Разгрузка систем ориентации космических аппаратов. Исполнительные органы системы ориентации ка

Римский философ Сенека сказал: «Если человек не знает, куда он плывет, то для него нет попутного ветра». В самом деле, какая нам польза от , если мы не знаем положения аппарата в пространстве? Этот рассказ о приборах, которые позволяют нам не заблудиться в космосе.

Технический прогресс сделал системы ориентации небольшими, дешевыми и доступными. Сейчас даже студенческий микроспутник может похвастаться системой ориентации, о которой пионеры космонавтики могли только мечтать. Ограниченность возможностей порождала остроумные решения.

Асимметричный ответ: никакой ориентации

Первые спутники и даже межпланетные станции летали неориентированными. Передача данных на Землю велась по радиоканалу, и несколько антенн, чтобы спутник был на связи при любом положении и любых кувырканиях, весили гораздо меньше, чем система ориентации. Даже первые межпланетные станции летали неориентированными:


Луна-2, первая станция, достигшая поверхности Луны. Четыре антенны по бокам обеспечивают связь при любом положении относительно Земли

Даже сегодня иногда бывает проще покрыть всю поверхность спутника солнечными батареями и поставить несколько антенн, нежели создавать систему ориентации. Тем более, что некоторые задачи нетребовательны к ориентации - например, фиксировать космические лучи можно в любом положении спутника.

Достоинства:

  • Максимальная простота и надежность. Отсутствующая система ориентации не может сломаться.
Недостатки:
  • Годится сейчас, в основном, для микроспутников, решающих сравнительно простые задачи. «Серьезным» спутникам без системы ориентации уже не обойтись.

Солнечный датчик

Фотоэлементы к середине XX века стали вещью привычной и освоенной, поэтому нет ничего удивительного, что они отправились в космос. Очевидным маяком для таких датчиков стало Солнце. Его яркий свет попадал на фоточувствительный элемент и позволял определять направление:


Различные схемы работы современных солнечных датчиков, внизу находится фоточувствительная матрица


Еще один вариант конструкции, здесь матрица изогнута


Современные солнечные датчики

Достоинства:

  • Простота.
  • Дешевизна.
  • Чем выше орбита, тем меньше участок тени, и тем дольше может работать датчик.
  • Точность примерно одна угловая минута.
Недостатки:
  • Не работают в тени Земли или другого небесного тела.
  • Могут быть подвержены помехам от Земли, Луны и т.п.
Всего одна ось, по которой могут стабилизировать аппарат солнечные датчики, не мешает их активному использованию. Во-первых, солнечный датчик можно дополнить другими сенсорами. Во-вторых, у космических аппаратов с солнечными батареями солнечный датчик позволяет легко организовать режим закрутки на Солнце, когда аппарат вращается направленный на него, и солнечные батареи работают в максимально комфортных условиях.
Космические корабли «Восток» остроумно использовали солнечный датчик - ось на Солнце использовалась при построении ориентации для торможения корабля. Также, солнечные датчики были крайне востребованы на межпланетных станциях, потому что многие другие типы датчиков не могут работать вне земной орбиты.
Благодаря простоте и дешевизне солнечные датчики сейчас очень распространены в космической технике.

Инфракрасная вертикаль

Аппараты, которые летают по орбите Земли, часто нуждаются в определении местной вертикали - направления на центр Земли. Фотоэлементы видимого диапазона для этого подходят не очень - на ночной стороне Земля гораздо хуже освещена. Но, к счастью, в инфракрасном диапазоне теплая Земля светит практически одинаково на дневном и ночном полушариях. На низких орбитах датчики определяют положение горизонта, на высоких - сканируют пространство в поисках теплого круга Земли.
Конструктивно, как правило, инфракрасные построители вертикали содержат систему зеркал или сканирующее зеркало:


Инфракрасная вертикаль в сборке с маховиком. Блок предназначен для точной ориентации на Землю для геостационарных спутников. Хорошо видно сканирующее зеркало


Пример поля зрения инфракрасной вертикали. Черный круг - Земля


Отечественные инфракрасные вертикали производства ОАО «ВНИИЭМ»

