Равновесие физика. Большая энциклопедия нефти и газа

Всех сил, приложенных к телу относительно оси вращения, проходящей через любую точку O, равна нулю ΣΜO(Fί)=0. Такое определение ограничивает как поступательное движение тела, так и вращательное.

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета .

Определение через энергию системы

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

  • неустойчивое равновесие;
  • устойчивое равновесие;
  • безразличное равновесие.

Неустойчивое равновесие

В случае, когда вторая производная < 0, потенциальная энергия системы находится в состоянии локального максимума. это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему.

Устойчивое равновесие

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво . Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия.

Безразличное равновесие

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении.

Устойчивость в системах с большим числом степеней свободы

Если система имеет несколько степеней свободы, то можно получить различные результаты для различных направлений, однако равновесие будет устойчиво только в том случае, если оно устойчиво во всех направлениях .


Wikimedia Foundation . 2010 .

Смотреть что такое "Устойчивое равновесие" в других словарях:

    устойчивое равновесие

    См. в ст. Устойчивость сообщества. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    устойчивое равновесие - pastovioji pusiausvyra statusas T sritis chemija apibrėžtis Būsena, kuriai esant sistema, dėl trikdžių praradusi pusiausvyrą, trikdžiams nustojus veikti vėl pasidaro pusiausvira. atitikmenys: angl. stable equilibrium rus. устойчивое равновесие… … Chemijos terminų aiškinamasis žodynas

    устойчивое равновесие - stabilioji pusiausvyra statusas T sritis fizika atitikmenys: angl. stable equilibrium vok. gesichertes Gleichgewicht, n; stabiles Gleichgewicht, n rus. устойчивое равновесие, n pranc. équilibre stable, m … Fizikos terminų žodynas

    устойчивое равновесие - Равновесие механической системы, при котором в случае любого достаточно малого изменения ее положения и сообщения ей любых достаточно малых скоростей, система во все последующее время будет занимать положения, сколь угодно близкие к… … Политехнический терминологический толковый словарь

    устойчивое равновесие системы - Равновесие, при котором после устранения причин, вызвавших какие либо возможные отклонения системы, она возвращается в исходное или близкое к нему положение. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР.… … Справочник технического переводчика

    устойчивое равновесие атмосферы - Состояние атмосферы, когда вертикальный градиент температуры воздуха меньше сухого адиабатического градиента и не происходит вертикального движения воздуха … Словарь по географии

    равновесие системы устойчивое - Равновесие, при котором система возвращается в исходное или близкое к нему положение после устранения причин, вызвавших возможное отклонение системы [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN stable… … Справочник технического переводчика

    РАВНОВЕСИЕ, равновесия, мн. нет, ср. (книжн.). 1. Состояние неподвижности, покоя, в котором находится какое нибудь тело под воздействием равных, противоположно направленных и потому взаимно уничтожающихся сил (мех.). Равновесие сил. Устойчивое… … Толковый словарь Ушакова

Наглядной иллюстрацией устойчивого и неустойчивого равновесия служит поведения тяжелого шарика на гладкой поверхности (рис. 1.5). Интуиция и опыт подсказывают, что помещенный на вогнутую поверхность шарик останется на месте, а с выпуклой и седлообразной поверхностей он скатится. Положение шарика на вогнутой поверхности устойчиво, а положение шарика на выпуклой и седлообразной поверхностях неустойчиво. Аналогично два соединенных шарниром прямых стержня при растягивающей силе находятся в устойчивом положении равновесия, а при сжимающей силе - в неустойчивом (рис. 1.6).

Но интуиция может дать верный ответ только в простейших случаях; для более сложных систем одной интуиции оказывается недостаточно. Например, даже для сравнительно простой механической системы, изображенной на рис. 1.7, а, интуиция может лишь подсказать, что положение равновесия шарика на вершине при очень малой жесткости пружины будет неустойчивым, а с увеличением жесткости пружины оно должно стать устойчивым. Для изображенной на рис. 2.3, б системы стержней, соединенных шарнирами, на основе интуиции можно только сказать, что исходное положение равновесия этой системы устойчиво или неустойчиво в зависимости от соотношения между силой, жесткостью пружины и длиной стержней.

