Радиационные люди. Всё о радиации и ионизирующем излучении Определение, нормы, СанПиН

" мы узнаем: "
Радиа́ция (от лат. radiātiō «сияние», «излучение»):


  • Радиация (в радиотехнике) — исходящий от любого источника поток энергии в форме радиоволн (в отличие от излучения — процесса испускания энергии);

  • Радиация — ионизирующее излучение;

  • Радиация — тепловое излучение;

  • Радиация — синоним излучения;

  • Адаптивная радиация (в биологии) — явление различной адаптации родственных групп организмов к изменениям условий окружающей среды, выступающее как одна из основных причин дивергенции;

  • Солнечная радиация — излучение Солнца (электромагнитной и корпускулярной природы). "

Как мы видим, понятие достаточно "объемное" и включает в себя много разделов.
Обратимся к морфологическому значение слов (ссылка): "ионизирующее излучение, поток микрочастиц или высокочастотное электромагнитное поле, способные вызвать ионизацию ".
Как мы видим, добавлено еще упоминание об электромагнитном поле!
Обратимся к этимологии слова (ссылка): "Происходит от лат. radiātio «сияние, блеск, излучение», из radiāre «испускать лучи, сиять, сверкать», далее от radius «палочка, спица, луч, радиус», дальнейшая этимология неясна "
Как уже успели убедиться, штампы, связывающие слово "радиация" с альфа-, бета- и гамма- излучением не совсем корректны. Они используют только одно из значений.
Для того, чтобы "говорить на одном языке", необходимо заложить базовые понятия:
1. Давайте будем использовать упрощенное определение. "Радиация" - это излучение . Необходимо помнить, что излучение может быть совершенно различным (корпускулярное или волновое, тепловое или ионизирующее и тд)и происходить по разным физическим законам. В некоторых случаях, для упрощения понимания можно это слово заменить словом "воздействие".
...........................
Теперь, давайте поговорим о штампах.

Как уже упоминалось выше, многие наверняка слышали про альфа-, бета- и гамма- радиацию. Что же это такое?
Это виды ионизирующего излучения.

"Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются:


  • Альфа-излучение. Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт.

  • Бета-излучение. Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стекло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ.

  • Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов "


"Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.

  • Бета-частицы — обычные электроны.

  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.

  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.

  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Как мы видим на рисунке выше, излучение, оказывается, бывает не только 3-х видов. Эти излучения создаются (в большинстве случаев) вполне определенными веществами, которые имеют свойство самопроизвольно или после определенного воздействия (или католизатора) совершать "самопроизвольное превращение" или "распад" с сопутствующим видом излучения.
Кроме радиации от таких элементов выделяют еще и солнечную радиацию .
Обратимся к "Википедия ": "Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца."
Т.е. излучение как частиц, так и волн. Корпускулярно-волновой дуализм физики и попытки "латать в нем дыры" оставим для очередной нобелевки соостветствующим академикам!
"Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10 −9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть ."
Пропускаем слова про "используют в узком смысле" и запоминаем, что "спектральный диапазон"..."от радиоволн до рентгеновских лучей"!
По сути, кроме уже упомянутых веществ, способных к образованию ионизирующего излучения, будем учитывать и вклад нашего Солнца в этот процесс.
Посмотрим, что такое "тепловая радиация "...

" Тепловая радиация характеризуется теплообменом с помощью электромагнитных волн между телами на расстоянии, определяющем тепловую энергию. Большая часть радиации находится в инфракрасном спектре."
"ТЕПЛОВОЕ ИЗЛУЧЕНИЕ, тепловая радиация - электромагнитные волны, вызванные тепловыми колебаниями молекул и переходящие в теплоту при поглощении."
"Например, при тепловой радиации твердые тела излучают электромагнитные волны с непрерывной частотой длин волн Я 4004 - 0 8 мкм. В отличие от твердых тел излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн.
"

Как мы видим, это полностью волновое излучение, большая часть которого инфракрасное. Запомним очень интересную особенность "излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн", она пригодится чуть позже.

Кроме разделения радиации на виды излучения "корпускулярное" и "волновое", делят на "альфа-", "бета-", "гамма-", "рентген-", "инфракрасное-", "ультрафиолетовое-", "видимое-", "микроволновое-", "радио-" излучения. Теперь понимаете оговорку выше, про использование слова радиация в общем смысле?
Но этого деления маловато. Еще делят радиацию на естественную и искусственную, при этом искажая значение этих слов. Я не буду подробно останавливаться, а приведу, с моей точки зрения, более правильную классификацию.
Что такое "естественная радиация"?

"Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. "
Под искусственной радиацией мы будем понимать то, к чему "прикоснулась рука человека". Т.е. изменение "радиационного фона" произошло под действием человека (в результате его действий).
"Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. "
Такое разделение способствует тому, что понятие "естественный радиационный фон" уже больше не применимо. Изначально введенное понятие только для маскировки множества явлений уже можно не учитывать. Разделить излучение, исходящее в конкретном месте на "естественную" и "искусственную" не возможно. Поэтому понятие "естественный радиационный фон" мы уменьшим до правильного "радиационный фон". Почему так можно? Простейший пример:
В некоторой местности до воздействия на эту местность человеком (тот самый "сферический в вакууме") "естественный радиационный фон" составлял 5 ед. В результате нахождения там одного человека (а мы помним, что каждый человек имеет радиоактивный фон) прибор уже намерил 6 ед. Какое значение "естественного радиационного фона" будет 5 или 6 ед? Далее...этот человек на подошве своих ботинок принес пару десятков радиоактивных атомов на эту местность. В результате "естественный радиоактивный фон" стал 6,5 ед. Человеку понадобилось уйти с этого места и прибор уже показал 5,5 ед. "Естественный радиоактивный фон" будет составлять 5,5 ед. Но мы с вами помним, что до вмешательства человека, фон был 5 ед! В рассматриваемой ситуации мы смогли заметить, что человек своими действиями повысил "фон" на 0,5 ед.
Что же в реальности? А в реальности "естественный радиоактивный фон" измерить нельзя. Его значение будет все время меняться и зависить от множества факторов, принебречь которыми, нельзя. Ну например, вспомним про солнечную радиацию. Ее значение очень сильно зависит от времени года. От времени года, от температуры зависит и природная радиоактивность. Посему, можно измерить лишь "радиоактивный фон". В некоторых случаях возможно выделить из "радиоактивного фона" нечто близкое к "естественному радиоактивному фону".
Посему, договоримся использовать термин "радиоактивный фон" вместо "естественного уровня радиации" или "естественный радиоактивный фон". Будем считать под этим термином величину радиации, которую измерили в данной местности.
Что такое "искусственная радиация"?
Как уже говорилось выше, будем использовать этот термин для обозначения радиоактивного фона от тех действий, которые произвел человек.
Источники радиации.
Не будем разделять источники по видам радиации. Попробуем перечислить основные и часто встречаемые...

"В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 10 7 лет и выше. "

"Цепочки радиоактивного распада (радиоактивные ряды), родоначальниками которых являются радионуклиды, обладают значительной устойчивостью и большим периодом полураспада, они получили название радиоактивных семейств. Различают 4-е радиоактивных семейства:

Родоначальником 1-ого является уран,
2-ого - торий,
3-его - актиний (актиноуран),
4-ого - нептуний.
"


"Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 - долгоживущих изотопов, входящих в состав Земли с самого ее рождения. Значение радиоактивного изотопа калий-40 особенно велико для обитателей почвы - микрофлоры, корней растений, почвенной фауны. Соответственно заметно его участие во внутреннем облучении организма, его оганов и тканей, поскольку калий является незаменимым элементом, участвующим в ряде метаболических процессов.
Уровни земной радиации неодинаковы, поскольку зависят от концентрации радиоактивных изотопов на конкретном участке земной коры.
"..."Большая часть поступления связана с радионуклидами ряда урана и тория, которые содержатся в почве. Следует учитывать, что до попадания в организм человека радиоактивные вещества проходят по сложным маршрутам в окружающей среде. "

"Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.
Концентрация радона в воздухе зависит, в первую очередь, от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности. "

"Уголь содержит незначительное количество природных радионуклидов, которые после его сжигания концентрируются в зольной пыли и поступают в окружающую среду с выбросами, несмотря на совершенствование систем очистки "
"Некоторые страны эксплуатируют подземные ресурсы пара и горячей воды для производства электроэнергии и теплоснабжения. При этом происходит значительное поступление радона в окружающую среду. "

"В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания. "

" Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы."
"Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты (рис.4).
Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Рис.4. Величина солнечного излучения во время максимальной и минимальной активности солнечного цикла в зависимости от высоты местности над уровнем моря и географической широты. "
Интересные картинки:

Основные литературные источники,

II. Что такое радиация?

III. Основные термины и единицы измерения.

IV. Влияние радиации на человеческий организм.

V. Источники радиационного излучения:

1) естественные источники

2) источники, созданные человеком (техногенные)

I. Введение

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР). В данной работе автор широко использовал данные, изложенные в брошюре «Радиация. Дозы, эффекты, риск», подготовленные на основе материалов исследований комитета.

