Расчет на устойчивость по формуле эйлера. Устойчивость сжатых стержней

Впервые проблема устойчивости сжатых стержней была поставлена . Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

Предположим, что шарнирно закрепленный по концам прямой стержень, сжатый силой P = P k , был выведен некоторой горизонтальной силой из состояния прямолинейного равновесия и остался изогнутым после устранения горизонтальной силы (рис. 13.4). Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:

Совмещая начало координат с центром нижнего сечения, направим ось у в сторону прогибов стержня, а ось х - по оси стержня.

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

Но, как следует из рис. 13.4, при выбранном направлении осей у // <0, поэтому знаки левой и правой частей уравнения (17.2) будут одинаковыми, если в правой части сохранить знак минус. Если изменить направление оси у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

.

Полагая α 2 =Рк /EI , получаем линейное однородное дифференциальное уравнение

,

общий интеграл которого

Здесь A и B - постоянные интегрирования, определяемые из условий закрепления стержня, так называемых граничных или краевых условий.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

.

Константа A , представляющая собой наибольший прогиб стержня, не может быть равна нулю, так как при A =0 возможна только прямолинейная форма равновесия, а мы ищем условие, при котором возможна и криволинейная форма равновесия. Поэтому должно быть sin α l =0. Отсюда следует, что криволинейные формы равновесия стержня могут существовать, если α l принимает значения π ,2π ,.n π . Величина α l не может быть равна нулю, так как это решение соответствует случаю

Приравнивая α l = n π и подставляя

получаем

.

Выражение (13.5) называется формулой Эйлера . По ней можно вычислить критическую силу Рк при выпучивании стержня в одной из двух главных его плоскостей, так как только при этом условии справедливо уравнение (13.2), а следовательно и формула (13.5).

Выпучивание стержня происходит в сторону наименьшей жесткости, если нет специальных устройств, препятствующих изгибу стержня в этом направлении. Поэтому в формулу Эйлера надо подставлять I min - меньшей из главных центральных моментов инерции поперечного сечения стержня.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Величина критической силы, определяемая формулой (13.5), зависит от коэффициента n . Выясним геометрический смысл этого коэффициента.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α =π n /l в выражение (13.4) принимает вид

.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

.

Предположим, что стойка с одним защемленным и другим свободным концом (рис. 13.8) сжата силой Р .

Если сила P = P k , то кроме прямолинейной может существовать также и криволинейная форма равновесия стойки (пунктир на рис. 13.8).

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

Подчиняя это решение очевидным граничным условиям: y =0 при x =0 и y / =0 при x = l , получаем B =0, A α cos α l = 0.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

,

которой соответствует изгиб стержня по синусоиде

.

Значениям α l =3π /2, α l =5π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

В качестве второго примера рассмотрим стойку с одним защемленным и вторым шарнирно опертым концом (рис. 13.9). Вследствие искривления оси стержня при P = P k со стороны шарнирной опоры возникает горизонтальная реактивная сила R . Поэтому изгибающий момент в текущем сечении стержня

.α :

Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора. Нетрудно поверить, что наименьший, отличный от нуля, корень этого уравнения α l = 4.493=1.43 π .

Принимая α l = 1.43 π , получаем следующее выражение для критической силы:

Здесь μ =1/n - величина, обратная числу полуволн n синусоиды, по которой изогнется стержень. Постоянная μ называется коэффициентом приведения длины, а произведение μ l - приведенной длиной стержня. Приведенная длина есть длина полуволны синусоиды, по которой изгибается этот стержень.

Случай шарнирного закрепления концов стержня называется основным. Из сказанного выше следует, что критическая сила для любого случая закрепления стержня может быть вычислена по формуле для основного случая при замене в ней действительной длины стержня его приведенной длиной μ l .

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Задача определения критической силы для сжатого стержня впервые была решена в 1744 году выдающимся математиком Леонардом Эйлером. Формула для критической силы была выведена Эйлером на примере идеального прямого стержня постоянного сечения, шарнирно закрепленного на концах (Рис.2).

