 2 + 25 2 Здесь |v| обозначает длину или величину v.
|v| = √15 2 + 25 2
|v| ≈ 29,2.
Чтобы найти направление, отметим, что так как OAB есть прямым углом,
tanθ = 15/25 = 0,6.
Используя калькулятор, мы находим θ, угол, который большая сила образует с результирующей силой:
θ = tan - 1 (0,6) ≈ 31°
Результирующая имеет величину 29,2 и угол 31° с большей силой.

Пилоты могут корректировать направление их полёта, если есть боковой ветер. Ветер и скорость самолёта могут быть изображены как веторы.

Пример 3. Скорость самолёта и направление. Самолёт движется по азимуту 100° со скоростью 190 км/час, в то время как скорость ветра 48 км/ч, а его азимут - 220°. Найдите абсолютную скорость самолета и направление его движения с учетом ветра.

Решение Сначала сделаем рисунок. Ветер представлен и вектор скорости самолета есть . Результирующий вектор скорости есть v, сумма двух векторов. Угол θ между v и называется угол сноса .


Обратите внимание, что величина COA = 100° - 40° = 60°. Тогда величина CBA также равна 60° (противоположные углы параллклограмма равны). Так как сумма всех углов параллелограмма равна 360° и COB и OAB имеют одну и ту же величину, каждый должен быть 120°. По правилу косинусов в OAB, мы имеем
|v| 2 = 48 2 + 190 2 - 2.48.190.cos120°
|v| 2 = 47,524
|v| = 218
Тогда, |v| равно 218 км/ч. Согласно правилу синусов , в том же самом треуголнике,
48 /sinθ = 218 /sin120° ,
или
sinθ = 48.sin120°/218 ≈ 0,1907
θ ≈ 11°
Тогда, θ = 11°, к ближайшему целому углу. Абсолютная скорость равна 218 км/ч, и направление его движения с учетом ветра: 100° - 11°, или 89°.

Если нам задан вектор w, мы можем найти два других вектора u и v, сумма которых есть w. Векторы u и v называются компонентами w и процесс их нахождения называется разложением , или представлением вектора его векторными компонентами.

Когда мы раскладываем вектор, обычно мы ищем перпендикулярные компоненты. Очень часто, однако, одна компонента будет параллельной оси x, и другая будет параллельна оси y. Поэтому, они часто называются горизонтальными и вертикальными компонентами вектора. На рисунке внизу вектор w = разложен как сумма u = и v = .

Горизонтальная компонента w есть u и вертикальная компонента - v.

Пример 4 Вектор w имеет величину 130 и наклон 40° относительно горизонтали. Разложите вектор на горизонтальные и вертикальные компоненты.

Решение Сначала мы нарисуем рисунок с горизонтальными и вертикальными векторами u и v, чья сумма есть w.

Из ABC, мы находим |u| и |v|, используя определения косинуса и синуса:
cos40° = |u|/130, или |u| = 130.cos40° ≈ 100,
sin40° = |v|/130, или |v| = 130.sin40° ≈ 84.
Тогда, горизонтальная компонента w есть 100 направо и вертикальная компонента w есть 84 вверх.

Задания для контрольной работы

Задание 1 - 10. Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Даны векторы ε 1 (3;1;6), ε 2 (-2;2;-3), ε 3 (-4;5;-1), X(3;0;1). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.

Данная задача состоит из двух частей. Сначала необходимо проверить образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.

Вычислим определитель матрицы:

∆ = 3*(2*(-1) - 5*(-3)) - -2*(1*(-1) - 5*6) + -4*(1*(-3) - 2*6) = 37

Определитель матрицы равен ∆ =37

Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α 1 , α 2 , α 3 , что имеет место равенство:

X = α 1 ε 1 + α 2 ε 2 + α 3 ε 3

Запишем данное равенство в координатной форме:

(3;0;1) = α(3;1;6) + α(-2;2;-3) + α(-4;5;-1)

Используя свойства векторов, получим следующее равенство:

(3;0;1) = (3α 1 ;1α 1 ;6α 1 ;) + (-2α 2 ;2α 2 ;-3α 2 ;) + (-4α 3 ;5α 3 ;-1α 3 ;)

(3;0;1) = (3α 1 -2α 2 -4α 3 ;1α 1 + 2α 2 + 5α 3 ;6α 1 -3α 2 -1α 3)

По свойству равенства векторов имеем:

3α 1 -2α 2 -4α 3 = 3

1α 1 + 2α 2 + 5α 3 = 0

6α 1 -3α 2 -1α 3 = 1

Решаем полученную систему уравнений методом Гаусса или методом Крамера .

X = ε 1 + 2ε 2 -ε 3

Решение было получено и оформлено с помощью сервиса:

Координаты вектора в базисе

Вместе с этой задачей решают также:

Решение матричных уравнений

Метод Крамера

Метод Гаусса

Обратная матрица методом Жордано-Гаусса

Обратная матрица через алгебраические дополнения

Умножение матриц онлайн