II . Что такое радиация?

Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад.

В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина «радиоактивность») и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома.

Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра – плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтральность атома. Количество нейтронов может варьироваться, и в зависимости от этого меняется стабильность изотопов.

Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов (a-частицы) называют альфа-излучением, испускание электрона – бета-излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый гамма-излучением.

III . Основные термины и единицы измерения.

(терминология НКДАР)

Радиоактивный распад – весь процесс самопроизвольного распада нестабильного нуклида

Радионуклид – нестабильный нуклид, способный к самопроизвольному распаду

Период полураспада изотопа – время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике

Радиационная активность образца – число распадов в секунду в данном радиоактивном образце; единица измерения – беккерель (Бк)

«Поглощенная доза* – энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы

Эквивалентная доза** – поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма

Эффективная эквивалентная доза*** – эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению

Коллективная эффективная эквивалентная доза**** – эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации

Полная коллективная эффективная эквивалентная доза – коллективная эффективная эквивалентная доза, которую получат поколения людей от какого-либо источника за все время его дальнейшего существования» («Радиация…», с.13)

IV . Влияние радиации на человеческий организм

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

————————————————————————————–

* грэй (Гр)

** единица измерения в системе СИ – зиверт (Зв)

*** единица измерения в системе СИ – зиверт (Зв)

**** единица измерения в системе СИ – человеко-зиверт (чел-Зв)

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: альфа-частицы наиболее опасны, однако для альфа-излучения даже лист бумаги является непреодолимой преградой; бета-излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное гамма-излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

0,03 – костная ткань

0,03 – щитовидная железа

0,12 – красный костный мозг

0,12 – легкие

0,15 – молочная железа

0,25 – яичники или семенники

0,30 – другие ткани

1,00 – организм в целом.

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 Гр приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 Гр смерть наступает через одну-две недели, а доза в 3-5 Гр грозит обернуться летальным исходом примерно половине облученных. Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом – дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

Так, при первом подходе установлено, что доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 Гр на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 Гр на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни – также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

V. Источники радиационного излучения

Теперь, имея представление о воздействии радиационного облучения на живые ткани, необходимо выяснить, в каких ситуациях мы наиболее подвержены этому воздействию.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения – при попадании радионуклидов внутрь организма с воздухом, пищей и водой – называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

Естественные источники радиации

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Уровни радиационного излучения неодинаковы для различных областей. Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение.

Иными словами, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000м над уровнем моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу в несколько раз большую, чем те, кто живет на уровне моря. При подъеме с высоты 4000м (максимальная высота проживания людей) до 12000м (максимальная высота полета пассажирского авиатранспорта) уровень облучения возрастает в 25 раз. Примерная доза за рейс Нью-Йорк – Париж по данным НКДАР ООН в 1985 году составляла 50 микрозивертов за 7,5 часов полета.

Всего за счет использование воздушного транспорта население Земли получало в год эффективную эквивалентную дозу около 2000 чел-Зв.

Уровни земной радиации также распределяются неравномерно по поверхности Земли и зависят от состава и концентрации радиоактивных веществ в земной коре. Так называемые аномальные радиационные поля природного происхождения образуются в случае обогащения некоторых типов горных пород ураном, торием, на месторождениях радиоактивных элементов в различных породах, при современном привносе урана, радия, радона в поверхностные и подземные воды, геологическую среду.

По данным исследований, проведенных во Франции, Германии, Италии, Японии и США, около 95% населения этих стран проживает в районах, где мощность дозы облучения колеблется в среднем от 0,3 до 0,6 миллизиверта в год. Эти данные можно принять за средние по миру, поскольку природные условия в вышеперечисленных странах различны.

Есть, однако, несколько «горячих точек», где уровень радиации намного выше. К ним относятся несколько районов в Бразилии: окрестности города Посус-ди-Калдас и пляжи близ Гуарапари, города с населением 12000 человек, куда ежегодно приезжают отдыхать примерно 30000 курортников, где уровень радиации достигает 250 и 175 миллизивертов в год соответственно. Это превышает средние показатели в 500-800 раз. Здесь, а также в другой части света, на юго-западном побережье Индии, подобное явление обусловлено повышенным содержанием тория в песках. Вышеперечисленные территории в Бразилии и Индии являются наиболее изученными в данном аспекте, но существует множество других мест с высоким уровнем радиации, например во Франции, Нигерии, на Мадагаскаре.

По территории России зоны повышенной радиоактивности также распределены неравномерно и известны как в европейской части страны, так и в Зауралье, на Полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, Северо-востоке.

Среди естественных радионуклидов наибольший вклад (более 50%) в суммарную дозу облучения несет радон и его дочерние продукты распада (в т.ч. радий). Опасность радона заключается в его широком распространении, высокой проникающей способности и миграционной подвижности (активности), распаде с образованием радия и других высокоактивных радионуклидов. Период полураспада радона сравнительно невелик и составляет 3,823 суток. Радон трудно идентифицировать без использования специальных приборов, так как он не имеет цвета или запаха.

Одним из важнейших аспектов радоновой проблемы является внутреннее облучение радоном: образующиеся при его распаде продукты в виде мельчайших частиц проникают в органы дыхания, и их существование в организме сопровождается альфа-излучением. И в России, и на западе радоновой проблеме уделяется много внимания, так как в результате проведенных исследований выяснилось, что в большинстве случаев содержание радона в воздухе в помещениях и в водопроводной воде превышает ПДК. Так, наибольшая концентрация радона и продуктов его распада, зафиксированная в нашей стране, соответствует дозе облучения 3000-4000 бэр в год, что превышает ПДК на два-три порядка. Полученная в последние десятилетия информация показывает, что в Российской федерации радон широко распространен также в приземном слое атмосферы, подпочвенном воздухе и подземных водах.

В России проблема радона еще слабо изучена, но достоверно известно, что в некоторых регионах его концентрация особенно высока. К их числу относятся так называемое радоновое «пятно», охватывающее Онежское, Ладожское озера и Финский залив, широкая зона, простирающаяся от Среднего Урала к западу, южная часть Западного Приуралья, Полярный Урал, Енисейский кряж, Западное Прибайкалье, Амурская область, север Хабаровского края, Полуостров Чукотка («Экология,…», 263).

Источники радиации, созданные человеком (техногенные)

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение.

Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника – рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов.

Неизвестно точное количество людей, подвергающихся подобным обследованиям и лечению, и дозы, получаемые ими, но можно утверждать, что для многих стран использование явления радиоактивности в медицине остается чуть ли не единственным техногенным источником облучения.

В принципе облучение в медицине не столь опасно, если им не злоупотреблять. Но, к сожалению, часто к пациенту применяются неоправданно большие дозы. Среди методов, способствующих снижению риска, — уменьшение площади рентгеновского пучка, его фильтрация, убирающая лишнее излучение, правильная экранировка и самое банальное, а именно исправность оборудования и грамотная его эксплуатация.

Из-за отсутствия более полных данных НКДАР ООН был вынужден принять за общую оценку годовой коллективной эффективной эквивалентной дозы, по крайней мере, от рентгенологических обследований в развитых странах на основе данных, представленных в комитет Польшей и Японией к 1985 году, значение 1000 чел-Зв на 1 млн. жителей. Скорее всего, для развивающихся стран эта величина окажется ниже, но индивидуальные дозы могут быть значительнее. Подсчитано также, что коллективная эффективная эквивалентная доза от облучения в медицинских целях в целом (включая использование лучевой терапии для лечения рака) для всего населения Земли равна примерно 1 600 000 чел-Зв в год.

Следующий источник облучения, созданный руками человека – радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере, и, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас.

В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

Радиоактивные осадки содержат большое количество различных радионуклидов, но из них наибольшую роль играют цирконий-95, цезий-137, стронций-90 и углерод-14, периоды полураспада которых составляют соответственно 64 суток, 30 лет (цезий и стронций) и 5730 лет.

