Пульсирующие звезды высокой светимости называются. Физические переменные звезды

Переменные звезды – это звезды, блеск которых изменяется. У одних переменных звезд блеск изменяется периодически, у других наблюдается беспорядочное изменение блеска. К периодическим переменным звездам относятся, например, затменные переменные звезды, которые, как вы знаете, предоставляют собой двойные системы. Однако, в отличие от них, известны десятки тысяч одиночных звезд, блеск которых меняется вследствие происходящих на них физических процессов. Такие звезды называются физическими переменными. Их открытие и исследование показали, что многообразие звезд проявляется не только в том, что звезды отличаются друг от друга массами, размерами, температурами, светимостями и спектрами, но и в том, что некоторые из этих физических характеристик не остаются неизменными у одних и тех же звезд.

Цефеиды

Цефеиды – это весьма распространенный и очень важный тип физических переменных звезд.

Исследование спектров цефеид показывает, что вблизи максимума блеска фотосферы этих звезд приближаются к нам с наибольшей скоростью, а в близи минимума – с наибольшей скоростью удаляются от нас. Это следует из анализа смещений линий в спектрах цефеид на основе эффекта Доплера.

С движением фотосферы звезды, а значит, и с изменением ее размеров мы встречаемся впервые. В самом деле, у Солнца и других подобных ему звезд размеры практически не меняются. Следовательно, в отличие от таких стационарных звезд, цефеиды – нестационарные звезды. Цефеиды – это пульсирующие звезды, которые периодически раздуваются и сжимаются. В процессе пульсации цефеиды изменяется и температура ее фотосферы. Самую высокую температуру звезда имеет в максимуме блеска.

Между периодом пульсации долгопериодических цефеид и светимостью этих звезд существует зависимость, получившая название “период-светимость” Если из наблюдений известен период изменения блеска цефеиды, то, пользуясь зависимостью “период - светимость”, можно определить ее абсолютную звездную величину, а тогда по формуле легко вычислить расстояние до цефеиды, зная из наблюдений ее видимую звездную величину. Так как цефеиды относятся к звездам-гигантам и сверхгигантам (т.е. тем, которые имеют огромные размеры и светимости), то они видны с больших расстояний. Обнаруживая цефеиды в далеких звездных системах, можно определить расстояние до этих систем.

Цефеиды не принадлежат к числу редко встречающихся звезд. Вероятно, многие звезды на протяжении своей жизни некоторое время бывают цефеидами. Поэтому изучение цефеид важно для понимания эволюции звезд.

Другие физические переменные звезды

Цефеиды – это лишь один из многочисленных типов физических переменных звезд. Первая переменная звезда была открыта в 1596 г. в созвездии Кита (Мира Кита, или Удивительная Кита). Это не цефеида. Ее колебания блеска происходят с периодом около 350 д, причем блеск в максимуме достигает 3 m , а в минимуме 9 m . Впоследствии было открыто много других долгопериодических звезд типа Миры Кита.

Преимущественно это “холодные” звезды – гиганты спектрального класса М. Изменение блеска таких звезд, по-видимому, связанно с пульсацией и периодическими извержениями горячих газов из недр звезды в более высокие слои атмосферы.

Далеко не у всех физических переменных звезд наблюдаются периодические изменения. Известно множество звезд, которые относятся к полуправильным или даже неправильным переменным. У таких звезд трудно или вообще невозможно заметить закономерность в изменении блеска.

ПЕРЕМЕННЫЕ ЗВЕЗДЫ

Что такое переменные звезды?

В отличие от Луны с переменностью ее фазы или планет, движущихся на фоне звезд, сами звезды в античное время считались постоянными и неподвижными, в отличие от суетливой жизни на Земле. Время от времени хроники регистрировали появление "звезды-гостьи", которую бы в наше время назвали "Новой" или "Сверхновой", что свидетельствовало, что и в звездном мире не все так постоянно. Однако, современное представление о различных типах переменных звезд было заложено открытием в 1596г. Фабрициусом звезды, названной "Мира" (т.е. "удивительная") Кита, которая показывала периодичекое появление и исчезновение, а также периодических ослаблений блеска у звезды Алголь (бета Персея), открытых первоначально Монтанари, а потом переоткрытых в 1782 году Джоном Гудрайком и интерпретированных им затмениями одной звезды другой.

"Переменной называется звезда, которая показывает изменение своих характеристик за время ее исследований на заданном уровне точности". Это определение показывает не только факт переменности звезды, но и субъективные условия ее наблюдения. Амплитуда изменения блеска для разных звезд находится в диапазоне от тысячных звездной величины до двадцати звездных величин, а характерное время изменения блеска составляет от долей секунды до тысяч лет. Исходя из современных представлений о структуре звезд, все звезды эволюционируют, меняют свои характеристики со временем. Однако, по "презумпции невиновности", "пока не доказана вина"="не подтверждена переменность", звезда переменной не считается и в Общий каталог переменных звезд (ОКПЗ) не заносится. В настоящее время в ОКПЗ занесено около 43 тысячи переменных звезд, еще примерно впятеро больше содержится в других каталогах (VSX и др.). Однако, пока не будет подтверждены факт и тип их переменности, они считаются "заподозренными в переменности" и не имеют собственного названия.

Причин изменений блеска очень много. Основные группы - это физически переменные звезды (характеристики которых меняются, например, эруптивные и пульсирующие) и геометрически переменные - т.е. системы с несимметричной диаграммой направленности излучения, которые поворачиваются к наблюдателю в результате вращения (затменные двойные системы, незатменные системы с асимметричными компонентами). К последним, относят и звезды, периодически затмеваемые экзопланентами. В этом случае неуместно говорить "затменная двойная звезда", но вполне правильно "затменная двойная система".

Различные причины переменности приводят к различным наблюдательным проявлениям, т.е. кривым блеска (зависимость звездной величины от времени, а для периодических звезд - от фазы). Поэтому была разработана официальная система классификации, принятая в ОКПЗ. В настоящее время в ОКПЗ принято 79 типов и подтипов переменности. Классификация и описание приведены в книге: Н.Н.Самусь "Переменные звезды".

Естественно, с обнаружением новых звезд становятся известными все новые и новые объекты, которые со временем могут стать "прототипами" новых типов. Поэтому часто типы называют по имени звезд (напр., "мирида" = звезда типа Миры Кита, "лирида" = звезда типа RR Лиры, "цефеида" = звезда типа дельта Цефея) или двойственно, например, "карликовая новая" = звезда типа U Близнецов, "поляр" = звезда типа AM Геркулеса, "промежуточный поляр" = звезда типа DQ Геркулеса, "рентгеновский пульсар" = звезда типа HZ Геркулеса, "вспыхивающая" = звезда типа UV Кита и т.д.