Одна из опор стержня допускает возможность продольного перемещения соответствующего конца стержня. Собственный вес стержня не учитывалась. Искомая формула выглядела:

(2)

Формула Эйлера (2) для критической силы выводилась для стержня с шарнирным закрепления концов. Этот случай закрепления концов стержня принято называть основным случаем. В этом случае на длине стержня укладывается одна полуволна синусоиды. Однако, в практике встречаются различные другие случаи закрепления концов стержня. На рис.3 приведены некоторые из них, которые наиболее часто встречаются.

Для определения значения критической силы для каждого из приведенных случаев закрепления концов на практике применяется способ, который использует геометрическую аналогию между поведением упругой линии сжатого стержня с шарнирным закреплением концов (основной случай) и другим способом закрепления концов стержня. Согласно этим способом все остальные случаев закрепления концов стержня сводится к основному путем введения так называемой сводной или свободной длины стержня.
Сводной или свободной длиной стержня называется условная длина шарнирно закрепленного стержня, имеет такую ​​же критическую силу, как и стержень с заданным закреплением концов. Судить о сводную длину стержня можно по числу полуволн, которые укладываются на длине стержня. С геометрической аналогии следует, что в пределах сводной длины стержень с произвольным закреплением концов вести себя так же, как стержень с шарнирным закреплением концов.
Сводная длина стержня вычисляется следующим образом: , где длина стержня с заданным закреплением концов; коэффициент сводной длины.
Из определения сводной длины следует, что коэффициент есть такое число, на которое необходимо умножить длину стержня с заданным закреплением концов, чтобы получить такую ​​длину условного стержня с шарнирным закреплением концов, на котором заключается одна полуволна синусоиды.
Для стержня, изображенного на рис.3 , а длина условного стержня с шарнирным закреплением концов должно быть в два раза больше, чем заданная длина стержня. Верхняя часть условного стержня с шарнирным закреплением концов вести себя точно так же, как и стержень с заданным закреплением концов. Коэффициент возведения длины для этого случая равна. На рис.3 , в одна полуволна размещается на длине, составляющей 0,7 реальной длины стержня. Коэффициент возведения длины в этом случае составляет. Для случая жесткого закрепления обоих концов стержня (Рис.3 , г) длина полуволны, замеренная между двумя точками перегиба, составляет половину длины стержня. Для этого случая коэффициент. Для основного случая (Рис.3 , б) коэффициент, поскольку на его длине укладывается одна полуволна и, следовательно, сведена длина стержня равна реальной его длине.
Преобразуем формулу Эйлера (2) , подставляя в нее вместо реальной длины стержня сводную длину. Получаем формулу Эйлера для критической силы в окончательном виде:


(3)

На рис.3 приведены значения критической силы для стержней с различными условиями закрепления концов при одинаковых начальной длине и жесткости поперечного сечения. Следует отметить, что наибольшее значение критическая сила достигает для стержня с жестким закреплением концов (Рис.3 , г). В этом случае критическая сила оказывается в четыре раза больше, чем для основного случае закрепления концов. Наименее эффективным типом закрепления концов стержня является случай, приведенный на рис.3 , а. Критическая сила в этом случае оказывается в четыре раза меньше, чем для основного случая.

6.Структурный анализ плоского механизма. Формула Чебышева
Механизмом называется механическая система тел, в которой заданныедвижения одного или нескольких тел преобразуются в необходимое движениедругих тел. Таким образом, механизмы служат для преобразованиядвижения.
Механизмы часто являются составной частью машины (см. определение ма-шины в ) преобразуя движение ее двигателя
в необходимое движение рабочего органа.
Рассмотрим структуру механизма на примере
кривошипно-ползунного механизма (рис.1).
Механизм состоит из звеньев 1, 2, 3 и 4
которые представляют одну деталь или груп-
пу жестко соединенных деталей, имеющих
общий закон движения.
Звено 1 – ведущее звено, закон движе-
ния которого задан. Это звено также называют
входным звеном. Оно всегда обозначается со
стрелкой.
Звенья 2, 3 – ведомые звенья; звено 3 – называют также исполнительным
или выходным звеном. Оно совершает движение для получения, которого по-
лучен механизм.
Звено 4 – стойка или базовое звено, на котором устанавливаются осталь-
ные звенья. Движение всех звеньев в механизме рассматривается относительно
стойки.