По данным НКДАР, ожидаемая суммарная коллективная эффективная эквивалентная доза от всех ядерных взрывов, произведенных к 1985 году, составляла 30 000 000 чел-Зв. К 1980 году население Земли получило лишь 12% этой дозы, а остальную часть получает до сих пор и будет получать еще миллионы лет.

Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный. Дело в том, что процесс производства энергии из ядерного топлива сложен и проходит в несколько стадий.

Ядерный топливный цикл начинается с добычи и обогащения урановой руды, затем производится само ядерное топливо, а после отработки топлива на АЭС иногда возможно вторичное его использование через извлечение из него урана и плутония. Завершающей стадией цикла является, как правило, захоронение радиоактивных отходов.

На каждом этапе происходит выделение в окружающую среду радиоактивных веществ, причем их объем может сильно варьироваться в зависимости от конструкции реактора и других условий. Кроме того, серьезной проблемой является захоронение радиоактивных отходов, которые еще на протяжении тысяч и миллионов лет будут продолжать служить источником загрязнения.

Дозы облучения различаются в зависимости от времени и расстояния. Чем дальше от станции живет человек, тем меньшую дозу он получает.

Из продуктов деятельности АЭС наибольшую опасность представляет тритий. Благодаря своей способности хорошо растворяться в воде и интенсивно испаряться тритий накапливается в использованной в процессе производства энергии воде и затем поступает в водоем-охладитель, а соответственно в близлежащие бессточные водоемы, подземные воды, приземной слой атмосферы. Период его полураспада равен 3,82 суток. Распад его сопровождается альфа-излучением. Повышенные концентрации этого радиоизотопа зафиксированы в природных средах многих АЭС.

До сих пор речь шла о нормальной работе атомных электростанций, но на примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.

Масштабы Чернобыльской аварии не могли не вызвать оживленного интереса со стороны общественности. Но мало кто догадывается о количестве мелких неполадок в работе АЭС в разных странах мира.

Так, в статье М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году, содержатся следующие данные:

«…С 1971 по 1984 гг. На атомных станциях ФРГ произошла 151 авария. В Японии на 37 действующих АЭС с 1981 по 1985 гг. зарегистрировано 390 аварий, 69% которых сопровождались утечкой радиоактивных веществ.… В 1985 г. в США зафиксировано 3 000 неисправностей в системах и 764 временные остановки АЭС…» и т.д.

Кроме того, автор статьи указывает на актуальность, по крайней мере на 1992 год, проблемы намеренного разрушения предприятий ядерного топливного энергетического цикла, что связано с неблагоприятной политической обстановкой в ряде регионов. Остается надеяться на будущую сознательность тех, кто таким образом «копает под себя».

Осталось указать несколько искусственных источников радиационного загрязнения, с которыми каждый из нас сталкивается повседневно.

Это, прежде всего, строительные материалы, отличающиеся повышенной радиоактивностью. Среди таких материалов – некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак. Известны случаи, когда стройматериалы производились из отходов ядерной энергетики, что противоречит всем нормам. К излучению, исходящему от самой постройки, добавляется естественное излучение земного происхождения. Самый простой и доступный способ хотя бы частично защититься от облучения дома или на работе – чаще проветривать помещение.

Повышенная ураноносность некоторых углей может приводить к значительным выбросам в атмосферу урана и других радионуклидов в результате сжигания топлива на ТЭЦ, в котельных, при работе автотранспорта.

Существует огромное количество общеупотребительных предметов, являющихся источником облучения. Это, прежде всего, часы со светящимся циферблатом, которые дают годовую ожидаемую эффективную эквивалентную дозу, в 4 раза превышающую ту, что обусловлена утечками на АЭС, а именно 2 000 чел-Зв («Радиация…», 55). Равносильную дозу получают работники предприятий атомной промышленности и экипажи авиалайнеров.

При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов.

Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

При производстве детекторов дыма принцип их действия часто основан на использовании альфа-излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран.

Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.

VI. Заключение

Во вступлении автор указывал на тот факт, что одним из серьезнейших упущений сегодня является отсутствие объективной информации. Тем не менее, уже проделана огромная работа по оценке радиационного загрязнения, и результаты исследований время от времени публикуются как в специальной литературе, так и в прессе. Но для понимания проблемы необходимо располагать не обрывочными данными, а ясно представлять целостную картину.

А она такова.
Мы не имеем права и возможности уничтожить основной источник радиационного излучения, а именно природу, а также не можем и не должны отказываться от тех преимуществ, которые нам дает наше знание законов природы и умение ими воспользоваться. Но необходимо
Список использованной литературы

1. Лисичкин В.А., Шелепин Л.А., Боев Б.В. Закат цивилизации или движение к ноосфере (экология с разных сторон). М.; «ИЦ-Гарант», 1997. 352 с.

2. Миллер Т. Жизнь в окружающей среде/Пер. с англ. В 3 т. Т.1. М., 1993; Т.2. М., 1994.

3. Небел Б. Наука об окружающей среде: Как устроен мир. В 2 т./Пер. с англ. Т. 2. М., 1993.

4. Пронин М. Бойтесь! Химия и жизнь. 1992. №4. С.58.

5. Ревелль П., Ревелль Ч. Среда нашего обитания. В 4 кн. Кн. 3. Энергетические проблемы человечества/Пер. с англ. М.; Наука, 1995. 296с.

6. Экологические проблемы: что происходит, кто виноват и что делать?: Учебное пособие/Под ред. проф. В.И. Данилова-Данильяна. М.: Изд-во МНЭПУ, 1997. 332 с.

7. Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред. проф. В.И.Данилова-Данильяна. В 2 кн. Кн. 1. — М.: Изд-во МНЭПУ, 1997. – 424 с.

Международный Независимый

Эколого-Политологический Университет

А.А. Игнатьева

РАДИАЦИОННАЯ ОПАСНОСТЬ

И ПРОБЛЕМА ИСПОЛЬЗОВАНИЯ АЭС.

Очное отделение экологического факультета

Москва 1997

Что такое радиация?
Термин «радиация» происходит от лат. radius — луч, и в самом широком смысле охватывает все виды излучений вообще. Видимый свет и радиоволны – тоже, строго говоря, радиация, но принято подразумевать под радиацией только ионизирующие излучения, то есть те, взаимодействие которых с веществом приводит к образованию в нем ионов.
Различают несколько видов ионизирующих излучений:
— альфа-излучение – представляет собой поток ядер гелия
— бета-излучение – поток электронов или позитронов
— гамма-излучение – электромагнитное излучение с частотой порядка 10^20 Гц.
— рентгеновское излучение – также электромагнитное излучение с частотой порядка 10^18 Гц.
— нейтронное излучение – поток нейтронов.

Что такое альфа-излучение?
Это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Что такое бета-излучение?
Электроны либо позитроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Если вещество, испускающие бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Что такое нейтронное излучение?
Поток нейтронов, нейтрально заряженных частиц. Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

Что такое гамма-излучение?
Электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани.

А какой вид излучения используется при рентгеноскопии?
Рентгеновское излучение — электромагнитное излучение с частотой порядка 10^18 Гц.
Возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения.
В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое». Это относительная характеристика его энергии и связанной с ней проникающей способности излучения: «жёсткое» — большие энергия и проникающая способность, «мягкое» -меньшие. Рентгеновское излучение — мягкое, гамма-излучение — жесткое.

Существует ли место без радиации вообще?
Практически нет. Радиация — древний фактор окружающей среды. Существует множество естественных источников излучения: это природные радионуклиды, содержащиеся в земной коре, строительных материалах, воздухе, пище и воде, а также космические лучи. В среднем они определяют более чем 80% годовой эффективной дозы, получаемой населением, в основном вследствие внутреннего облучения.

Что такое радиоактивность?
Радиоактивность – свойство атомов какого-либо элемента самопроизвольно превращаться в атомы других элементов. Этот процесс сопровождается ионизирующим излучением, т.е. радиацией.

В чем измеряется радиация?
С учетом того, что «радиация» сама по себе измеримой величиной не является, существуют различные единицы для измерения различных видов излучений, а также загрязнения.
Отдельно используются понятия поглощенной, экспозиционной, эквивалентной и эффективной дозы, а также понятие мощности эквивалентной дозы и фона.
Кроме того, для каждого радионуклида (радиоактивного изотопа элемента) измеряется активность радионуклида, удельная активность радионуклида и период полураспада.