Систему классификации ОКПЗ можно сравнить со справочником или учебником - изменения в нее вносятся после того, как в отдельных статьях или группах статей обосновывается необходимость введения новых типов. Например, в очереди на рассмотрение "асинхронные поляры" = звезды типа BY Жирафа, "магнитные карликовые новые" = звезды типа DO Дракона, "импакторы" = звезды типа V361 Лиры и др.

Зачем наблюдать переменные звезды?

Вселенная является лабораторией, в которой происходят все возможные процессы, которые разрешены законами Природы. Не имея возможности проводить эксперименты в космических масштабах, ученые наблюдают планеты, звезды и звездные системы. Такие исследования позволяют не только уточнять имеющиеся физические модели, но и обобщать их при экзотически гигантских расстояниях, давлениях, плотностях, температурах. Список астрономических открытий, которые привели к внедрению в навигацию, науку и технику, огромен. Астрономия, математика и физика и ряд других наук находятся на переднем крае естествознания, взаимно дополняя и обобщая друг друга.

Переменные звезды - одни из наиболее интересных классов космических объектов, которые находятся на активных стадиях эволюции, и потому проявляют действие большего числа физических законов в разных комбинациях.

Их необходимо систематически наблюдать на протяжении десятилетий для того, чтобы изучать историю их поведения. Однако, число переменных звезд значительно превышает количество профессиональных астрономов и тем более количество телескопов. Кроме того, трудно представить столетия наблюдений какого-либо объекта одним из астрономов на одном телескопе.

Таким образом, астрономы-любители вносят реальный и весьма полезный вклад в науку своими визуальными, фотографическими, фотоэлектрическими и ПЗС наблюдениями переменных звезд. Эти данные важны для анализа поведения переменных звезд, планирования наблюдений некоторых звезд с наземных и космических обсерваторий, компьютеризированных теоретических моделей.

Исследование переменных звезд очень важно для исследования характеристик звезд и их эволюции. Часть этой информации было бы трудно или невозможно получить другими методами. Во многих случаях характер переменности (часто состоящей из нескольких компонент) позволяет выбрать между моделями.

Переменные звезды продолжают играть важную роль в нашем понимании Вселенной. Вспышки Сверхновых приводят к обогащению тяжелыми элементами межзвездного пространства, что позволяет образовываться планетам с твердыми оболочками. Вряд ли жизнь могла бы образоваться, если бы в протозвездном облаке не было элементов тяжелее водорода и гелия. Но и взрывы очень близких Сверхновых вблизи Солнечной системы могут катастрофически повлиять на жизнь на Земле. Наблюдения Сверхновых привели нас к осознанию того, что расширение Вселенной ускоряется, а не замедляется, как можно было ожидать.

Новые звезды показывают регулярные вспышки с интервалом от десятков до сотен тысяч лет, что объясняется термоядерными взрывами в их атмосферах по мере накопления падающего на них вещества, богатого водородом. Затменные двойные звезды являются наилучшими лабораториями для определения не только температур, но и масс и радиусов. Цефеиды сыграли важную роль в определении расстояний до далеких галактик и определения возраста Вселенной. Переменные звезды типа Миры Кита дают нам возможность заглянуть в будущее развитие нашей собственной звезды, Солнца. Аккреционные диски катаклизмических переменных помогают нам понять поведение дисков на еще больших масштабах, как и процессы внутри ядер активных галактик с сверхмассивными черными дырами. Даже поиск внеземной жизни связан с исследованием переменных звезд. Транзиты внесолнечных планет помогают понять процессы образования планет и самой жизни. А, как мы знаем, тяжелые химические элементы, необходимые для жизни, возникают при термоядерных реакциях в ядрах звезд.

Что и как наблюдать?

В предыдущих выпусках "Одесского Астрономического Календаря" были приведены карты окрестностей ярких переменных звезд, доступных для любительских наблюдений в бинокль или небольшой телескоп. Методы их визуальных и фотографических наблюдений были описаны в классических книгах Владимира Платоновича Цесевича "Что и как наблюдать на небе" и "Переменные звезды и их наблюдение". В последние годы увеличилось количество личных обсерваторий, оснащенных телескопами с диаметром зеркала 15-40 см и ПЗС матрицами, что позволяет наблюдать слабые объекты. Для обработки таких изображений различными авторами разработано несколько программ, которые работают под операционными системами Linux (IRAF, MIDAS и др.) и Windows (бесплатные MuniPack, WinFits, IRIS, популярная коммерческая MaximDL и др.). Методика таких наблюдений описана в книге: А.В.Миронов "Прецизионная фотометрия".

Результаты наблюдений представляют ценность для астрономического сообщества, когда они правильно и тщательно обработаны, и приведены в формате, принятым в том или ином сообществе. По терминологии, астрономы делятся на профессионалов (которые работают в специальных учреждениях и получают за научную работу зарплату) и любителей (которые зарабатывают другими видами деятельности, но занимаются астрономией "по любви" в свободное от работы время). Есть еще одно слово "дилетант", которое свидетельствует о низком уровне подготовки или малом опыте, и оно может относиться и к некоторым любителям, и к некоторым профессионалам. Популяризаторская деятельность ставит своей целью инициировать переход от дилетантов к любителям, а от них и к профессионалам. В данной статье мы рассматриваем возможные направления деятельности любителей, которые могут принести реальный вклад в науку.

Для публикации патрульных визуальных (и реже фотографических или ПЗС) наблюдений используется стандартный формат - время в Юлианских датах (инструкция и таблица приведены в предыдущих выпусках ОАК), звездная величина и трехбуквенный код наблюдателя (напр., VER= Michel Verdenet, Франция). Таблицы таких измерений блеска для каждой из звезд присылают в базы данных ассоциаций наблюдателей переменных звезд. Ассоциации созданы практически во всех развитых странах, однако, с учетом роста международной кооперации, идет тенденция использования международных баз данных, объединяющих результаты наблюдений из многих стран.

Наибольшей в мире является American Association of Variable Stars Observers (AAVSO, Американская ассоциация наблюдателей переменных звезд), в которой насчитывается в настоящее время более 22 миллионов индивидуальных оценок блеска около 10 тысяч переменных звезд разных типов, и это число увеличивается в последнее время примерно на полмиллиона в год. Отметим, что в 2011 году AAVSO отпраздновали свой 100-летний юбилей, и мы поздравляем коллег с этим знаменательным событием.

Согласно недавнему рейтингу AAVSO, украинские наблюдатели занимали 11-е место по количеству наблюдений, присланных в международную базу данных этой общественной организации. О важности таких наблюдений для профессиональной науки свидетельствует тот факт, что в США данная база данных находится в знаменитом Гарвардском университете. Аналогичные базы данных в других странах также помещаются на университетские интернет-серверы (Страсбург, Франция; Киото, Япония; Брно, Чехия и др.).