Для того чтобы решить устойчиво или неустойчиво равновесие механической системы, необходимо использовать аналитические признаки устойчивости. Наиболее общим подходом к изучению устойчивости положения равновесия в механике является энергетический подход, основанный на исследовании изменения полной потенциальной энергии системы при отклонениях от положения равновесия.

В положении равновесия полная потенциальная энергия консервативной механической системы имеет стационарное значение, причем, согласно теореме Лагранжа, положение равновесия устойчиво, если это значение соответствует минимуму полной потенциальной энергии. Не углубляясь в математические тонкости, поясним эти общие положения на простейших примерах.

В системах, изображенных на рис. 1.5, полная потенциальная энергия изменяется пропорционально вертикальному смещению шарика. Когда шарик опускается, его потенциальная энергия, естественно, уменьшается. Если шарик поднимается, то потенциальная энергия возрастает. Поэтому нижняя точка вогнутой поверхности соответствует минимуму полной потенциальной энергии и положение равновесия шарика в этой точке устойчиво. Вершина выпуклой поверхности соответствует стационарному, но не минимальному значению полной потенциальной энергии (в данном случае - максимальному значению). Поэтому положение равновесия шарика здесь неустойчиво. Стационарная точка на седлообразной поверхности тоже не соответствует минимуму полной потенциальной энергии (это так называемая точка мини-макса) и положение равновесия шарика здесь неустойчиво. Последний случай весьма характерен. В неустойчивом состоянии равновесия потенциальная энергия вовсе не должна достигать максимального значения. Положение равновесия не будет устойчивым во всех случаях, когда полная потенциальная энергия имеет стационарное, но не минимальное значение.

Для изображенной на рис. 1.6 стержневой системы также нетрудно установить, что при растягивающей силе вертикальное неотклоненное положение стержней соответствует минимуму потенциальной энергии и поэтому является устойчивым. При сжимающей силе неотклоненное положение стержней соответствует максимуму потенциальной энергии и является неустойчивым.

Предоставив возможность читателю самому установить условия устойчивости систем, изображенных на рис. 1.7, вернемся к двум рассмотренным в предыдущем параграфе задачам.

Полная потенциальная энергия упругой системы (с точностью до постоянного слагаемого, которое опускаем) складывается из внутренней энергии деформации U и потенциала внешних сил :

Составим выражение для полной потенциальной энергии стержня с упругим шарниром, нагруженного вертикальной силой (см. рис. 1.1). Энергия деформации упругого шарнира . Потенциал внешних сил с точностью до постоянного слагаемого равен взятому с обратным знаком произведению силы на вертикальное перемещение точки ее приложения, т. е. . Следовательно, полная потенциальная энергия

Рассматриваемая система имеет одну степень свободы: ее деформированное состояние полностью описывается одним независимым параметром. В качестве такого параметра взят угол , поэтому для исследования устойчивости системы нужно найти производные полной потенциальной энергии по углу .

Дифференцируя выражение (1.6) по , получим

Приравнивая нулю первую производную полной потенциальной энергии, приходим к уравнению (1.1), которое раньше было получено непосредственно из условий равновесия стержня. Исследование знака второй производной позволяет установить, какие из найденных положений равновесия устойчивы.

Исследуем устойчивость положений равновесия стержня, соответствующих двум независимым решениям (1.2). Первое из них соответствует вертикальному неотклоненному положению стержня при .

Согласно выражению (1.8) для этого положения равновесия

При полная потенциальная энергия минимальна и вертикальное положение стержня устойчиво, при полная потенциальная энергия максимальна и вертикальное положение стержня неустойчиво.

Для исследования устойчивости стержня в отклоненном положении подставим второе из решений (1.2) в выражение (1.8):

Если , то вторая производная полной энергии положительна, поскольку тогда , и отклоненное положение стержня, которое возможно при , всегда устойчиво.

Осталось еще не выясненным, устойчиво или неустойчиво положение равновесия, соответствующее точке пересечения двух решений при , поскольку в этой точке Вторая производная полной энергии равна нулю. Как известно из курса математического анализа, в таких случаях для исследования стационарной точки следует использовать высшие производные. Последовательно дифференцируя, находим

В исследуемой точке третья производная равна нулю, а четвертая положительна. Следовательно, в этой точке полная потенциальная энергия минимальна и неотклоненное положение равновесия стержня при устойчиво.