Что такое поглощенная доза и в чем она измеряется?
Доза, поглощённая доза (от греческого — доля, порция) – определяет величину энергии ионизирующего излучения, поглощённую облучаемым веществом. Характеризует физический эффект облучения в любой среде, включая биологическую ткань, и часто рассчитывается на единицу массы этого вещества.
Измеряется в единицах энергии, которая выделяется в веществе (поглощается веществом) при прохождении через него ионизирующего излучения.
Единицы измерения рад, грэй.
Рад (rad – сокращение от radiation absorbed dose) — внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм
1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр = 2,388 x 10-6 кал/г
При экспозиционной дозе в 1 рентген поглощённая доза в воздухе будет 0,85 рад (85 эрг/г).
Грэй (Гр.) — единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.
1 Гр. = 1 Дж/кг = 104 эрг/г = 100 рад.

Что такое экспозиционная доза и в чем она измеряется?
Экспозиционная доза определяется по ионизации воздуха, то есть по суммарному заряду ионов, образовавшихся в воздухе при прохождении через него ионизирующего излучения.
Единицы измерения рентген, кулон на килограмм.
Рентген (Р) — внесистемная единица экспозиционной дозы. Это такое количество гамма- или рентгеновского излучения, которое в 1 см3 сухого воздуха (имеющего при нормальных условиях вес 0,001293 г) образует 2,082 х 109 пар ионов. При пересчёте на 1 г воздуха это составит 1,610 х 1012 пар ионов или 85 эрг/г сухого воздуха. Таким образом физический энергетический эквивалент рентгена равен 85 эрг/г для воздуха.
1 Кл/кг — единица экспозиционной дозы в системе СИ. Это такое количество гамма- или рентгеновского излучения, которое в 1 кг сухого воздуха образует 6,24 х 1018 пар ионов, которые несут заряд в 1 кулон каждого знака. Физический эквивалент 1 Кл/кг равен 33 Дж/кг (для воздуха).
Соотношения между рентгеном и Кл/кг следующие:
1 Р = 2,58 х 10-4 Кл/кг — точно.
1 Кл/кг = 3,88 х 103 Р — приблизительно.

Что такое эквивалентная доза и в чем она измеряется?
Эквивалентная доза равна поглощенной дозе, рассчитанной для человека с учётом коэффициентов, учитывающих различную способность разных видов излучения повреждать ткани организма.
Например, для рентгеновского, гамма, бета-излучения, этот коэффициент (его называют коэффициент качества излучения) равен 1, а для альфа-излучения – 20. То есть при одной и той же поглощенной дозе альфа-излучение нанесет организму в 20 раз больший вред, чем, например гамма-излучение.
Единицы измерения бэр и зиверт.
Бэр — биологический эквивалент рада (ранее — рентгена). Внесистемная единица измерения эквивалентной дозы. В общем случае:
1 бэр = 1 рад * К = 100 эрг/г * К = 0,01 Гр * К = 0,01 Дж/кг * К = 0,01 Зиверт,
где К – коэффициент качества излучения, см. определение эквивалентной дозы
Для рентгеновского, гамма-, бета-излучений, электронов и позитронов, 1 бэр соответствует поглощённой дозе в 1 рад.
1 бэр = 1 рад = 100 эрг/г = 0,01 Гр = 0,01 Дж/кг = 0,01 Зиверт
Учитывая, что при экспозиционной дозе в 1 рентген воздух поглощает примерно 85 эрг/г (физический эквивалент рентгена), а биологическая ткань примерно 94 эрг/г (биологический эквивалент рентгена), можно считать с минимальной погрешностью, что экспозиционная доза в 1 рентген для биологической ткани соответствует поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (для рентгеновского, гамма-, бета-излучений, электронов и позитронов), то есть, грубо говоря — 1 рентген, 1 рад и 1 бэр — это одно и то же.
Зиверт (Зв) — единица эквивалентной и эффективной эквивалентной доз в системе СИ. 1 Зв равен эквивалентной дозе, при которой произведение величины поглощённой дозы в Грэях (в биологической ткани) на коэффициент К будет равно 1 Дж/кг. Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж.
В общем случае:
1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр * К
При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр:
1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Эффективная эквивалентная доза равно эквивалентной дозе, рассчитанной с учётом разной чувствительности различных органов организма к облучению. Эффективная доза учитывает не только, что различные виды излучений обладают разной биологической эффективностью, но и то, что одни части тела человека (органы, ткани) более чувствительны к излучению, чем другие. Например, при одинаковой эквивалентной дозе возникновение рака легких более вероятно, чем рака щитовидной железы. Таким образом, эффективная доза отражает суммарный эффект облучения человека с точки зрения отдаленных последствий.
Для расчета эффективной дозы эквивалентную дозу, полученную конкретным органом, тканью, умножают на соответствующий коэффициент.
Для всего организма этот коэффициент равен 1, а для некоторых органов имеет следующие значения:
костный мозг (красный) — 0,12
щитовидная железа — 0,05
лёгкие, желудок, толстый кишечник — 0,12
гонады (яичники, семенники) — 0,20
кожа — 0,01
Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.
Единица измерения та же, что и у эквивалентной дозы – «бэр», «зиверт»

Что такое мощность эквивалентной дозы, и в чем она измеряется?
Доза, полученная в единицу времени, называется мощностью дозы. Чем больше мощность дозы, тем быстрее растет доза излучения.
Для эквивалентной дозы в СИ единица мощности дозы – зиверт в секунду (Зв/с), внесистемная единица – бэр в секунду (бэр/с). На практике чаще всего используются их производные (мкЗв/час, мбэр/час и т.д.)

Что такое фон, естественный фон, и в чем они измеряется?
Фон – другое название для мощности экспозиционной дозы ионизирующего излучения в данном месте.
Естественный фон — мощность экспозиционной дозы ионизирующего излучения в данном месте, создаваемая только природными источниками излучения.
Единицы измерения, соответственно – бэр и зиверт.
Часто фон и естественный фон измеряют в рентгенах (микрорентгенах и т.д.), примерно приравнивая рентген и бэр (см. вопрос об эквивалентной дозе).

Что такое активность радионуклида и в чем она измеряется?
Количество радиоактивного вещества измеряется не только единицами массы (грамм, миллиграмм и т.д.), но и активностью, которая равняются числу ядерных превращений (распадов) в единицу времени. Чем больше ядерных превращений испытывают атомы данного вещества в секунду, тем выше его активность и тем большую опасность оно может представлять для человека.
Единицей активности в СИ является распад в секунду (расп/с). Эта единица получила название беккерель (Бк). 1 Бк равняется 1 расп/с.
Наиболее употребительной внесистемной единицей активности является кюри (Ки). 1 Ки равняется 3,7* 10 в 10 Бк, что соответствует активности 1 г радия.

Что такое удельная поверхностная активность радионуклида?
Это активность радионуклида, отнесенная к единице площади. Обычно используется для характеристики радиоактивного загрязнения территории (плотности радиоактивного загрязнения).
Единицы измерения — Бк/м2, Бк/км2, Ки/м2, Ки/км2.

Что такое период полураспада и в чем он измеряется?
Период полураспада (T1/2, также обозначается греческой буквой «лямбда», half-life)- время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза. Величина строго постоянная для каждого радионуклида. Периоды полураспада у всех радионуклидов разные — от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).
Это не значит, что через время равное двум T1/2 радионуклид распадется полностью. Через T1/2 радионуклида станет вдвое меньше, через 2*T1/2 – вчетверо и т.д. Полностью радионуклид не распадется теоретически никогда.

Пределы и нормы облучения

(как и где можно облучиться и что мне за это будет?)

Правда ли то, что при полетах на самолете можно получить дополнительную дозу излучения?
В общем случае да. Конкретные цифры зависят от высоты полета, типа самолета, погоды и маршрута, примерно можно оценить фон в салоне самолета как 200-400 мкР/Ч.

Опасно ли делать флюорографию или рентгенографию?
Хотя снимок и занимает всего доли секунды, мощность излучения весьма велика и человек получает достаточную дозу облучения. Не зря врач-рентгенолог при снимке прячется за стальную стенку.
Примерные эффективные дозы для облучаемых органов:
флюорография в одной проекции — 1.0 мЗв
ренген легких — 0.4 мЗ
снимок черепа в двух проекциях — 0.22 мЗв
снимок зуба — 0.02мЗв
снимок носа (гайморовы пазухи) — 0.02 мЗв
снимок голени (ног в связи с переломом) — 0.08мЗв
Указанные цифры верны для одного снимка (если особо не отмечено), при исправном рентгеновском аппарате и применении средств защиты. Скажем, при снимке легких вовсе не обязательно облучать голову и все, что ниже пояса. Требуйте просвинцованный фартук и воротник, их должны вам выдать. Полученная при обследовании доза обязательно записывается в личную карточку больного.
Ну и напоследок — любой врач, отправляющий вас на рентген, обязан оценивать риск избыточного облучения по сравнению с тем, насколько помогут ему ваши снимки для более эффективного лечения.