Достоинства:

  • Способны строить местную вертикаль на любом участке орбиты.
  • Как правило, высокая надежность.
  • Хорошая точность -
Недостатки:
  • Ориентация только по одной оси.
  • Для низких орбит нужны одни конструкции, для высоких - другие.
  • Сравнительно большие габариты и вес.
  • Только для орбиты Земли.
Тот факт, что ориентация строится только по одной оси, не мешает широкому использованию инфракрасных вертикалей. Они очень полезны для геостационарных спутников, которым необходимо нацеливать свои антенны на Землю. Также ИКВ используются в пилотируемой космонавтике, например, на современных модификациях корабля «Союз» ориентация на торможение производится только по ее данным:


Корабль «Союз». Дублированные датчики ИКВ показаны стрелками

Гироорбитант

Для того, чтобы выдать тормозной импульс, необходимо знать направление вектора орбитальной скорости. Солнечный датчик даст правильную ось примерно один раз в сутки. Для полетов космонавтов это нормально, в случае нештатной ситуации человек может вручную сориентировать корабль. Но корабли «Восток» имели «братьев-близнецов», разведывательные спутники «Зенит», которым тоже нужно было выдавать тормозной импульс, чтобы вернуть с орбиты отснятую пленку. Ограничения солнечного датчика были неприемлемы, поэтому пришлось придумывать что-то новое. Таким решением стал гироорбитант. Когда работает инфракрасная вертикаль, корабль вращается, потому что ось на Землю постоянно поворачивается. Направление орбитального движения известно, поэтому по тому, в какую сторону поворачивается корабль, можно определить его положение:

Например, если корабль постоянно кренится вправо, то мы летим правым боком вперед. А если корабль летит кормой вперед, то он будет постоянно поднимать нос вверх. С помощью гироскопа, который стремится сохранить свое положение, это вращение можно определить:

Чем сильнее отклонена стрелка, тем сильнее выражено вращение по этой оси. Три таких рамки позволяют замерить вращение по трем осям и развернуть корабль соответственно.
Гироорбитанты широко использовались в 60-80-х годах, но сейчас вымерли. Простые датчики угловых скоростей позволили эффективно измерять вращение аппарата, а бортовая ЭВМ без труда определит положение корабля по этим данным.

Ионный датчик

Красивой была идея дополнить инфракрасную вертикаль ионным датчиком. На низких земных орбитах попадаются молекулы атмосферы, которые могут быть ионами - нести электрический заряд. Поставив датчики, фиксирующие поток ионов, можно определить, какой стороной корабль летит вперед по орбите - там поток будет максимальным:


Научная аппаратура для измерения концентрации положительных ионов

Ионный датчик работал быстрее - на построение ориентации с гироорбитантом уходил почти целый виток, а ионный датчик был способен построить ориентацию за ~10 минут. К сожалению, в районе Южной Америки находится так называемая «ионная яма», которая делает работу ионного датчика нестабильной. По закону подлости именно в районе Южной Америки нашим кораблям надо строить ориентацию на торможение для посадки в районе Байконура. Ионные датчики стояли на первых «Союзах», но достаточно скоро от них отказались, и сейчас они нигде не используются.

Звездный датчик

Одной оси на Солнце часто бывает мало. Для навигации может быть нужен еще один яркий объект, направление на который вместе с осью на Солнце даст нужную ориентацию. Таким объектом стала звезда Канопус - она вторая по яркости в небе и находится далеко от Солнца. Первым аппаратом, который использовал звезду для ориентации, стал «Маринер-4», стартовавший к Марсу в 1964 году. Идея оказалась удачной, хотя звездный датчик выпил много крови ЦУПа - при построении ориентации он наводился не на те звезды, и приходилось «прыгать» по звездам несколько дней. После того, как датчик наконец навелся на Канопус, он стал постоянно его терять - летевший рядом с зондом мусор иногда ярко вспыхивал и перезапускал алгоритм поиска звезды.
Первые звездные датчики представляли собой фотоэлементы с небольшим полем зрения, которые умели наводиться только на одну яркую звезду. Несмотря на ограниченность возможностей, они активно использовались на межпланетных станциях. Сейчас технический прогресс, фактически, создал новый класс устройств. Современные звездные датчики используют матрицу фотоэлементов, работают в паре с компьютером с каталогом звезд и определяют ориентацию аппарата по тем звездам, которые видны в поле их зрения. Такие датчики не нуждаются в предварительном построении грубой ориентации другими приборами и способны определить положение аппарата вне зависимости от участка неба, в которое их направят.