Результаты проведенного исследования устойчивости различных положений равновесия стержня с упругим шарниром представлены на рис. 1.8. Там же показано изменение полной потенциальной энергии системы при . Точки соответствуют минимумам полной потенциальной энергии и устойчивым отклоненным положениям равновесия; точка Максимуму энергии и неустойчивому вертикальному положению равновесия стержня.

Составим выражение полной потенциальной энергии . представленной на рис. 1.2. При отклонении стержня на угол пружина удлиняется на величину , а энергия деформации пружины определяется выражением ., вторая производная полной потенциальной энергии равна

Таким образом, при вторая производная отрицательна и отклоненное положение равновесия стержневой системы неустойчиво.

Положения равновесия, соответствующие точкам пересечения двух решений (1.4), неустойчивы (например, неотклоненное положение стержня при ). В этом нетрудно убедиться, определяя в этих точках знаки высших производных.

На рис. 1.9 показаны результаты проведенного исследования и характерные кривые изменения полной потенциальной энергии при различных уровнях нагружения.

Продемонстрированный на простейших примерах путь исследования устойчивости положений статического равновесия упругих систем используют и в случае более сложных систем.

С усложнением упругой системы растут технические трудности его реализации, но принципиальная основа - условие минимума полной потенциальной энергии - полностью сохраняется.

Следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

${\overrightarrow{F}}={\overrightarrow{F_1}}+{\overrightarrow{F_2}}+...= 0$

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы $F$ на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки.

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил. Оба эти условия не являются достаточными для покоя.

Рисунок 1. Безразличное равновесие. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо -- пример безразличного равновесия (рис. 1). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия.

Рисунок 2. Различные виды равновесия шара на опоре. (1) -- безразличное равновесие, (2) -- неустойчивое равновесие, (3) -- устойчивое равновесие

Шар, находящийся в верхней точке сферического выступа, -- пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 2).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси -- состояние равновесия неустойчиво (рис. 3).

Рисунок 3. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C -- центр массы диска; ${\overrightarrow{F}}_т\ $-- сила тяжести; ${\overrightarrow{F}}_{у\ }$-- упругая сила оси; d -- плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.

Задача 1

Наклонная плоскость наклонена под углом 30o к горизонту (рис. 4). На ней находится тело Р, масса которого m=2 кГ. Трением можно пренебречь. Нить, перекинутая через блок, составляет угол 45o с наклонной плоскостью. При каком весе груза Q тело Р будет в равновесии?

Рисунок 4

Тело находится под действием трех сил: силы тяжести Р, натяжения нити с грузом Q и силы упругости F со стороны плоскости, давящей на него в направлении, перпендикулярном к плоскости. Разложим силу Р на составляющие: $\overrightarrow{Р}={\overrightarrow{Р}}_1+{\overrightarrow{Р}}_2$. Условие ${\overrightarrow{P}}_2=$ Для равновесия, учитывая удвоение усилия подвижным блоком, необходимо, чтобы $\overrightarrow{Q}=-{2\overrightarrow{P}}_1$. Отсюда условие равновесия: $m_Q=2m{sin \widehat{{\overrightarrow{P}}_1{\overrightarrow{P}}_2}\ }$. Подставляя значения получим: $m_Q=2\cdot 2{sin \left(90{}^\circ -30{}^\circ -45{}^\circ \right)\ }=1,035\ кГ$.

При ветре привязной аэростат висит не над той точкой Земли, к которой прикреплен трос (рис. 5). Натяжение троса составляет 200 кГ, угол с вертикалью а=30${}^\circ$. Какова сила давления ветра?

\[{\overrightarrow{F}}_в=-{\overrightarrow{Т}}_1;\ \ \ \ \left|{\overrightarrow{F}}_в\right|=\left|{\overrightarrow{Т}}_1\right|=Тg{sin {\mathbf \alpha }\ }\] \[\left|{\overrightarrow{F}}_в\right|=\ 200\cdot 9.81\cdot {sin 30{}^\circ \ }=981\ Н\]
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

здесь скриншот игры про равновесие

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.