Радиация на промышленных объектах, свалках, заброшенных зданиях?

Источники радиации можно встретить где угодно, даже в жилом здании, напр. когда-то использовались Радиоизотопные извещатели дыма (РИД) в которых использовались изотопы, излучающие Альфа, Бета и Гамма радиацию, всевозможные шкалы приборов, выпущенных до 60-х годов, на которые наносилась краска в составе которой были соли Радия-226, на свалках находили гамма-дефектоскопы, проверочные источники для дозиметров и.т.д.

Методы и приборы контроля.

Какими приборами можно измерить радиацию?
: Основные приборы – радиометр и дозиметр. Существуют комбинированные приборы – дозиметр-радиометр. Самые распространённые это бытовые дозиметры-радиометры: Терра-П, Припять, Сосна, Стора-Ту, Белла и др. Есть военные приборы типа ДП-5, ДП-2,ДП-3 и др.

А чем отличается радиометр от дозиметра?
Радиометр показывает мощность дозы излучения здесь теперь и сейчас. Но для оценки влияния радиации на организм важна не мощность, а именно полученная доза.
Дозиметр — это прибор, который, измеряя мощность дозы излучения, перемножает её на время воздействия радиации, подсчитывая тем самым полученную владельцем эквивалентную дозу. Бытовые дозиметры измеряют, как правило, только мощность дозы гамма-излучения (некоторые еще и бета-излучения), весовой множитель которых (коэффициент качества излучения) равны 1.
Поэтому даже при отсутствии в приборе функции дозиметра можно мощность дозы, измеренную в Р/ч поделить на 100 и умножить на время облучения, получив таким образом искомое значение дозы в Зивертах. Либо, что то же самое, умножив измеренную мощность дозы на время облучения, получим эквивалентную дозу в бэрах.
Простая аналогия — спидометр в машине показывает мгновенную скорость «радиометр» а счетчик километров интегрирует эту скорость по времени, показывая пройденный машиной путь («дозиметр»).

Дезактивация.

Способы дезактивации техники
Радиоактивная пыль на зараженной технике удерживается силами притяжения (адгезии); величина этих сил зависит от свойств поверхности и среды, в которой происходит притяжение. Силы адгезии в воздухе значительно больше, чем в жидкости. В случае заражения техники, покрытой маслянистыми загрязнениями, адгезия радиоактивной пыли определяется прочностью прилипания самого маслянистого слоя.
При дезактивации происходит два процесса:
· отрыв частиц радиоактивной пыли от зараженной поверхности;
· удаление их с поверхности объекта.

Исходя из этого, способы дезактивации основаны либо на механическом удалении радиоактивной пыли (сметание, сдувание, пылеотсасывание), либо на использовании физико-химических моющих процессов (смывание радиоактивной пыли растворами моющих средств).
Ввиду того, что частичная дезактивация отличается от полной только тщательностью и полнотой обработки, то и способы частичной и полной дезактивации практически одинаковы и зависят только от наличия технических средств дезактивации и дезактивирующих растворов.

Все способы дезактивации можно разделить на две группы: жидкостные и безжидкостные. Промежуточным между ними является газокапельный способ дезактивации.
К жидкостным способам относятся:
· смывание РВ дезактивирующими растворами, водой и растворителями (бензином, керосином, дизтопливом и т.п.) с использованием щеток или ветоши;
· смывание РВ струёй воды под давлением.
При обработке техники этими способами отрыв частиц РВ от поверхности происходит в жидкой среде, когда силы адгезии ослаблены. Транспортировка оторванных частиц при их удалении также обеспечивается жидкостью, стекающей с объекта.
Поскольку скорость движения слоя жидкости, непосредственно примыкающего к твердой поверхности, очень мала, то мала и скорость перемещения пылинок, особенно очень мелких, полностью утопленных в тонком пограничном слое жидкости. Поэтому для достижения достаточной полноты дезактивации приходится одновременно с подачей жидкости протирать поверхность щеткой, или ветошью, использовать растворы моющих средств, облегчающих отрыв радиоактивных загрязнений и удержание их в растворе, или же применять мощную струю воды с большим давлением и расходом жидкости на единицу поверхности.
Жидкостные способы обработки высокоэффективны и универсальны, практически все существующие табельные технические средства дезактивации рассчитаны на жидкостные способы обработки. Самым эффективным из них является способ смывания РВ дезактивирующими растворами с использованием щеток (позволяет снижать зараженность объекта в 50 — 80 раз), а самым быстрым по выполнению — способ смывания РВ струёй воды. Способ смывания РВ дезактивирующими растворами, водой и растворителями с использованием ветоши применяется главным образом для дезактивации внутренних поверхностей кабины автомобиля, различных приборов, чувствительных к большим объёмам воды и дезактивирующих растворов.
Выбор того или иного способа жидкостной обработки зависит от наличия дезактивирующих веществ, емкости водоисточников, технических средств и вида техники, подлежащей дезактивации.
К безжидкостным способам относятся следующие:
· сметание радиоактивной пыли с объекта вениками и другими подсобными материалами;
· удаление радиоактивной пыли методом пылеотсасывания;
· сдувание радиоактивной пыли сжатым воздухом.
При осуществлении этих способов отрыв частиц радиоактивной пыли осуществляется в воздушной среде, когда силы адгезии велики. Существующими способами (пылеотсасывание, струя воздуха от компрессора автомобиля) нельзя создать достаточно мощного потока воздуха. Все эти способы эффективны при удалении сухой радиоактивной пыли с сухих не замасленных и не сильно загрязненных объектов. Табельным техническим средством дезактивации военной техники безжидкостным способом (пылеотсасыванием) в настоящее время является комплект ДК-4, с помощью которого можно обрабатывать технику и жидкостным и безжидкостным способами.
Безжидкостные способы дезактивации позволяют снижать зараженность объектов:
· обметание — в 2 — 4 раза;
· пылеотсасывание — в 5 — 10раз;
· обдувание сжатым воздухом от компрессора автомобиля – в 2-3раза.
Газокапельный способ заключается в обдувании объекта мощным газокапельным потоком.
Источником газового потока служит воздушно-реактивный двигатель, на выходе из сопла в газовый поток вводится вода, которая дробится на мелкие капли.
Сущность способа заключается в том, что на обрабатываемой поверхности образуется пленка жидкости, благодаря чему силы сцепления (адгезии) частиц пыли с поверхностью ослабляются и мощный газовый поток сдувает их с объекта.
Газокапельный способ дезактивации осуществляется с помощью тепловых машин (ТМС-65, УТМ), он позволяет исключить ручной труд при проведении специальной обработки военной техники.
Время дезактивации автомобиля КаМАЗ газокапельным потоком составляет 1 — 2 мин, расход воды — 140л, зараженность снижается в 50 — 100раз.
При дезактивации техники любым из жидкостных или безжидкостных способов необходимо соблюдать следующий порядок обработки:
· объект начинать обрабатывать с верхних частей, постепенно опускаясь вниз;
· последовательно обрабатывать всю поверхность без пропусков;
· каждый участок поверхности обработать 2-3 раза, шероховатые поверхности обработать особенно тщательно с повышенным расходом жидкости;
· при обработке растворами с использованием щёток и ветоши тщательно протирать обрабатываемую поверхность;
· при обработке струёй воды направлять струю под углом 30 — 60° к поверхности, находясь в 3 — 4м от обрабатываемого объекта;
· следить, чтобы брызги и стекающая с обрабатываемого объекта жидкость не попадала на людей, производящих дезактивацию.

Поведение в ситуации потенциальной радиационной опасности.

Если мне сказали, что недалеко взорвалась АЭС, куда бежать?
Никуда не бежать. Во-первых, вас могли обмануть. Во-вторых, в случае действительной опасности лучше всего довериться действиям профессионалов. А для того, чтобы об этих самых действиях узнать, желательно находиться дома, включить радиоприемник или телевизор. В качестве меры предосторожности можно порекомендовать плотно закрыть окна и двери, не выпускать детей и домашних животных на улицу, провести влажную уборку квартиры.