Типичные звездные датчики


Чем больше поле зрения, тем проще ориентироваться


Иллюстрация работы датчика - по взаимному положению звезд по данным каталога рассчитывается направление взгляда

Достоинства:

  • Максимальная точность, может быть меньше угловой секунды.
  • Не нуждается в других приборах, может определить точное положение самостоятельно.
  • Работают на любых орбитах.
Недостатки:
  • Высокая цена.
  • Не работают при быстром вращении аппарата.
  • Чувствительны к засветке и помехам.
Сейчас звездные датчики используются там, где нужно знать положение аппарата очень точно - в телескопах и других научных спутниках.

Магнитометр

Сравнительно новым направлением является построение ориентации по магнитному полю Земли. Магнитометры для измерения магнитного поля часто ставились на межпланетные станции, но не использовались для построения ориентации.


Магнитное поле Земли позволяет строить ориентацию по всем трем осям


«Научный» магнитометр зондов «Пионер-10» и -11


Первый цифровой магнитометр. Эта модель появилась на станции «Мир» в 1998 г. и использовалась в посадочном модуле «Филы» зонда «Розетта»

Достоинства:

  • Простота, дешевизна, надежность, компактность.
  • Средняя точность, от угловых минут до нескольких угловых секунд.
  • Можно строить ориентацию по всем трем осям.
Недостатки:
  • Подвержен помехам в т.ч. и от оборудования космического аппарата.
  • Не работает выше 10 000 км от Земли.
Простота и дешевизна магнитометров сделала их очень популярными в микроспутниках.

Гиростабилизированная платформа

Исторически, космические аппараты часто летали неориентированными или в режиме солнечной закрутки. Только в районе цели миссии они включали активные системы, строили ориентацию по трем осям и выполняли свою задачу. Но что, если нам необходимо поддерживать произвольную ориентацию длительное время? В этом случае нам надо «помнить» текущее положение и фиксировать свои повороты и маневры. А для этого человечество не придумало ничего лучше гироскопов (измеряют углы поворота) и акселерометров (измеряют линейные ускорения).
Гироскопы
Широко известно свойство гироскопа стремиться сохранить свое положение в пространстве:

Изначально гироскопы были только механическими. Но технический прогресс привел к появлению множества других типов.
Оптические гироскопы . Очень высокой точностью и отсутствием движущихся деталей отличаются оптические гироскопы - лазерные и оптоволоконные. В этом случае используется эффект Саньяка - фазовый сдвиг волн во вращающемся кольцевом интерферометре.


Лазерный гироскоп

Твердотельные волновые гироскопы . В этом случае измеряется прецессия стоячей волны резонирующего твердого тела. Не содержат движущихся частей и отличаются очень высокой точностью.

Вибрационные гироскопы . Используют для работы эффект Кориолиса - колебания одной части гироскопа при повороте отклоняют чувствительную часть:

Вибрационные гироскопы производятся в MEMS-исполнении, отличаются дешевизной и очень маленькими размерами при сравнительно неплохой точности. Именно эти гироскопы стоят в телефонах, квадрокоптерах и тому подобной технике. MEMS-гироскоп может работать и в космосе, и их ставят на микроспутники.

Размер и точность гироскопов наглядно:

Акселерометры
Конструктивно, акселерометры представляют собой весы - фиксированный груз меняет свой вес под воздействием ускорений, и датчик переводит этот вес в величину ускорения. Сейчас акселерометры кроме больших и дорогих версий обзавелись MEMS-аналогами:


Пример «большого» акселерометра


Микрофотография MEMS-акселерометра

Комбинация трех акселерометров и трех гироскопов позволяет фиксировать поворот и ускорение по всем трем осям. Такое устройство называется гиростабилизированной платформой. На заре космонавтики они были возможны только на карданном подвесе, были очень сложными и дорогими.