Задача определения критической силы была впервые поставлена и решена математиком Л.Эйлером*, в дальнейшем она была обобщена на другие случаи концевых закреплений стержня.

Эта формула имеет вид:

где Е – модуль упругости первого рода материала стержня;

I min – минимальный главный центральный момент инерции поперечного сечения стержня;

l – длина стержня;

m - коэффициент приведения длины стержня, зависящий от способа закрепления его концов;

m l – приведенная длина стержня.

На рис. 8.2 показаны наиболее распространенные способы закрепления концов сжатого стержня (штриховыми линиями изображены примерные формы упругих линий стержней при нагрузках, больших критических):

1) оба конца стержня закреплены шарнирно - m = 1 (рис. 8.2,а);

2) один конец жестко защемлен, а другой свободен - m = 2 (рис. 8.2,б);

3) оба конца жестко защемлены, но могут сближаться - m = 0,5 (рис. 8.2,в); 4) один конец стержня закреплен жестко, а другой – шарнирно - m = 0,7 (рис. 8.2,г).

m = 0,7
m = 0,5
m = 2
m = 1
F
F
F
а)
б)
в)
г)
Рис. 8.2
F

Формула Эйлера справедлива лишь при условии, что потеря устойчивости происходит в пределах упругих деформаций стержня, т.е. в пределах действия закона Гука.

Если обе части формулы Эйлера (8.3) разделить на площадь поперечного сечения стержня А, то получим так называемое критическое напряжение s кр , т.е. то напряжение, которое возникает в сечении стержня под действием критической силы F kp . При этом критическое напряжение не должно превышать предела пропорциональности:

где i min – минимальный радиус инерции.

Момент инерции берется минимальный потому, что стержень стремится изогнуться в плоскости наименьшей жесткости.

Разделим числитель и знаменатель формулы (8.4) на минимальный момент инерции I min , представленный формулой (8.5):

где - безразмерная величина называемая гибкостью стержня.

Условие применимости формулы Эйлера удобно выразить через гибкость стержня. Выразим из неравенства (8.6) значение l:

Правую часть этого неравенства обозначают l пред и называют предельной гибкостью стержня из данного материала, т.е.

Таким образом, получим окончательное условие применимости формулы Эйлера - l ³ l пред. Формула Эйлера применима, когда гибкость стержня не меньше предельной гибкости .

Так, например, для стали Ст.3 (Е = 2*10 5 Мпа; s пц = 200 МПа):

т.е. формула Эйлера применима в этом случае при l ³ 100.

Аналогично можно вычислить предельную гибкость и для других материалов.



В конструкциях нередко встречаются стержни, у которых l < l пред. Расчет таких стержней ведется по эмпирической формуле, выведенной профессором Ф.С.Ясинским* на основании обширного опытного материала:

где a, b, c – коэффициенты, зависящие от свойств материала.

В таблице приведены значения а, b и c для некоторых материалов, а также значения гибкостей, в пределах которых применима формула (8.9).

Таблица 8.1

При гибкости l < l 0 стержни можно рассчитывать на прочность без учета опасности потери устойчивости.

Из формул Эйлера и Ясинского следует, что значение критической силы возрастает с увеличением минимального момента инерции поперечного сечения стержня. Так как устойчивость стержня определяется значением минимального момента инерции его поперечного сечения, то, очевидно, рациональны сечения, у которых главные моменты инерции равны между собой. Стойка, имеющая такое сечение, обладает равноустойчивостью во всех направлениях. Из сечений такого типа следует выбирать такие, которые обладают наибольшим моментом инерции при наименьшей площади (затрате материала). Таким сечением является кольцевое сечение.