Какие лекарства нужно выпить, чтобы от радиации не было вреда?
При авариях на АЭС в атмосферу выбрасывается большое количество радиоактивного изотопа йода-131, который накапливается в щитовидной железе, что приводит к внутреннему облучению организма и может вызвать рак щитовидной железы. Поэтому в первые дни после загрязнения территории (а лучше до этого загрязнения) необходимо насытить щитовидную железу обычным йодом, тогда организм будет невосприимчив к радиоактивному его изотопу. Пить йод из пузырька исключительно вредно, существуют разнообразные таблетки — обычный йодид калия, йод-актив, йодомарин и т.п., все они представляют собой тот же калий-йод.
Если калий-йода поблизости нет, а территория загрязнена, то в крайнем случае можно капнуть пару капель обычного йода на стакан воды или киселя, и выпить.
Период полураспада йода-131 – чуть более 8 суток. Соответственно, через две недели можно в любом случае о принятии йода внутрь забыть.

Таблица доз радиации.

Радиация предстает перед нами в образе
«незримого, коварного и смертельно опасного врага, подстерегающего на каждом шагу».
Её нельзя увидеть, нельзя пощупать, она незаметна..

Это вызывает у людей, некий трепет и ужас, особенно при отсутствии понимания, что же такое собственно это такое..
Более ясное представление о том, что же такое радиация,
о бытовой опасности радиации и радиоактивности вы будете иметь, прочитав данную статью..

РАДИОАКТИВНОСТЬ, РАДИАЦИЯ И РАДИАЦИОННЫЙ ФОН:

1. ЧТО ТАКОЕ РАДИОАКТИВНОСТЬ И РАДИАЦИЯ.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

2. КАКАЯ БЫВАЕТ РАДИАЦИЯ?

Различают несколько видов радиации:

— Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.

— Бета-частицы - это просто электроны.

— Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

— Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.
Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

* Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток.

Но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

* Следует различать радиоактивность и радиацию.
Источники радиации - радиоактивные вещества или ядерно-технические установки
(реакторы, ускорители, рентген.оборудование и т.п.) — могут существовать значительное время,
а радиация существует лишь до момента своего поглощения в каком-либо веществе.

3. К ЧЕМУ МОЖЕТ ПРИВЕСТИ ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.

Облучение может вызвать:
— нарушение обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций, как следствие облучения человека, то таковых еще ни разу не удалось обнаружить.
Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга "Жизнь после Чернобыля" шведских ученых С.Кулландера и Б.Ларсона).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. КАК РАДИАЦИЯ МОЖЕТ ПОПАСТЬ В ОРГАНИЗМ?



Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике.
В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

5. ПЕРЕДАЕТСЯ ЛИ РАДИАЦИЯ КАК БОЛЕЗНЬ?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» - вместе с обычной грязью - может быть передана при контакте другому человеку.

Передача грязи приводит к ее быстрому разбавлению до безопасных пределов, В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии)

6. В КАКИХ ЕДИНИЦАХ ИЗМЕРЯЕТСЯ РАДИОАКТИВНОСТЬ?


Мерой радиоактивности служит активность.
Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду.
Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки).
Это - огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает ионизирующее излучения.
Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза.
Она часто измеряется в Рентгенах (Р).
Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы.
Единица измерения мощности экспозиционной дозы - микроРентген/час.

Мощность дозы, умноженная на время, называется дозой.
Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).


Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час.
В быту можно считать, что 1 Зиверт = 100 Рентген.
Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри,
(для определенности рассматриваем источник цезий-137), на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час.
Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: "Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тыс.рентген при норме 20 "

* Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген - это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

* Во-вторых, можно высказать следующие соображения:
10 тысяч рентген/час - достаточно большая величина.
С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час!

Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику.
Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать,
что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час.
Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем 100р- купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о "норме 20" можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.
Кстати, такой нормы нет.

Поэтому правильно сообщение, по-видимому, должно выглядеть так:
«Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том,что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

7. ЧТО ТАКОЕ ИЗОТОПЫ?

В таблице Менделеева более 100 химических элементов.
Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента.
Известно около 2000 изотопов, из которых около 300 - стабильные.
Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный),
- дейтерий Н-2 (стабильный),
- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами.

8. ЧТО ТАКОЕ ПЕРИОД ПОЛУРАСПАДА?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия "период полураспада" :
"если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда.
В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом.
Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

ПО ПРОИСХОЖДЕНИЮ РАДИОАКТИВНОСТЬ ДЕЛЯТ НА ЕСТЕСТВЕННУЮ (природную) И ТЕХНОГЕННУЮ:

9. ЧТО ВОКРУГ НАС РАДИОАКТИВНО?
(Воздействие на человека тех или иных источников радиации поможет оценить диаграмма 1 - см. рис внизу)

а) ЕСТЕСТВЕННАЯ РАДИОАКТИВНОСТЬ.
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях - дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне,
в стройматериалах, из которых они построены, содержится природная радиоактивность.

б) РАДОН (вносит существенный вклад в облучение человека как сам, так и продукты его распада)

Основным источником этого радиоактивного инертного газа является земная кора.
Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях.
Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона.

Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.

Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Основную часть дозы облучения от радона человек получает, находясь в закрытом,
непроветриваемом помещении;
регулярное проветривание может снизить концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Сравнить мощность излучения различных источников радона поможет диаграмма 2.
(см рис ниже - Сравнительная мощность различных источников радона)

в) ТЕХНОГЕННАЯ РАДИОАКТИВНОСТЬ.:

Техногенная радиоактивность возникает вследствие человеческой деятельности

Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона.

Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40.

Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.

Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.

И, конечно, свой вклад дают испытания ядерного оружия(ЯО), предприятия атомной энергетики и промышленности.

* Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п.
Такие ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.

Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

10. РАДИАЦИОННАЯ ОБСТАНОВКА В РОССИИ?

Радиационная обстановка в разных регионах России освещается в государственном ежегодном документе "О состоянии окружающей природной среды Российской Федерации".
Также доступна информация о радиационной обстановке в отдельных регионах.


11.. КАК ВЫГЛЯДЯТ ЧАСТО ВСТРЕЧАЕМЫЕ РАДИОАКТИВНЫЕ ПРЕДМЕТЫ?

Согласно данным МосНПО "Радон", более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы.

Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.
Похожая ситуация и в С.-Петербурге.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные на рисунках. прикрепленных к статье(описание смотри под рисунками), а именно:

Радиоактивный переключатель (тумблер) :
Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» - около 2 миллиРентген/час.

Авиационные часы АЧС с радиоактивным циферблатом:
Часы с циферблатом и стрелками выпуска до 1962 г., флуоресцирующими благодаря радиоактивной краске. Мощность дозы вблизи часов около 300 микроРентген/час.

— Радиоактивные трубы из металлолома:
Обрезки отработавших труб из нержавеющей стали, применявшихся в технологических процессах на предприятии атомной промышленности, но каким-то образом попавшие в металлолом. Мощность дозы может быть весьма значительной.

— Переносной контейнер с источником радиации внутри:
Переносной свинцовый контейнер, внутри которого может находиться миниатюрная металлическая капсула, содержащая радиоактивный источник (например, цезий-137 или кобальт-60). Мощность дозы от источника без контейнера может быть очень большой.

12.. ЯВЛЯЕТСЯ ЛИ КОМПЬЮТЕР ИСТОЧНИКОМ РАДИАЦИИ?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ);
дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.

Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ.

Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99. Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.

Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission»

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма.
Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час,
т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

13. ЧТО ТАКОЕ НОРМАЛЬНЫЙ РАДИАЦИОННЫЙ ФОН или НОРМАЛЬНЫЙ УРОВЕНЬ РАДИАЦИИ?

На Земле существуют населенные области с повышенным радиационным фоном.

Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.
Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория - в Индии (штат Керала) и Бразилии (штат Эспириту-Санту).
Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер).
Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует "нормального фона" как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где "не ступала нога человека",
радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать
ТИПИЧНЫЕ ЗНАЧЕНИЯ ФОНА НА УЛИЦЕ (открытой местности) - 8 - 12 мкР/час,
В ПОМЕЩЕНИИ - 15 - 20 мкР/час.

Нормы, действующие в России, изложены в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН СанПиН 2.2.2/2.4.1340-03)

14.. КАКИЕ БЫВАЮТ НОРМЫ РАДИОАКТИВНОСТИ?

В отношении радиоактивности существует очень много норм - нормируется буквально все.
Во всех случаях проводится различие между населением и персоналом, т.е. лицами,
чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.).
Вне своего производства персонал относится к населению.
Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения - той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон "О радиационной безопасности населения" № 3-ФЗ от 05.12.96 и "Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03".

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) ВОЗДУХ, ПРОДУКТЫ ПИТАНИЯ, ВОДА:
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются "Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)".

б) СТРОЙМАТЕРИАЛЫ

Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь строящихся жилых и общественных зданий (1 класс),

Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,

где АRa и АTh - удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак - удельная активность К-40 (Бк/кг).