Весьма важными являются "новые наблюдения" на основании "старых фотонегативов". Новооткрытую звезду можно исследовать и "в прошлом", используя полученные ранее патрульные наблюдения. Наибольшая по численности в СНГ (и третья в мире) коллекция, насчитывающая более 100 тысяч негативов, хранится в "Стеклотеке" Астрономической обсерватории Одесского национального университета, и используется профессионалами и любителями, в том числе, по проекту "Украинская виртуальная обсерватория". Великолепная коллекция негативов с существенно более слабыми звездами (и соответственно, меньшим полем зрения) получена в Государственном астрономическом институте им. П.К.Штернберга при Московском государственном университете.

Другое важное направление, которое основано на результатах обработки исходных наблюдений - это моменты минимумов затменных двойных звезд или максимумов пульсирующих. Такое различие связано с тем, что в максимуме блеска звезда ярче, и большее число звезд доступно для наблюдений с одним и тем же инструментом. Кроме того, для большинства звезд, максимумы более узкие, чем минимумы, поэтому требуют меньшую продолжительность наблюдений и определяются с лучшей точностью. Для затменных звойных звезд, наоборот, более узкими и явно выраженными являются именно затмения. Для определения используются несколько методов. Один из них, использующий аппроксимацию кривой блеска полиномом с выбором статистически оптимальной степени, реализован в программе VSCalc (автор В.В.Бреус).

Разные экстремумы используются и для весьма популярных исследований промежуточных поляров - определение максимумов более быстрых колебаний блеска, связанных с вращением магнитного белого карлика, но минимумов орбитальной переменности, которые обычно связаны с полными или частными затмениями. Для определения сглаживающей кривой с использованием мультипериодической мультигармонической аппроксимации с учетом полиномиального тренда, рекомендуем использовать программу MCV (авторы И.Л.Андронов и А.В.Бакланов).

Использование экстремумов позволяет проводить исследования так называемых "O-C" диаграмм - зависимостей от времени или номера цикла отклонений моментов экстремумов от теоретически предсказанных значений (напр., по простейшей формуле T E =T 0 +P . E, где T E - теоретический момент времени, соответствующий номеру цикла E, P- период и T 0 - начальная эпоха). Проводя математическое моделирование этой наблюдательной зависимости, можно уточнять значения периода и начальной эпохи, исследовать возможные "вековые" изменения периода (связанные в двойных системах с перетеканием вещества, магнитным или немагнитным звездным ветром, гравитационным излучением, в пульсирующих с медленным изменением структуры звезды) или периодические, связанные с наличием в системе третьего (и более) компонента. Существует несколько электронных баз данных моментов экстремумов, созданных в различных организациях - B.R.N.O., BAV, BBSAG, AAVSO, GEOS и др. Наиболее полные результаты исследований в бумажном виде были опубликованы 6-томной монографии (авторы Й.Крейнер (Польша), И.С.Нха, Ч.Х.Ким (Корея)). Однако, в последующее десятилетие основными стали электронные публикации.

Хотя составители стараются использовать всю доступную литературу, некоторые различия все же есть. Если Вы заинтересовались определением моментов экстремумов, то желательно посылать эти данные либо самостоятельно в журнал в соответствии с правилами для авторов (один из последних примеров такой компиляции в журнале "Open European Journal on Variable Stars" N 137), либо в одну или несколько из указанных баз данных, чтобы войти в очередную регулярную статью - отчет.

Как и в случае публикации исходных наблюдений, сравнительно редко можно сделать открытие на основании небольшого числа собственных данных.

Моменты экстремумов вместо оригинальных наблюдений имеют некоторые преимущества - компактность (вместо десятков наблюдений блеска одно значение) и подготовка предварительных значений для последующего анализа. Однако, развитие компьютерных методов математического моделирования с использованием различных алгоритмов позволило бы переобработать наблюдательные данные другим исследователям, поэтому таблица значений блеска была бы желательна.

Таким образом, есть широкая возможность выбора типа наблюдений - патрульные (одна оценка блеска для долгопериодических звезд, напр. мирид, полуправильных, цефеид, когда за всю ночь или за вечер можно сделать оценки блеска нескольких единиц или десятков звезд), или временные ряды (одна или несколько звезд в ночь с продолжительностью ряда от нескольких часов до всей ночи). Последнее стало весьма популярным, поскольку не требует наведения телескопа на разные объекты. Такой тип наблюдений требуют короткопериодические объекты - катаклизмические двойные звезды (классические и промежуточные поляры, карликовые новые, новоподобные) - желательно несколько ночей наблюдений за сезон, затменные звезды, а также мультипериодические пульсирующие переменные звезды типа RR Лиры с эффектом Блажко и типа Дельта Щита.

Конечно, к наблюдениям следует готовиться. Посмотреть, какие из заинтересовавших Вас звезд будут ночью достаточно высоко над горизонтом, чтобы атмосферное поглощение не поглощало значительную часть света. Некоторые исследователи стараются не наблюдать, когда звезда ниже 30 градусов над горизонтом. "Охотникам за экстремумами" следует рассчитать эфемериды - т.е. теоретические значения моментов времени, вблизи которых выбрать интервал времени наблюдений (чтобы охватить восходящую и нисходящую части кривой блеска если не полностью, то хотя бы частично). Кроме того, моменты времени "по эфемериде" приведены на центр Солнца (гелиоцентрические) или центр Солнечной системы (барицентрические), но мы наблюдаем на Земле (время геоцентрическое), поэтому сигнал может наблюдаться раньше или позже из-за того, что свет проходит расстояние, равное радиусу земной орбиты, за 8 минут 18 секунд. Более подробно об этом эффекте "гелиоцентрической поправки" можно прочитать в литературе, а вычислить, например, при помощи программы MCV.

Поскольку предполагается, что возможны изменения периодов, то наблюдаемый момент может быть смещен относительно вычисленного. Поэтому интервал времени наблюдений не должен быть слишком узким. Если объектов несколько, то распределить время на соответствующие интервалы. Для катаклизмических и мультипериодических звезд используется кривая блеска, поэтому желательно наблюдать все доступное время.

Что именно наблюдать в ближайшие ночи, зависит от пристрастий исследователя, времени года, широты места наблюдения и координат звезды, ее блеска, амплитуды и точности измерений. По приведенным ниже интернет-ссылкам можно найти списки и карты окрестностей объектов, предлагаемых различными организациями - затменных двойных, промежуточных поляров, пульсирующих и других переменных звезд.

Среди множества объектов, обнаруженных в мире, выделяется группа новых переменных, которую открыла в Одессе студентка (ныне аспирантка) Наталья Вирнина. За 2 года по ее собственным наблюдениям с использованием ПЗС-матрицы она открыла более 60 новых периодических (затменных и пульсирующих) переменных звезд. 32 из них представлены в статье, приведенной в списке интернет-ссылок. Хотя основные характеристики уже определены, новые наблюдения в различных фильтрах были бы полезны как для уточнения периода и начальной эпохи, так и для определения температур по показателям цвета.