На рис. 8.3 представлена диаграмма зависимости критического напряжения в стержне от его гибкости. В зависимости от гибкости стержни условно делят на три категории. Стержни большой гибкости (l ³ l пред) рассчитывают на устойчивость по формуле Эйлера; стержни средней гибкости (l 0 £l £l пред) рассчитывают на устойчивость по формуле Ясинского; стержни малой гибкости (l рассчитывают не на устойчивость, а на прочность.

ДЕТАЛИ МАШИН

«Соединения деталей машин»

В процессе изготовления машины некоторые ее детали соединяют между собой, при этом образуются неразъемные или разъемные соединения.

Неразъемными называют соединения, которые невозможно разобрать без разрушения или повреждения деталей. К ним относятся заклепочные, сварные и клеевые соединения.

Разъемными называют соединения, которые можно разбирать и вновь собирать без повреждения деталей. К разъемным соединениям относятся резьбовые, шпоночные, зубчатые (шлицевые) и другие.

Рассмотрим стержень постоянного сечения, оба конца которого закреплены шарнирно (рис. 12.3). Стержень сжимается критической силой. Рассматриваем малые перемещения сечений стержня. Задавшись прогибом оси стержня в определенном сечении, найдем величину осевой сжимающей силы, при которой такой прогиб возможен. Будем считать, что напряжения в стержне не превышает предела пропорциональности.

Рис. 12.3. Схема изгиба стержня критической силой F кр .

Начало координат поместим в точке О , ось z направлена вдоль оси стержня, ось y – влево от начала координат. Определим прогиб стержня в произвольном сечении z .

Воспользуемся приближенным дифференциальным уравнением изогнутой оси стержня:

Определим изгибающий момент в произвольном сечении стержня:

Последнее выражение представляет собой однородное дифференциальное уравнение с постоянными коэффициентами.

Решение этого уравнения можно записать в виде гармонической функции:

у = A sinkz +B coskz .

Постоянные интегрирования А и В находятся из граничных условий:

при z = 0, у = 0, В = 0 и дифференциальное уравнение принимает следующий вид:

y = A sinkz .

Стержень изгибается по синусоиде.

При z = l, у = 0 A sinkl = 0.

Известно, что произведение двух сомножителей равно нулю, лишь в том случае, если один из сомножителей равен нулю. Разберем оба случая.

Пусть А = 0, то у(z) всегда равен нулю и прогиба вообще не существует. Это решение противоречит принятому предположению о том, что стержень прогнулся, т. е. А 0. Следовательно, должно выполняться условие sinkl = 0, откуда:

kl = 0, , 2 , 3 , …, n

где п – любое целое число.

Определим, какое значение п подходит к решению данной задачи. Рассмотрим условие

Из последнего выражения следует, что если k = 0, то F кр =0, т. е. стержень не нагружен, а это противоречит условию задачи. Следовательно, значение k = 0 можно исключить из решения. В общем случае имеем:

Приравняв F = F кр , получим выражение

где наименьшее значение сжимающей силы, при котором проис-

ходит продольный изгиб, поэтому следует принять п = 1.

Тогда уравнение для определения критической силы примет вид

Таким образом, стержень изгибается по синусоиде с одной полуволной.

При z = l /2 прогиб стержня имеет максимальное значение.

При n = 2 и n = 3 стержень изгибается по двум и трем полуволнам синусоиды соответственно (рис. 12.4, б, в).

Прогиб стержня в произвольном сечении под воздействием сжимающей силы можно определить по формуле



Потеря устойчивости стержня происходит в плоскостях наименьшей жесткости, т. е. J = J min , поэтому при определении критической силы следует учитывать наименьший осевой момент инерции сечения, тогда окончательно:

Таким образом, имеем формулу Эйлера (1744) для определения критической силы для стержня с двумя шарнирно закрепленными концами (основной случай).

Рис. 12.4. Схема изогнутой оси стержня при различных значениях n

Величина критической силы прямо пропорциональна наименьшей жесткости сечения и обратно пропорциональна квадрату длины стержня .

Как видно из формулы Эйлера, величина критической силы зависит от геометрических характеристик стержня и модуля упругости материала, но не зависит от прочностных характеристик материала.

Так, например, критическая сила F кр практически не зависит от марки стали.