Гиростабилизированная платформа кораблей Apollo. Синий цилиндр на переднем плане - гироскоп. Видео испытаний платформы

Вершиной механических систем были бескарданные системы, когда платформа висела неподвижно в потоках газа. Это был хайтек, результат работы больших коллективов, очень дорогие и секретные устройства.


Сфера в центре - гиростабилизированная платформа. Система наведения МБР Peacekeeper

Ну а сейчас развитие электроники привело к тому, что платформа с пригодной для простых спутников точностью умещается на ладони, ее разрабатывают студенты, и даже публикуют исходный код.

Интересным нововведением стали MARG-платформы. В них данные с гироскопов и акселерометров дополняются магнитными датчиками, что позволяет исправлять накапливающуюся ошибку гироскопов. MARG-датчик, наверное, самый подходящий вариант для микроспутников - он маленький, простой, дешевый, не имеет движущихся частей, потребляет мало энергии, обеспечивает ориентацию по трем осям с коррекцией ошибок.
В «серьезных» системах для исправления ошибок ориентации гиростабилизированной платформы обычно используют звездные датчики.датчики

  • НСРТ
  • ориентация в космосе
  • Добавить метки

    Обеспечивающая определённое положение осей аппарата относительно некоторых заданных направлений. Необходимость данной системы обусловлена следующими задачами:

    Задачи, выполняемые аппаратом, могут требовать как постоянной ориентации, так и кратковременной. Системы ориентации могут обеспечивать одноосную или полную (трёхосную) ориентацию. Системы ориентации, не требующие затрат энергии, называют пассивными, к ним относятся: гравитационная, инерционная, аэродинамическая и др. К активным системам относят: реактивные двигатели ориентации, гиродины , маховики, соленоиды и т. д., они требуют затрат энергии запасаемой на борту аппарата. В пилотируемой космонавтике помимо автоматических систем ориентации применяются системы с ручным управлением.

    Датчики [ | ]

    В качестве датчиков текущего положения аппарата обычно применяются электронно-оптические датчики, использующие в качестве ориентиров различные небесные светила: , Землю, Луну, звёзды . Используется видимый или инфракрасный спектр , второе удобнее, например для Земли, так как в инфракрасной области спектра дневная и ночная сторона отличаются слабо.

    Кроме оптических датчиков могут применяться ионные датчики, датчики магнитного поля Земли, гироскопические датчики.

    Система стабилизации [ | ]

    При переходе с одной орбиты на другую, переходе на траекторию спуска, когда работает основная двигательная установка, необходимо сохранять неизменным направление осей аппарата. Для решения этой задачи предназначена система стабилизации . При стабилизации величина возмущающих сил и моментов намного выше, для их компенсации требуются значительные затраты энергии. Длительности нахождения в этом режиме относительно мала.

    Системы стабилизации и ориентации ввиду близости выполняемых ими задач нередко частично объединяют, например для них используют одни и те же датчики. В таких случаях можно говорить о единой системе ориентации и стабилизации космического аппарата .

    Пассивные системы [ | ]

    Эти системы отличаются экономичностью, однако им присущ ряд ограничений.

    Гравитационная [ | ]

    Данная система стабилизации использует гравитационное поле планеты, для Земли её использование эффективно для высот орбит от 200 км до 2000 км.

    Аэродинамическая [ | ]

    Использование данной системы возможно на низких орбитах, где имеются остатки атмосферы, для Земли это высоты от 200 до 400 км. Для высот более 2500 км возможно использование давления солнечных лучей для создания аналогичной системы.

    Электромагнитная [ | ]

    Путём установки на борту аппарата постоянных магнитов можно добиться определённого положения аппарата относительно силовых линий магнитного поля Земли . Если вместо постоянных магнитов использовать соленоиды , то становится возможным эффективное управление положением, такая система относится уже к разряду активных. Использование электромагнитных систем для подобных Земле планет возможно на высотах от 600 до 6000 км.