Как оформлять и где публиковать результаты?

Публикации о переменных звездах можно разделить на несколько категорий - аналитические статьи, содержащие разностороннее исследование; сообщения об открытиях, содержащие необходимый минимум информации; сообщения об открытии непериодических интересных событий в известных звездах; таблицы экстремумов блеска; таблицы индивидуальных значений блеска и, возможно, других характеристик. Наиболее сложными являются аналитические статьи, однако, они невозможны без получения исходных наблюдений. Поэтому каждая из этих категорий по-своему важна и привлекает своих авторов.

"Законодателями мод" в наименовании и классификации переменных звезд является группа, занимающаяся по поручению Международного Астрономического Союза разработкой "Общего каталога переменных звезд" (ОКПЗ=GCVS, General Catalogue of Variable Stars). После Победы в Великой отечественной войне, это право было передано в Советский Союз, и авторский коллектив работает в Москве на базе Государственного астрономического института им. П.К.Штернберга (Московский государственный университет) и Астрономического института Российской академии наук. Почти 30 лет работой руководит доктор физико-математических наук Николай Николаевич Самусь.

Кроме того, издаются журналы "Переменные звезды" (ПЗ) и "Переменные звезды. Приложение" (ПЗП), в которых могут быть опубликованы важные научные результаты не только профессионалов, но и любителей.

Естественно, что каждый журнал предлагает "свои правила для авторов", однако, существуют минимальные требования по характеристикам звезды или звезд, которые обязательно должны войти в статью. С учетом колоссального количества объектов, была разработана электронная форма, в которой авторы заполняют необходимые поля, и после этого текст статьи создается автоматически. Для журнала "Переменные звезды. Приложение", это: название заметки,имена и фамилии авторов, страна, город, организация, официальное название переменной звезды по ОКПЗ или по NVS (Каталог звезд, заподозренных в переменности), а также названия по другим каталогам, координаты, тип переменности, пределы изменения блеска (максимум и минимум) и фотометрическая система, для периодических звезд - период и начальная эпоха (минимум блеска затменных и максимум блеска пульсирующих), графические файлы с изображением кривой блеска и окрестностей звезды и соответствующие подписи, файл с таблицей наблюдений, замечания и комментарии в произвольной форме, ссылки на другие публикации. Аналогичные правила и для публикаций статей о переменных звездах в других журналах, однако, эта необходимая информация приводится в структурированном тексте самой статьи, а таблицы наблюдений все чаще публикуются отдельно в виде файлов - приложений, а не тексте статьи.

Последнее "бумажное" издание ОКПЗ вышло в 1985-1987гг., и к нему регулярно публикуются дополнения в журнале "Information Bulletin on Variable Stars" ("Информационный бюллетень по переменным звездам", Будапешт, Венгрия), который является официальным изданием Международного астрономического союза. В последние годы этот бюллетень (обычно объемом до 2 или 4 страниц) принимает результаты исследований переменных звезд, полученных только по высокоточным ПЗС или фотоэлектрическим наблюдениям, однако, не принимаются более статьи на основе фотографических или визуальных оценок блеска. Краткие сообщения об открытиях новых переменных звезд группируются в каждый сотый номер с указанием авторов только внутри сообщения. Несмотря на сжатый научный характер информации, это издание "отпугивает" любителей малодоступностью информации о самих авторах открытий.

Существуют еще множество журналов в разных странах (Journal of the AAVSO (США); Journal of the British Astronomical Association, The Astronomer (Великобритания); Bulletin de l"AFOEV (Франция); BAV Rundbrief (Германия); BBSAG (Швейцария); GEOS (Италия)) и др., которые публикуют результаты наблюдений переменных звезд и иногда других астрономических объектов.

Для того, чтобы попытаться объединить любителей и профессионалов, несколько лет назад был организован международный "Open European Journal on Variable Stars" ("Открытый европейский журнал о переменных звездах"), официально зарегистрированный в Чехии. Журнал публикует на английском языке результаты ПЗС, фотоэлектрических и реже фотографических наблюдений переменных звезд. Статьи рецензируются 7 членами редколлегии, и статья публикуется (часто после доработки и учета замечаний рецензентов) при наличии более 70% голосов. В журнале обычно публикуются более подробные исследования звезд, чем в других журналах. Члены редколлегии представляют не только европейские страны (Чехия, Словакия, Швейцария, Италия, Германия, Украина), но и США. А публикуют свои результаты также ученые Кореи, США, Аргентины, Австралии и других неевропейских стран.

Однако, самыми быстрыми по скорости публикаций являются электронные циркуляры, рассылаемые некоторыми обществами. Наиболее используемыми являются циркуляры IAU, AAVSO, CBA (США), а особенно японский "VSNET" ("Сеть переменных звезд"), который подразделяется на более десятка циркуляров по интересом (chat - обсуждение; alert - срочное сообщение; campaign-dn - кампании по карликовым новым, campaign-ip - кампании по промежуточным полярам, obs - таблицы наблюдений и т.д.). Особенностью электронных циркуляров является скорость - они доходят до подписчиков за несколько секунд, со скоростью электронной почты. Однако, лишь некоторые из циркуляров оформлены в виде статей. В основном, они содержат краткие сообщения об открытиях непериодических явлений в уже известных звездах (вспышки, ослабления блеска, возникновение и прекращение временных квазипериодических или периодических изменений), и, существенно реже, открытиях новых переменных звезд. Такие сообщения информируют других потенциальных наблюдателей, которые могут своевременно корректировать программу своих наблюдений и продолжать наблюдения на разных долготах.

Во избежание недоброкачественных рассылок посторонними авторами, письма от авторов посылаются одному из "членов редколлегии", который может отредактировать и послать сообщение от своего имени с указанием автора наблюдений или открытий. Наиболее активным участникам дается право самим посылать свои сообщения для срочности. Это наиболее быстрый способ общения, поскольку информация об открытии (новой переменной звезды, вспышки, изменения характера переменности, появление и исчезновение сверхгорбов) доходит до адресатов практически мгновенно, и каждый наблюдатель может принять для себя решение о том, наблюдать ли ему ранее запланированные звезды или навести свой телескоп на звезду, именно сегодня (и, может быть, в несколько последующих ночей) показывающую интересное поведение.

Следует отметить, что такие сообщения от любителей используют и профессионалы. Есть специальный термин "target of opportunity" ("цель от события") при наблюдениях на больших наземных телескопах или даже космических телескопах. При получении наблюдательного времени, есть только некоторая вероятность, что произойдет в звезде то или иное событие (напр., вспышка). Поэтому заявка подается на несколько потенциально интересных объектов. А вот на какой из них наводить телескоп - зависит от состояния объекта. Поэтому профессионалы направляют информацию в электронные циркуляры, доступные любителям с хорошими телескопами. Обычно ее называют "Call for observations" ("приглашение к наблюдениям"), где описывают, чем та или иная звезда интересна, и приглашают сообщать срочно в случае обнаружения начала вспышки и присылать наблюдения в последующем.