* Также применяются ГОСТ 30108-94:
"Материалы и изделия строительные.
Определение удельной эффективной активности естественных радионуклидов" и ГОСТ Р 50801-95 "
Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов".

Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение

Аэфф м = Аэфф + DАэфф, где DАэфф - погрешность определения Аэфф.

в) ПОМЕЩЕНИЯ

Нормируется суммарное содержание радона и торона в воздухе помещений:

для новых зданий - не более 100 Бк/м3, для уже эксплуатируемых - не более 200 Бк/м3.

г) МЕДИЦИНСКАЯ ДИАГНОСТИКА

Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) КОМПЬЮТЕРНАЯ ТЕХНИКА

Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН 2.2.2/2.4.1340-03).

15. КАК ЗАЩИТИТЬСЯ ОТ РАДИАЦИИ? ПОМОГАЕТ ЛИ ОТ РАДИАЦИИ АЛКОГОЛЬ?

От источника радиации защищаются временем, расстоянием и веществом.

— Временем - в следствии того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.

— Расстоянием - благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния).
Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час,
то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.

— Веществом - необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

* Что касается главного источника облучения в помещениях - радона и продуктов его распада,
то регулярное проветривание позволяет значительно уменьшить его дозовую нагрузку.

* Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы - благо их ассортимент ныне чрезвычайно богат.

* Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

* Существуют также и народные рецепты помогающие бороться и очищать организм от радиации.
у них вы узнаете уже сегодня)

16. КОГДА ДУМАТЬ О РАДИАЦИИ?

В обыденной мирной, пока еще, жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья.
в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений - (свалки, котлованы, склады металлолома).

Тем не менее именно в обыденной жизни о радиоактивности следует вспомнить.
Это полезно сделать:

При покупке квартиры, дома, земельного участка,
--при планировании строительных и отделочных работ,
--при выборе и приобретении строительных и отделочных материалов для квартиры или дома,
а также материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.).

—к тому же мы всегда должны помнить о вероятности БП

Следует все-таки отметить, что радиация - далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26-м месте, а первые два места занимают тяжелые металлы и химические токсины.

СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЯ РАДИАЦИИ


Дозиметры. Эти приборы с каждым днем приобретают все большую популярность.

После аварии в Чернобыле, тема радиации перестала быть интересом только узкого круга специалистов.

Многие люди стали больше беспокоится об опасности, которую она может в себе нести. Сейчас уже нельзя до конца быть уверенным в чистоте продуктов питания, которыми торгуют на рынках и в магазинах, а также в безопасности воды в природных источниках.

Данный прибор для измерения перестал быть экзотикой и стал одним из бытовых приборов, который помогает определить безопасность нахождения в том или ином месте, а также " норму "(в этой области) приобретаемых стройматериалов, вещей, продуктов и т.п.

а потому давайте разберемся


1. ЧТО ИЗМЕРЯЕТ И ЧЕГО НЕ ИЗМЕРЯЕТ ДОЗИМЕТР.

Дозиметр измеряет мощность дозы ионизирующего излучения непосредственно в том месте, где он находится.

Основное предназначение бытового дозиметра - измерение мощности дозы в том месте, где этот дозиметр находится (в руках человека, на грунте и т.д.) и проверка тем самым на радиоактивность подозрительных предметов.

Однако скорее всего, Вам удастся заметить только достаточно серьезные повышения мощности дозы.

Поэтому индивидуальный дозиметр поможет прежде всего тем, кто часто бывает в районах, загрязненных в результате аварии на ЧАЭС (как правило, все эти места хорошо известны).

Кроме того, такой прибор может быть полезен в незнакомой удаленной от цивилизации местности (например при сборе ягод и грибов в достаточно "диких" местах), при выборе места для строительства дома, для предварительной проверки привозного грунта при ландшафтном благоустройстве.

Повторим, однако, что в этих случаях полезен он будет только при весьма существенных радиоактивных загрязнениях, которые встречаются нечасто.

Не очень сильные, но, тем не менее, небезопасные загрязнения бытовым дозиметром обнаружить очень трудно. Для этого нужны совершенно другие методы, которые могут использовать только специалисты.

Относительно возможности проверять с помощью бытового дозиметра соответствие радиационных параметров установленным нормам можно сказать следующее.

Дозовые показатели (мощность дозы в помещениях, мощность дозы на местности) для отдельных точек проверить можно. Однако бытовым дозиметром очень трудно обследовать все помещение и добиться уверенности в том, что не пропущен локальный источник радиоактивности.

Почти бесполезно пытаться измерять радиоактивность продуктов питания или стройматериалов с помощью бытового дозиметра.

Дозиметр способен выявить разве что ОЧЕНЬ СИЛЬНО загрязненные продукты или строительные материалы, содержание радиоактивности в которых в десятки раз превосходит допустимые нормы.

Напомним, что для продуктов и строительных материалов нормируется не мощность дозы, а содержание радионуклидов, а дозиметр принципиально не позволяет измерять этот параметр.
Здесь опять же нужны другие методы и работа специалистов.

2. КАК ПРАВИЛЬНО ПОЛЬЗОВАТЬСЯ ДОЗИМЕТРОМ?

Следует пользоваться дозиметром в соответствии с прилагаемой к нему инструкцией.

Также необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон.

Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации.

Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.

В том, что показания дозиметра в квартире больше в 1,5 - 2 раза, чем на улице, нет ничего необычного.

Кроме того, необходимо учитывать, что при измерениях на "уровне фона" в одном и том же месте прибор может показать, например, 8, 15 и 10 мкР/час.
Поэтому для получения достоверного результата рекомендуют провести несколько измерений и затем вычислить среднее арифметическое. В нашем примере среднее составит (8+15+10)/3 = 11 мкР/час.

3. КАКИЕ БЫВАЮТ ДОЗИМЕТРЫ?

* В продаже можно встретить как бытовые, так и профессиональные дозиметры.
Последние имеют целый ряд принципиальных преимуществ. Однако, эти приборы весьма дороги (в десять и более раз дороже бытового дозиметра), а ситуации, когда эти преимущества могут быть реализованы, крайне редки в быту. Поэтому приобретать надо бытовой дозиметр.

Особо следует сказать о радиометрах для измерения активности радона: хотя они бывают только в профессиональном исполнении, но их использование в быту может быть оправданным.

* Подавляющее большинство дозиметров являются прямопоказывающими, т.е. с их помощью можно получить результат сразу после измерения.

Существуют и непрямопоказывающие дозиметры, не имеющие никаких устройств питания и индикации, исключительно компактные (часто в виде брелока).
Их предназначение - индивидуальный дозиметрический контроль на радиационно-опасных объектах и в медицине.

Поскольку провести перезарядку такого дозиметра или считать его показания можно только с помощью специальной стационарной аппаратуры, его нельзя использовать для принятия оперативных решений.

* Дозиметры бывают беспороговые и пороговые. Последние позволяют обнаружить только превышение редустановленного изготовителем нормативного уровня радиации по принципу "да-нет" и благодаря этому просты и надежны в эксплуатации, стоят дешевле беспороговых примерно в 1,5 - 2 раза.

Как правило, беспороговые дозиметры можно эксплуатировать и в пороговом режиме.

4. БЫТОВЫЕ ДОЗИМЕТРЫ В ОСНОВНОМ РАЗЛИЧАЮТСЯ ПО СЛЕДУЮЩИМ ПАРАМЕТРАМ:

— типы регистрируемых излучений - только гамма, или гамма и бета;

— тип блока детектирования - газоразрядный счетчик (также известен как счетчик Гейгера) или сцинтилляционный кристалл/пластмасса; количество газоразрядных счетчиков варьируется от 1 до 4-х;

— размещение блока детектирования - выносной или встроенный;

— наличие цифрового и/или звукового индикатора;

— время одного измерения - от 3 до 40 секунд;

— наличие тех или иных режимов измерения и самодиагностики;

— габариты и вес;

— цена, в зависимости от комбинации вышеперечисленных параметров.

5. ЧТО ДЕЛАТЬ, ЕСЛИ ДОЗИМЕТР "ЗАШКАЛИВАЕТ" ИЛИ ЕГО ОКАЗАНИЯ НЕОБЫЧНО БОЛЬШИЕ?

— Убедиться, что при удалении дозиметра от того места, где его "зашкаливает", показания прибора приходят в норму.

— Убедиться, что дозиметр исправен (большинство приборов такого рода имеют специальный режим самодиагностики).