    Активные системы [ | ]

    Системы данного типа требуют затрат энергии.

    Газовые сопла [ | ]

    Гироскопы [ | ]

    Для ориентации и стабилизации массивных космических аппаратов на стационарных орбитах используются инерционные маховики и гиродины . Вращение маховика обычно обеспечивается электродвигателем.

    Если спутник не обладает системой ориентации, то после вывода на орбиту он совершает сложное вращательне движение типа «кувыркания» под действием аэродинамических, гравитационных, магнитных, радиационных сил. Характер вращения спутника может постепенно изменяться. Например, цилиндрический спутник, получивший в момент отделения от ракеты-носителя вращение вокруг продольной оси, стремится с теченим времени начать вращаться вокруг поперечной оси, наподобие пропеллера.

    Для замедления первоначального беспорядочного вращения спутника часто используется воздействие магнитного поля Земли . В частности, если установить на борту спутника мощный постоянный магнит, закрепленный в подшипниках, создающих большое трение, то стремление магнита стабилизироваться в магнитном поле заставит вращающийся вокруг своей оси спутник быстро затормозиться (при этом сильно нагреваются подшипники). Такая система успешно использовалась в советском астрономическом спутнике «Космос-215».

    Управление угловым положением (ориентацией) спутников осуществляется с помощью реактивных сопел, о чем рассказывалось в

    § 5 гл. 3. В системах ориентации часто применяют инфракрасные датчики, улавливающие тепловое излучение земной поверхности и таким путем обнаруживающие линию горизонта, а следовательно, и определяющие местную вертикаль. Подобная система стабилизации используется, например, в американских метеорологических спутниках серии «Нимбус», телевизионные камеры которых должны все время смотреть на Землю.

    Наиболее простым способом стабилизации служит сообщение спутнику вращения вдоль оси симметрии. Благодаря гироскопическому эффекту ось спутника, несмотря на возмущения, будет стремиться сохранить неизменным свое направление относительно звезд. Но не относительно Земли! Именно таким способом были ориентированы американские метеорологические спутники «Тирос». В результате спутники не кувыркались, что позволило получить десятки тысяч фотографий облачности Земли, но на большей части орбиты камеры могли фотографировать только мировое пространство.

    В последнее время находит распространение пассивный метод ориентации спутника по вертикали, основанный на существовании градиента гравитации. Спутник вытянутой формы стремится повернуться вокруг своего центра масс таким образом, чтобы его продольная ось расположилась вертикально. Это происходит от того, что конец спутника, более удаленный от Земли, притягивается Землей слабее, чем менее удаленный. Если при выводе спутника на орбиту сообщить ему медленное вращение, при котором он будет совершать один оборот вокруг центра масс за время одного облета Земли, то спутник будет двигаться вокруг Земли, располагаясь по вертикали, подобно Луне, повернутой к Земле все время одной своей стороной (это объясняется тем, что Луна тоже несколько вытянута вдоль линии Земля - Луна). Если же вращение сообщено спутнику не точно, то он начнет совершать колебания относительно вертикали, которые придется гасить специальными приспособлениями.

    Многие спутники не имеют вытянутой формы, и их снабжают складной штангой длиной в несколько метров (или даже десятков метров) с массой на конце. Штанга разворачивается в космосе в направлении от центра Земли. Все устройство снабжается демпфером пружинного типа для гашения колебаний (рис. 51, а, б) .

    Теоретически градиент гравитации обеспечивает продолговатому спутнику, движущемуся по круговой орбите, еще два положения равновесия кроме описанного радиального (его можно назвать: «спица в колесе» ). Это положения вдоль вектора скорости («стрела» ) и поперек вектора скорости - перпендикулярно двум предыдущим направлениям («поплавок» ). Но эти два положения неустойчивы по отношению к посторонним возмущениям: достаточно вспышки на Солнце - и спутник начнет отклоняться к положению «спицы в колесе». Какое важное это может иметь значение, мы увидим в § 1 гл. 7.