Как уже отмечалось, звезда получает официальное название, как переменная, только после занесения в "Общий каталог переменных звезд". Для более быстрого централизованного обозначения, активно используется "Variable Stars indeX".

Наличие нескольких взаимодополняющих журналов способствует свободе выбора и созданию "индивидуальности" каждого из них. Еще раз отметим, что при публикации следует придерживаться как правил журнала, так и достижения необходимого минимума информации. Например, при открытии следует указывать хотя бы необходимо минимальные параметры, которые вносятся в "Общий каталог переменных звезд" - координаты; пределы изменения блеска с указанием фотометрической системы; тип переменности; для периодических звезд - период и начальную эпоху (максимум для пульсирующих звезд и минимум для затменных), асимметрию M-m для пульсирующих звезд (отношение интервала времени от минимума до ближайшего максимума к периоду в процентах) или ширину минимума D для затменных двойных звезд (отношение продолжительности минимума к периоду в процентах). Именно такой стиль характерен для журнала "Переменные звезды. Приложение" и каждого сотого номера "Information Bulletin on Variable Stars".

Более полезным для других авторов, которые, возможно, захотят использовать опубликованные данные с своими собственными, является стиль добавления карты окрестностей с указанием звезд сравнения, их характеристик (координаты, названия по каталогам, блеск в разных фотометрических системах), а также таблиц исходных наблюдений. В былые времена таблицы значений блеска публиковали в печатном виде в журналах. В последние пару десятилетий большинство журналов переходит на смешанную "бумажно-электронную" форму, полностью публикуя статьи в электронном виде и распечатывая лишь небольшой тираж, а приложения (таблицы наблюдений и их результатов) публикуя лишь в электронном виде. Такой подход позволяет публиковать очень длинные таблицы. Но, если кому-то надо их использовать (например, чтобы применить другой метод математической обработки), то удобнее использовать готовый файл, чем сканировать и распознавать цифры из напечатанного журнала. Такой стиль используется в наиболее престижных журналах "The Astrophysical Journal", "Astronomy and Astrophysics" и др. а также, в специализированных журналах по переменным звездам IBVS и особенно OEJV.

pochta. ru/ Gamow-2010-175-177- Virnina. pdf - статья с характеристиками 32 новых переменных звезд, которые открыла в Одессе, которые желательно продолжать наблюдать.

http:// asd. gsfc. nasa. gov/ Koji. Mukai/ iphome/ - сайт по промежуточным полярам

ftp://ftp.aavso.org/public/calib/ - многоцветные BVRI стандарты звездных полей Arne Henden

> Переменные звезды

Рассмотрите переменные звезды : описание звездного класса, почему умеют менять яркость, длительность изменения величины, колебания Солнца, типы переменных.

Переменной называют звезду , если она способна менять яркость. То есть, ее видимая величина по какой-то причине периодически меняется для земного наблюдателя. Подобные изменения могут занимать годы, а порой всего секунды и граничат между 1/1000-й величины и 20-й.

Среди представителей переменных звезд в каталоги попало более 100000 небесных тел и еще тысячи выступают подозрительными переменными. также является переменной, чья светимость колеблется на 1/1000-ю величину, а период охватывает 11 лет.

История переменных звезд

История изучения переменных звезд начинается с Омикрона Кита (Мира). Дэвид Фабриций описал ее в качестве новой в 1596 году. В 1638 году Йоханнес Хогвальдс заметил ее пульсацию в течение 11 месяцев. Это стало ценным открытием, так как подсказывало, что звезды не выступают чем-то вечным (как утверждал Аристотель). Сверхновые и переменные помогли перешагнуть в новую эру астрономии.

После этого только за один век удалось отыскать 4 переменные типа Мира. Оказалось, что о них знали до появления в записях западного мира. Например, трое числилось в документах Древнего Китая и Кореи.

В 1669 году нашли переменную затмевающую звезду Алголь, хотя ее изменчивость сумел объяснить только Джон Гудрик в 1784 году. Третья – Хи Лебедя, найденная в 1686 и 1704 годах. За следующие 80 лет нашли еще 7.

С 1850 года начинается бум на поиски переменных, потому что активно развивается фотография. Чтобы вы понимали, с 2008 года только в насчитывали больше 46000 переменных.

Характеристика и состав переменных звезд

У изменчивости есть причины. Это касается изменения светимости или массы, а также некоторых препятствий, мешающих свету поступать к . Поэтому выделяют типы переменных звезд. Пульсирующие переменные звезды раздуваются и сжимаются. Двойные затменные теряют яркость, когда одна из них перекрывает вторую. Некоторые переменные представляют две близко расположенных звезды, обменивающиеся массой.

Можно выделить два главных типа переменных звезд. Есть внутренние переменные – их яркость меняется из-за пульсации, смены размера или извержения. А есть внешние – причина кроется в затмении, возникающем из-за обоюдного вращения.

Внутренние переменные звезды

Цефеиды – невероятно яркие звезды, превышающие солнечную светимость в 500-300000 раз. Периодичность – 1-100 дней. Это пульсирующий тип, способный резко расширяться и сокращаться за короткий срок. Это ценные объекты, так как с их помощью отмеряют дистанции к другим небесным телам и формированиям.

Среди других пульсирующих переменных можно вспомнить RR Лиры, у которой период намного короче, и она старше. Есть RV тельца – сверхгиганты с заметным колебанием. Если мы смотрим на звезды с длинным периодом, то это объекты типа Мира – холодные красные сверхгиганты. Полурегулярные – красные гиганты или сверхгиганты, чья периодичность занимает 30-1000 дней. Одна их наиболее популярных – .

Не забывайте про переменную цефеиды V1, которая отметилась в истории изучения Вселенной. Именно с ее помощью Эдвин Хаббл понял, что туманность, в которой она располагалась, это галактика. А значит, пространство не ограничивается Млечным Путем.

Катаклизматические переменные («взрывные») светятся из-за резких или очень мощных вспышек, создаваемых термоядерными процессами. Среди них присутствуют новые, сверхновые и карликовые новые.

Сверхновые – отличаются динамичностью. Количество извергаемой энергии порой превосходит возможности целой галактики. Могут разрастаться до величины 20, становясь в 100 миллионов раз ярче. Чаще всего, образуются в момент смерти массивной звезды, хотя после этого может остаться ядро (нейтронная звезда) или же сформироваться планетарная туманность.

Например, V1280 Скорпиона достигла максимальной яркости в 2007 году. За последние 70 лет ярчайшей была Новая Лебедя. Поразила всех также V603 Орла, взорвавшаяся в 1901 году. В течение 1918 года она не уступала по яркости .