Предельная растягивающая сила зависит от прочностных характеристик (в зависимости от марки стали она будет различной) и не зависит от длины стержня. Таким образом, можно утверждать, что имеется существенное различие между работой стержня на растяжение и сжатие.

Выше был рассмотрен так называемый основной случай закрепления концов сжатого стержня, когда оба конца стержня закреплены шарнирно. На практике применяются и другие способы закрепления концов стержня.

Рассмотрим, как влияют условия закрепления стержня на величину критической силы.

Второй случай : один конец стержня жестко защемлен, второй – свободен (рис. 12.5, а).

Рис. 12.5. Схема закрепления стержня по второму случаю

При потере устойчивости верхний конец стержня отклонится на некоторую величину и повернется, нижний защемленный конец останется вертикальным. Изогнутая ось получится такая же, как для одной половины стержня первого случая (рис. 12.5, б).



Для получения полного соответствия с первым случаем продолжим мысленно изогнутую ось стержня вниз. Тогда форма потери устойчивости будет полностью совпадать с первым случаем. Отсюда можно сделать вывод, что критическая сила для этого случая будет такая же, как и для пропорционально закрепленного по концам стержня длиной 2 м. Тогда

Третий случай: оба конца стержня жестко закреплены (рис. 12.6).

После потери устойчивости концы стержня не поворачиваются. Средняя часть стержня длиной l /2 вследствие симметрии будет работать в таких же условиях, что и стержень с шарнирно опертыми концами, но длиной l . Тогда, исходя из формулы, получим:

Рис. 12.6. Схема закрепления стержня

по третьему случаю

Четвертый случай: один конец стержня жестко защемлен, а другой – закреплен шарнирно. В этом случае верхняя часть стержня длиной приблизительно 2l /3 имеет вид полуволны синусоиды и находится в таких же условиях, что и стержень с шарнирными опорами на концах (рис. 12.7).

Рис. 12.7. Схема закрепления стержня

по четвертому случаю

Анализируя последние выражения для определения критической силы, приходим к выводу, что чем более жестко закреплены концы стержня, тем большую нагрузку данный стержень может воспринимать.

Поэтому зависимости для определения критической силы при различных условиях закрепления стержня можно объединить в одну формулу:

где приведенная длина стержня;

Коэффициент приведения длины стержня, зависящий от способа

закрепления концов стержня;

Фактическая длина стержня.

Понятие о приведенной длине стержня впервые было введено профессором Петербургского института путей сообщения Ф. С. Ясинским в 1892 году.

Необходимо также отметить, что при составлении формул для определения критических сил в стержнях с различными условиями закрепления по концам использовалась аналогия в формах потери устойчивости отдельных их участков.

Однако эти решения можно получить также строго математически. Для этого необходимо записать для каждого случая дифференциальное уравнение упругой линии стержня при потере устойчивости и решить его с использованием граничных условий.

Коэффициент продольной длины стержня в зависимости от условий его закрепления представлен на рис. 12.8.

Рис.12.8. Коэффициент приведения длины для различных случаев

закрепления концов стержня

Понятие об устойчивости и критической силе. Проектировочный и проверочный расчеты.

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость - способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) - нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y - прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение - формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая - в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр - приведенная длина стержня; l - фактическая длина стержня; μ - коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней - проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

Исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

По справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

Сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины - искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений:

Обычно в первой попытке принимают φ 1 = 0,5…0,6 и определяют площадь сечения в первом приближении

По найденной площади A1 подбирают сечение и вычисляют гибкость стержня в первом приближении λ1. Зная λ, находят новое значение φ′1;

Выбор материала и рациональной формы сечения.

Выбор материала . Так как в формулу Эйлера из всех механических характеристик входит лишь модуль Юнга, то для повышения устойчивости стержней большой гибкости нецелесообразно применять высокопрочные материалы, так как модуль Юнга для всех марок сталей примерно одинаков.

Для стержней малой гибкости применение высокосортных сталей оправдано, так как с повышением предела текучести у таких сталей повышаются и критические напряжения, а значит и запас устойчивости.