    Система гравитационной стабилизации отрабатывалась, а потом использовалась на многих спутниках. Таковы «Триад», «Траак», «GEOS-1, -2», «Эол», спутники серии ATS, «Эксплорер-38» (четыре гравитационных полых стержня длиной образующих две -образные антенны радиотелескопа, и демпфирующий стержень длиной 96 м) и другие. Несколько стержней, которые могут выдвигаться и вдвигаться, позволяют стабилизировать спутник по трем осям, разворачивать его на 180° в новое устойчивое положение (экспериментальный спутник «Додж»). На многих спутниках наряду с гравитационной используется магнитная ориентация .

    Рис. 51. Спутники с пассивными системами стабилизации: а) навигационный спутник США «1963-22А», б) исследовательский спутник США «Траак»; в) советский метеорологический спутник, «Космос-149» («Космическая стрела»).

    К числу пассивных методов относится аэродинамическая стабилизация. Продольная ось спутника может быть ориентирована в направлении его полета, если расположить в хвостовой части спутника стабилизатор, обладающий большей «парусностью», чем сам спутник (по принципу оперенной стрелы). Системой аэродинамической стабилизации был снабжен советский метеорологический

    спутник «Космос-149» (1967 г., рис. 51, в). При этом стабилизация спутника по крену (устранение поворота вокруг продольной оси) достигалась дополнительно с помощью двух гироскопов. Иллюминатор телевизионной аппаратуры спутника был в результате все время направлен на Землю . К этому типу относился и спутник «Космос-320» (1970 г.).

    Ориентация пилотируемых кораблей-спутников осуществляется посредством ручного управления или автоматически. Например, космонавт может развернуть корабль «Союз» произвольным образом по отношению к направлению своего полета. О направлении же этом он судит по показаниям ионного датчика вектора скорости.

    Нельзя не упомянуть в заключение о важном теоретическом положении: вращательное движение спутника тесно связано с его поступательным движением, или движение спутника относительно центра масс связано с движением самого центра масс . Эта связь, устанавливаемая анализом точных уравнений движения, делается заметной при больших размерах спутника.

    Пусть, например, длинный продолговатый спутник с большими одинаковыми массами на концах («гантель») движется по круговой орбите вокруг Земли в положении «спицы в колесе». Повернем его с помощью системы ориентации в положение «копья». Суммарная гравитационная сила, действующая на спутник, как вытекает из закона всемирного тяготения, теперь уменьшится, и спутник перейдет на эллиптическую орбиту. (Читатель убедится в сказанном, проделав вычисления, если, пренебрегая массой стержня «гантели», примет его длину, скажем, равной а высоту первоначальной орбиты - равной или где радиус Земли.)

    С помощью системы ориентации может быть изменена орбита и в случаях совсем иных природных сил. Например, сопротивление атмосферы может измениться при перемене положения спутника по отношению к встречному потоку, а сила давления солнечного света - при изменении ориентации аппарата с солнечным парусом; это отражается на орбите.


    Установка электромагнитов системы разгрузки малого КА «Чибис-М»
    Большинство современных космических аппаратов оборудованы маховичными или гиросиловыми системами ориентации корпуса космического аппарата. Исполнительные органы данных систем (двигатели-маховики в первом случае и силовые гироскопы во втором) имеют неприятное свойство - через некоторое время непрерывной работы они утрачивают способность выдавать управляющий момент. Двигатели-маховики достигают предельной скорости вращения, и происходит так называемое насыщение , при котором необходимо проводить разгрузку системы ориентации от накопленного кинетического момента. Для этого на каждом спутнике имеется система разгрузки - фактически, вспомогательная система ориентации, зачастую выполненная как часть основной - которая служит для приведения исполнительных органов в исходное состояние. Системы разгрузки бывают реактивные, электромагнитные и гравитационные.
    О системах разгрузки я пообещал рассказать прошлой осенью, получилось кратно уменьшить канонические три года ожидания. Желание написать пост усилилось после того, как Филипп Терехов, lozga , очень толково написал про исполнительные органы и датчики систем ориентации космических аппаратов. Пользуясь случаем, рекомендую ознакомиться в ЖЖ Филиппа - на мой взгляд, это лучший российский научно-популярный блог о космосе. Но к делу.