Карликовые новые – двойные белые звезды, переносящие массу, из-за чего производят регулярные вспышки. Есть симбиотические переменные – близкие двойные системы, в которых фигурирует красный гигант и горячая голубая звезда.

Извержения заметны на эруптивных переменных, способных взаимодействовать с другими веществами. Здесь очень много подтипов: вспыхивающие, сверхгиганты, протозвезды, переменные Ориона. Некоторые из них выступают бинарными системами.

Внешние переменные звезды

К затменным относятся звезды, которые периодически перекрывают свет друг друга в наблюдении. У каждой из них могут быть свои планеты, повторяющие механизм затмения, происходящий в . Таким объектом является Алголь. Аппарату Кеплер НАСА удалось отыскать более 2600 затменных двойных звезд во время миссии.

Вращающиеся – это переменные, демонстрирующие небольшие колебания в свете, создаваемые поверхностными пятнами. Очень часто это двойные системы, сформированные в виде эллипсов, что вызывает изменения яркости во время движения.

Пульсары – вращающиеся нейтронные звезды, вырабатывающие электромагнитное излучение, которое можно заметить только в случае, если оно направлено на нас. Световые интервалы можно измерить и отследить, потому что они точные. Очень часто их называют космическими маяками. Если пульсар вращается очень быстро, то теряет огромное количество массы за секунду. Их именуют миллисекундными пульсарами. Наиболее быстрый представитель способен за минуту совершить 43000 оборотов. Их скорость объясняется гравитационной связью с обычными звездами. Во время подобного контакта газ от обычной переходит к пульсару, ускоряя вращение.

Будущие исследования переменных звезд

Важно понимать, что эти небесные тела чрезвычайно полезны астрономам, так как позволяют разобраться в радиусах, массе, температуре и видимости других звезд. Кроме того, они помогают проникнуть в состав и изучить эволюционный путь. Но их изучение – кропотливый и длительный процесс, для которого используют не только специальные приборы, но и любительские телескопы.

Оценка 1 Оценка 2 Оценка 3 Оценка 4 Оценка 5

Переменная звезда - та, блеск (яркость) которой меняется со временем из-за физических процессов внутри или около звезды. Эту истинную переменность звезд стоит отличать от их мерцания и другой переменности, вызванной непостоянством земной атмосферы.

Но при наблюдениях с Земли не так-то просто отделить собственные колебания яркости звезды от вызванных влиянием атмосферы. Поэтому точность фотометрии, т. е. измерений потока излучения от звезд, до 1990-х годов была невысока: не лучше 0,1 m (звездной величины). И число переменных звезд не превышало 30000.

Космические телескопы, и прежде всего телескоп Hipparcos, к концу XX века совершили революцию в исследовании переменности звезд: фотометрия миллионов звезд с точностью лучше 0,01" показала, что почти все звезды в той или иной мере являются переменными. Например, наше Солнце меняет яркость примерно на 0,001m в течение 11-летнего солнечного цикла. Но мы, как и астрономы-профессионалы, для удобства будем рассматривать как переменные только звезды с существенной амплитудой переменности. Сведения о них собираются и систематизируются в Общем каталоге переменных звезд (ОКПЗ) Государственным астрономическим институтом им. П. К. Штернберга (ГАИШ) в Москве.

Переменные звезды долгое время обозначались одной или двумя большими латинскими буквами
перед названием созвездия, например, BW Cam - переменная в созвездии Жирафа. А когда такие сочетания букв были исчерпаны, их стали обозначать большой буквой V (от слова variable - «переменная») с последующим номером, например, V838 Моn - переменная в созвездии Единорога.

Все переменные звезды с заметной амплитудой колебаний яркости можно разделить на четыре большие категории. Здесь причина переменности наблюдаемого нами потока излучения - частичные или полные затмения одной звезды в паре другой звездой. Вторая категория - пульсирующие переменные звезды. К ним, кстати, относится большинство известных ныне переменных звезд с существенной амплитудой. Здесь причина переменности - пульсации звезды, т. е. изменения ее размера, плотности, яркости, цвета, температуры, спектра и других характеристик. Причины пульсаций различны, но все они вытекают из физических свойств вещества звезды. Третья категория - эруптивные, т.е. взрывающиеся, или вспыхивающие, переменные звезды. Это нестабильные звезды, как правило, на грани перехода с одной стадии эволюции на другую. Четвертая категория - вращающиеся переменные звезды с неодинаковой яркостью поверхности. Можно сказать, что это звезды с пятнами или полосами разной яркости. К ним относится и Солнце, но его пятна ничтожны по сравнению с гигантскими пятнами некоторых звезд.

Затменно-переменные звезды

Угасания звезды Алголь (Ветта Персея) были замечены еще в древности, а объяснены в 1783 году Джоном Гудрайком. Примерно каждые 69 часов звезда на 10 часов меркнет - это видно невооруженным глазом. Поэтому Алголь - в таблице переменных звезд в Практикуме № 40. За «подмигиванием» звезды скрывается тесная пара «вальсирующих» Алголя, в которой одна периодически заслоняет другую. Конечно, мы наблюдаем затмения в этой паре только потому, что обе звезды и Земля находятся примерно на одной прямой (отклонение меньше 8°). И это значит, что вообще-то в паре Алголя затмения не полные: как Луна на нашем небе иногда частично заслоняет Солнце, так и здесь одна звезда частично заслоняет другую - частные затмения. При этом общий свет двух звезд пары гаснет на 1,З m. Если бы плоскость орбиты звезд наклонилась к линии «звезда-Земля» на 27°, то затмения нами не наблюдались бы, и Алголь не считался бы переменной звездой. А если бы угол сократился до 3°, затмения стали бы полными, и тогда мы увидели бы гораздо более глубокие угасания Алголя - более чем на З m (т. е. на полчаса Алголь становился бы не виден глазу). По старинным летописям астрономы выяснили, что такое бывало. Как медленно покачивается из стороны в сторону ось быстро вращающегося волчка, так и плоскость орбиты Алголя поворачивается с периодом около 20 ООО лет. В начале нашей эры Алголь не был переменной звездой. Вот почему его «подмигивания», хорошо заметные глазу, не упоминают древние астрономы Гиппарх и Птолемей, хотя они изучили небо при составлении своих звездных каталогов. С 161 по 1482 год нашей эры затмения были, как и сейчас, частичными. А в 1482-1768 годах - полными. Что и привлекло внимание Джона Гудрайка и других астрономов XVIII века. Частичные затмения продолжатся до 3044 года.