— Нормальную работоспособность электрической схемы дозиметра могут частично или полностью нарушать замыкания, протечки батареек, сильные внешние электромагнитные поля. Если есть возможность, желательно продублировать измерения с помощью другого дозиметра, желательно другого типа.

Если же вы уверены, что обнаружили источник или участок радиоактивного загрязнения, НИ В КОЕМ СЛУЧАЕ не следует пытаться самостоятельно избавиться от него (выбросить, закопать или спрятать).

Следует как-то обозначить место своей находки, и обязательно сообщить о ней службам, в чьи обязанности входит обнаружение, идентификация и захоронение бесхозных радиоактивных источников.

6. КУДА ЗВОНИТЬ В СЛУЧАЕ ОБНАРУЖЕНИЯ ВЫСОКОГО УРОВНЯ РАДИАЦИИ?

Главное управление МЧС РФ по РС(Я), оперативный дежурный: тел: /4112/ 42-49-97
-Управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по РС(Я) тел: /4112/ 35-16-45, факс: /4112/ 35-09-55
-Территориальные органы Министерства охраны природы РС(Я)

(заранее узнайте номера телефонов для таких случаев в своем регионе)

7. КОГДА СТОИТ ОБРАТИТСЯ К СПЕЦИАЛИСТАМ ДЛЯ ИЗМЕРЕНИЯ РАДИАЦИИ?

Подходы типа "Радиоактивность - это очень просто!" или "Дозиметрия - своими руками" себя не оправдывают. В большинстве случаев непрофессионал не может правильно трактовать число, высветившееся на табло дозиметра в результате проведенного замера. Соответственно, он не может самостоятельно принять решение о радиационной безопасности подозрительного объекта, рядом с которым этот замер был проведен.

Исключение составляет ситуация, когда дозиметр показал очень большое число. Тут все ясно: отойти подальше, проверить показания дозиметра вдали от места аномального показания и, если показания стали обычными, то, не возвращаясь к "плохому месту", быстро уведомить соответствующие службы.

К специалистам (в соответствующим образом аккредитованные лаборатории) необходимо обращаться в тех случаях, когда необходимо ОФИЦИАЛЬНОЕ заключение о соответствии того или иного товара действующим нормам радиационной безопасности.

Такие заключения обязательны для продуктов, которые могут концентрировать в себе радиоактивность с места произрастания: ягоды и сушеные грибы, мед, лекарственные травы. При этом для товарных партий продуктов радиационный контроль обойдется продавцу лишь в доли процента от стоимости партии.

При покупке земельного участка или квартиры не помешает убедиться в соответствии их естественной радиоактивности действующим нормам, а также в отсутствии техногенного радиационного загрязнения.

Если вы все таки решили приобрести себе индивидуальный бытовой дозиметр, серьезно отнеситесь к этому вопросу.

(Лаборатория радиационного контроля ЛРК-1 МИФИ)

Задача (для разогрева):

Расскажу я вам, дружочки,
Как выращивать грибочки:
Нужно в поле утром рано
Сдвинуть два куска урана...

Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?

Ответ (для того, чтобы увидеть ответ - нужно выделить текст) : Для урана-235 критическая масса составляет примерно 500 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.

Радиация, что это?

Радиация (в переводе с английского "radiation") - это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание "ионизирующее излучение".

Ионизирующее излучение, что это?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.

Радиоактивность, что это?

Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта (ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния. Многие тяжелые ядра (трансурановый ряд в таблице Менделеева - торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.

На этой анимации наглядно показано явление радиоактивности.

Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймонпоместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.

Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.

α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.

Изотопы, что это?

Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55 Cs, 134 m 55 Cs, 134 55 Cs, 135 55 Cs, 136 55 Cs, 137 55 Cs. Т.е. заряд в большей степени определяет химические свойства элемента.

Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.

Какие виды ионизирующего излучения существуют?

Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:

  • альфа-излучение;
  • бета-излучение;
  • гамма-излучение;
  • рентгеновское излучение.

Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.

Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения - это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.

Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Альфа-излучение (α -излучение) - корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.

Бета-излучение (β -излучение) - корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Е β max , или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.

Гамма-излучение (γ –излучение или гамма кванты) – коротковолновое электромагнитное (фотонное) излучение с длиной волны

Рентгеновское излучение - по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр - тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, - синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.

Прохождение радиации и ионизирующих излучений через препятствия:

Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него:

Что такое источник излучения?

Источник ионизирующего излучения (ИИИ) - объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.

Что такое радионуклиды?

Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.

Что такое период полураспада?

Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.

В каких единицах измеряется радиоактивность?

Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?

Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.

Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр (мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1 Зв = 1 Дж/кг = 100 бэр.

1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;

Поглощенная доза - количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг

Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени - a-частиц*мин/см 2 , β-частиц*мин/см 2 .

Что вокруг нас радиоактивно?

Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.

Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать:

  • естественную, природную радиоактивность;
  • техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).

Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?

Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) - радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.

Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.

Значительной составляющей природной радиоактивности является продукт распада радия-226 - радон-222.

Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.

Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях.

Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
  • почва под зданиями.

Более подробно о радоне и прибораз для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА .

Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования - рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .

Что такое "черные пески" и какую опасность они представляют?


«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO 4 , которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y 2 O 3 до 5%, окиси тория ThO 2 до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.

Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.

Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.

Средства измерения радиации и радиоактивности.


Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
  • для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.

Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:

  1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI. Дозиметр является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.

    Информация о блоках детектирования и их применению:

Наименование блока детектирования

Измеряемое излучение

Основная особенность (техническая характеристика)

Область применения

БД для альфа излучения

Диапазон измерения 3,4·10 -3 - 3,4·10 3 Бк·см -2

БД для измерения плотности потока альфа-частиц с поверхности

БД для бета излучения

Диапазон измерения 1 - 5·10 5 част./(мин·см 2)

БД для измерения плотности потока бета-частиц с поверхности

БД для гамма излучения

Чувствительность

350 имп·с -1 /мкЗв·ч -1

Диапазон измерения

0,03 - 300 мкЗв/ч

Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения.

БД для гамма излучения

Диапазон измерения 0,05 мкЗв/ч - 10 Зв/ч

Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения.

БД для гамма излучения

Диапазо измерения 1 мЗв/ч - 100 Зв/ч Чувствительность

900 имп·с -1 /мкЗв·ч -1

Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением.

БД для рентгеновского излучения

Диапазон энергии

5 - 160 кэВ

Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии.

БД для нейтронного излучения

Диапазон измерения

0,1 - 10 4 нейтр/(с·см 2) Чувствительность 1,5 (имп·с -1)/(нейтрон·с -1 ·см -2)

БД для альфа, бета, гамма и рентгеновского излучения

Чувствительность

6,6 имп·с -1 /мкЗв·ч -1

Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта.

2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения.

Во многом аналогичен дозиметру-радиометру .

  • измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
  • измерение плотности потока альфа- и бета-излучений;
  • измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
  • измерение плотности потока гамма-излучения;
  • поиск, а так же локализация радиоактивных источников и источников загрязнений;
  • измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
  • радиационный анализ местности с учетом географических координат, используя GPS;

Двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:

  • удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
  • удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.

Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.

9. Гамма-спектрометр на основе ОЧГ детектора Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.

    Спектрометр бета и гамма излучения МКС-АТ1315

    Спектрометр со свинцовой защитой NaI ПАК

    Портативный NaI спектрометр МКС-АТ6101

    Носимый ОЧГ спектрометр Эко ПАК

    Портативный ОЧГ спектрометр Эко ПАК

    Спектрометр NaI ПАК автомобильного исполнения

    Спектрометр MKS-AT6102

    Спектрометр Эко ПАК с электромашинным охлаждением

    Ручной ППД спектрометр Эко ПАК

Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:

  • при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
  • для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
  • при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
  • измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта». На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.

    В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала - её мрачно прозвали "слоновья нога" - означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.

    Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной - также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.

    Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) - многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.

    В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .

    Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.

    Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали "слоновьей ногой". В течение последующих лет "слоновью ногу" охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается.

    Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать "слоновью ногу", так что её, скорее всего, прислал кто-то из украинских коллег.

    Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о "слоновьей ноге" для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: "Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву "слоновью ногу", Чернобыль. Фотограф: неизвестен. Осень 1996". Ледбеттер подтвердил, что описание соответствует фотографии.

    Артур Корнеев - инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от "слоновьей ноги" с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче - городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).

    Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.

    Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации ("слоновья нога" изначально "светилась" более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.

    В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это "чистая психология". Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.

    Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага - проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.

    Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: "Советская радиация, - шутит он, - лучшая радиация в мире" .