Пульсирующие переменные звезды

Звезда б Цефея и ей подобные пульсируют: то раздуваются и, соответственно, охлаждаются и тускнеют, то сжимаются, нагреваются и становятся ярче. Кстати, это напоминает работу автомобильного двигателя: недра звезды выступают в роли горючего, а оболочка - в роли поршня. Горючее превращается в газ, давление которого толкает поршень. Как и в двигателе, процесс имеет несколько этапов. В общем случае энергия звезды, рвущаяся к поверхности из глубин, в неком слое на промежуточной глубине расходуется на распад молекул на атомы или на ионизацию вещества - то есть накапливается в этом слое и до поверхности не доходит. Когда все вещество в упомянутом слое превратится в атомы или ионизируется, энергия глубин больше не задерживается в нем, прорывается к внешним слоям звезды и идет на ее расширение. Расширение оболочки охлаждает и особый слой, где запасалась энергия. Фактически краткое время, пока звезда имеет максимальный размер и яркость, она выпускает в космическое пространство энергию, запасенную в этом особом слое. Он остывает: атомы соединяются в молекулы, или ионы - в атомы. Остывшая звезда сжимается под воздействием притяжения собственных частиц, и цикл повторяется. Помним, что любая звезда находится в равновесии двух сил: взаимного притяжения собственных частиц и давления горячего вещества из глубин. Пульсации - по сути, борьба этих сил, идущая с переменным успехом.

Ближайшая к Земле цефеида, звезда типа Цефея - Полярная звезда. К тому же она является тройной системой. Близкая звезда-спутник летает вокруг центральной звезды с периодом около 30 лет. Но, кроме одного наблюдения, выполненного телескопом «Хаббл», Полярная и ее звезда-спутник всегда наблюдались совместно, а орбитальные характеристики вычислялись по изменениям их общей яркости. Однако все осложняется тем, что Полярная меняет яркость из-за пульсаций, да еще и имеет некие странные долгопериодические изменения яркости: за XX век амплитуда ее переменности уменьшилась с 8 % почти до нуля (в XXI веке Полярная почти не пульсирует!) при том, что в среднем за последний век она стала ярче на 15 %. Выходит, главные открытия по физике Полярной звезды и всех цефеид еще впереди. И хотя Полярная не отмечена в Практикуме № 40, но поглядывайте на нее - вдруг явно вспыхнет или погаснет у вас на глазах. Кстати, как Полярная, многие пульсирующие звезды с гигантскими оболочками пульсируют неправильно. Отсюда - большое разнообразие непериодических и полупериодических гигантов.

Звезды производят алмазы. И об их добыче уже можно задуматься, потому что эти драгоценности интенсивно рассеиваются звездами в пространство вместе с остальной пылью. Особенно интенсивно пыль, газ, включая молекулы и органические вещества, теряют сильно раздувшиеся звезды-гиганты и сверхгиганты. На периферии их прохладных оболочек притяжение звезды столь мало, что частицы вещества запросто покидают звезду Напоминаем, что такая звезда в итоге должна сбросить свою оболочку в виде планетарной туманности и стать белым карликом. Поэтому звезды на грани такого превращения исключительно интересны: они особенно сильно пульсируют и меняют яркость с большой амплитудой; являются самыми красными, даже невероятно красно-бордовыми из-за сильного поглощения света запыленной оболочкой; в спектре демонстрируют удивительные вещества оболочки, например, фуллерены, кристаллы из 60 и более атомов углерода; и обречены пребывать в этом состоянии столь недолго, что можно дождаться радикальных изменений у нас на глазах. Для десятка таких звезд астрономы ждут вспышки и сброса оболочки уже в этом столетии!

Звезда Омикрон Кита каждые 332 дня появляется на небе среди ярчайших звезд (звездная величина 2 m), а затем исчезает для глаза (10 m, в телескоп «Галилей-200» видна на пределе). Астроном Давид Фабрициус в 1596 году назвал ее Mira, что по-латински значит «удивительная». Астрономы удивлялись ей до XXI века! Для объяснения переменности Миры и ей подобных звезд (они называются мириды), вроде бы не годились оба механизма: затмевающий спутник у нее не наблюдался, а чтобы объяснить столь невиданные перепады яркости, нужны пульсации в сотни раз. Представьте, что Солнце каждый год то раздувалось бы на половину Солнечной системы, то сжималось бы до своего нынешнего размера. Звезде просто неоткуда взять столько энергии, да и вряд ли она пережила бы такие пульсации!

Ситуация стала проясняться, когда обнаружился очень тусклый спутник Миры - белый карлик. Но он расположен так далеко от основной звезды, что напрямую не может влиять на нее. В 2007 году ультрафиолетовый телескоп GALEX обнаружил, что Мира летит в пространстве с огромной скоростью более 100 км/с и оставляет позади себя исполинский хвост газа и пыли длиной в 13 световых лет. Этот хвост дотягивается не только до спутника звезды, но и до соседних звезд. Пришлось пересмотреть и потери вещества: Мира каждый год теряет массу, равную массе Луны. В этом потоке много черной сажи - углерода и его соединений. Ну в точности - дымящий паровоз на полном ходу! А звезда-спутник Миры, «вагончик паровоза», собирает часть этой копоти на себя. Настолько много, что слой копоти на «вагончике» во много раз превышает вес самого вагончика и, кстати, делает его еще менее заметным: искали его 200 лет. В результате, спутник Миры, летая вокруг нее, управляет потоком ее вещества: пропускает или задерживает и, таким образом, проявляет или заволакивает Миру. Когда проявляет - ее звездная величина взлетает до 2m. Кстати, сажа, графит и алмаз - это все один и тот же углерод. Алмазы, кристаллизующиеся в ядре Миры, можно поискать в дыму этого «космического паровоза». Похожую роль выполняет и невидимый пока спутник звезды R Скульптора (рис. 5): теряемое звездой вещество он превращает в видимую нами спираль.

Световое эхо

RS Кормы (RS Pup) - цефеида, меняющая яркость в 5 раз с периодом 41,4 дня. При взгляде на ее окрестности кажется, что от нее разлетаются облака газа (рис. 6). На самом деле в разных фазах пульсации звезды ею по-разному подсвечиваются окружающие ее неподвижные облака пыли. Они состоят из нескольких слоев и поэтому выглядят как светящиеся кольца вокруг звезды. Суть возникающего здесь эффекта светового эха состоит в том, что наблюдатель видит свет звезды, пришедший к нему разными путями: напрямую и отразившись от разных участков пылевого облака. Для большого облака (как в случае RS Кормы) роль играет скорость света: свет, отраженный близкой к звезде частью облака, приходит к нам заметно позже, чем напрямую. А свет, отраженный далекой частью облака, приходит еще позже. Из-за этого далекие от звезды части облака «загораются» для нас позже, и, таким образом, возникает видимость распространяющихся светлых колец. Особенно впечатляюще световое эхо звезды V838 Единорога.

Недавно астрономы воспользовались световым эхом для того, чтобы в прямом смысле слова увидеть далекое прошлое. Вспышку сверхновой SN1572 увидели в 1572 году - это свет пришел по прямой. А в 2008 году очень слабое отражение той вспышки было замечено как световое эхо на облаках Млечного Пути. Вспышку сверхновой Кассиопея А около 1660 года вообще на Земле не заметили из-за заслонивших ее космических облаков. Но световое эхо, отражение той вспышки на других космических облаках увидели в 2010 году.

Эруптивные переменные звезды

Редкие сильные вспышки присущи разным звездам. Например, перетекание вещества с обычной звезды на белый карлик может вызывать повторяющиеся мощные взрывы, которые по традиции называются новыми звездами. Вспыхивают молодые звезды типа Т Тельца. Возможны и вспышки при разрушении планеты около молодой звезды.

Вращающиеся переменные звезды

В 1984 году космический телескоп IRAS обнаружил у звезды Веги пылевой диск. Такие характерны для очень юных звезд, возрастом менее 100 млн лет, вокруг которых из газопылевого диска формируются планеты. Вега старше - около 450 млн лет. В поисках разгадки ученые обнаружили, что Вега очень быстро вращается: на ее экваторе скорость 280 км/с. Для сравнения - скорость вращения Солнца в 140 раз меньше - всего 2 км/с. При такой скорости Вега - вовсе не шар, а сильно сплющенный эллипсоид, поэтому экватор Веги заметно дальше от ее центра и потому холоднее полюсов. Температура связана с яркостью. Поэтому экватор Веги - темная полоса, а полюса - светлые шапки.
Мы все время видели один из полюсов и не подозревали, что волчок-то полосатый. Если однажды Вега повернется к нам так, что будет попеременно наблюдаться то полюсами, то боками, она станет переменной звездой.

Световое эхо - эффект, возникающий в астрономии, когда свет от вспышки светила приходит к наблюдателю, отражаясь от «экранов» вдали от светила, позже, чем свет, пришедший по прямой. При этом в некоторых случаях возникает видимость удаления отражающего свет «экрана» от светила-источника со скоростью выше скорости света.

Кроме того, скорость вращения Веги на экваторе равна скорости отрыва вещества от звезды центробежными силами. Иногда сгустки вещества действительно отрываются от Веги и присоединяются к окружающему ее диску. Поэтому, хотя звездный ветер и сдувает вещество диска в космос, но диск постоянно пополняется новым веществом от звезды. Конечно, диск около звезды должен вращаться, иначе он упадет на звезду. Из-за вращения разные части диска в разное время слегка заслоняют нам саму Вегу. Так возникают небольшие колебания ее яркости, обнаруженные недавно.

Газопылевые диски вокруг звезд иногда играют столь важную роль, что не ясно, к какой категории отнести некоторые переменные звезды.

Please enable JavaScript to view the

Пульсирующие звезды расширяются и сжимаются, становясь больше и меньше, горячее и холоднее, ярче и тусклее. Физические свойства этих звезд таковы, что они просто переходят из одного состояния в другое и обратно, как будто совершают некие колебания или пульсируют, совсем как бьющиеся в небе сердца.


Переменные звезды-цефеиды

Американский астроном Генриетта Ливитт обнаружила, что у цефеид существует зависимость между периодом изменения блеска и светимостью (period-luminosity relation). Этот термин означает, что, чем дольше период изменения блеска (интервал между последовательными пиками блеска), тем выше средний истинный блеск звезды. Поэтому, если измерять видимую звездную величину переменной звезды-цефеиды по мере ее изменения с течением дней и недель и затем определить период изменения блеска, то можно легко вычислить истинный блеск звезды.


Зачем это нужно? А затем, что, зная истинный блеск звезды, можно определить расстояние до нее. Ведь чем дальше звезда, тем более тусклой она выглядит, но это все та же звезда с тем же истинным блеском.

Удаленные тусклые звезды подчиняются закону обратных квадратов (inverse square law). Это значит, что если звезда в 2 раза дальше, то она выглядит в 4 раза более тусклой. А если звезда в 3 раза дальше, то она выглядит в 9 раз тусклее. Если же звезда в 10 раз дальше, то она выглядит в 100 раз более тусклой.


Недавно в СМИ появились сообщениях о том, что с помощью космического телескопа "Хаббл" удалось определить масштабы и возраст Вселенной. На самом деле это результат исследования с помощью телескопа "Хаббл" переменных звезд-цефеид. Эти цефеиды находятся в далеких галактиках. Но, наблюдая за изменением их блеска и используя зависимость между периодом изменения блеска и светимостью, астрономы определили расстояние до этих галактик.


Звезды типа RR Лиры

Звезды типа RR Лиры подобны цефеидам, но они не такие большие и яркие. Некоторые из них расположены в шаровом звездном скоплении в нашей галактике Млечный Путь, и у них тоже существует зависимость между периодом изменения блеска и светимостью.

Шаровые скопления - это огромные сферические образования, заполненные старыми звездами, рожденными еще в период формирования Млечного Пути. Это участки космоса шириной всего лишь 60-100 световых лет, в которых "упаковано" от нескольких сотен тысяч до миллиона звезд. Наблюдая за изменением блеска звезд типа RR Лиры, астрономы могут оценить расстояние до таких звезд. А если эти звезды находятся в шаровых скоплениях, то можно определить расстояние до этих шаровых скоплений.

Почему так важно знать расстояние до звездного скопления? А вот почему. Все звезды, расположенные в одном скоплении, образовались одновременно из общего облака. И все они расположены примерно на одинаковом расстоянии от Земли, поскольку находятся в одном и том же скоплении. Поэтому, когда ученые строят H-R-диаграмму для звезд из скопления, в ней не будет ошибок, вызванных разницей расстояний до различных звезд. А если мы знаем расстояние до звездного скопления, то все нанесенные на диаграмму значения звездных величин можно преобразовать в светимость, т. е. в интенсивность излучения звездой энергии в секунду. И эти значения можно непосредственно сравнить с теоретическими данными. Именно этим и занимаются астрофизики.


Долгопериодические переменные звезды

В то время как астрофизики обрабатывают информацию, полученную от цефеид и переменных звезд типа RR Лиры, астрономы-любители наслаждаются наблюдением долгопериодических переменных звезд, так называемых переменных звезд типа Мира Кита. Мира - это другое название звезды Омикрон Ки

Переменные звезды типа Миры Кита пульсируют, как цефеиды, но у них намного большие периоды изменения блеска, в среднем 10 месяцев и больше, и, кроме того, у них больше амплитуда изменения блеска. Когда блеск Миры Кита достигает максимального значения, ее можно увидеть невооруженным глазом, а когда блеск минимален, необходим телескоп. Изменение блеска долгопериодических звезд также происходит гораздо нерегулярнее, чем у цефеид. Максимальная звездная величина, которой достигает некоторая звезда, может очень сильно меняться от одного периода к другому. Наблюдения таких звезд, проводить которые совсем нетрудно, позволяют ученым получить важную научную информацию. И вы тоже можете внести свой вклад в исследование переменных звезд (более подробно я расскажу об этом в последнем разделе данной главы).