    Дисклаймер
    Как водится, не могу обойтись без строчки, что «мопед не мой» - основная моя работа связана с двигательными установками космических аппаратов. Но курс «Системы ориентации космических аппаратов» нам на базовой кафедре 533 читали с душой, и я им проникся. Поэтому попробую написать заметку по смежной теме, во многом опираясь на конспект и монографию Владимира Николаевича Васильева.
    И вот еще какой момент: ВНИИЭМ работает только с маховичными системами ориентации и электромагнитными системами разгрузки (фирменные «безрасходные» системы ориентации), с ними приходилось сталкиваться в работе. Про все остальные знаю из прочитанной литературы.

    Необходимость систем разгрузки
    Во первых строках письма не обойтись без ссылки на рассказ про двигатели-маховики и гиродины, там принцип действия описан подробнее, есть примеры и иллюстрации.
    Маховичные системы ориентации. Тут всё просто - двигатель-маховик создает управляющий момент только во время разгона (или торможения) ротора. При постоянной скорости вращения момент равен нулю. Соответственно, если двигатель будет выдавать момент достаточно долго, он благополучно достигнет предельной скорости вращения (обычно порядка 5000 об/мин) - и на этом выдача момента прекратится, всё, маховик насытился.
    Предвижу возражение: а если выдавать момент в противоположных направлениях, то скорость будет то увеличиваться, то снижаться (вплоть до вращения в противоположную сторону) - и никакого насыщения не произойдет. Проблема в том, что некоторые воздействующие на космический аппарат возмущения имеют один и тот же знак, и придется нашему маховику аккумулировать внешний возмущающий момент, постепенно набирая обороты.



    СПД-50 раскручивает MicroSatWhill «Канопуса-В»

    Яркий пример - возмущение от двигателя коррекции орбиты, вектор которого не проходит через центр масс. Я когда-то моделировал, как возмущения от двигателя СПД-50 (14 мН тяги) пытаются насытить четыре маленьких маховика «Канопуса-В» - у них оно никак не получалось. А были бы двигатели К50-10.5 на гидразине с тягой в 0,5 Н (в начале работы при полном баке) - насыщение произошло бы на пятой минуте работы двигателя.
    Гиросиловые системы. Здесь в роли исполнительных органов используется системы силовых гироскопов - гиродинов. Мы рассмотрим систему из двух одинаковых гиродинов, роторы которых обладают кинетическим моментом G, и оси вращения рамок параллельны:


    Электромагнитные системы разгрузки


    Магнитное поле Земли

    Этот тип систем построен на той же благодатной идее, что и компас - управляющий момент возникает от взаимодействия катушки с током и магнитного поля Земли.
    Катушек, как правило, на космическом аппарате имеется три - по одной на каждую ось ориентации. Обмотка у катушки, разумеется, дублирована. Магнитные свойства катушки характеризуются её магнитным моментом, который выражается в Ам 2 .
    Геомагнитное поле на околоземных орбитах напоминает по форме спелое яблоко, ось которого на 11,5 градусов отклонена от оси вращения нашей планеты. Все силовые линии проходят через два магнитных полюса, расположенных в Арктике и Антарктике, поэтому в полярных областях Земли силовые линии встречаются чаще и амплитуда магнитного поля там вдвое выше, чем на экваторе. Для справки сообщим, что на экваторе амплитуда геомагнитного поля составляет 31 мкТл, а вблизи полюсов 62 мкТл. Магнитное поле убывает пропорционально кубу большой полуоси орбиты спутника.
    Для вычисления управляющего момента от магнитной катушки воспользуемся формулой:
    M = P x B ,
    где M - управляющий момент [в Нм], P – магнитный момент катушки [Ам 2 ], В - магнитное поле Земли [Тл]. А вот выделение формулы жирным шрифтом и значок «х» говорят нам, что формула записана в векторах и речь идет о векторном произведении, которое по определению есть вектор с модулем:
    M=PBsin α,
    где α – угол между векторами.
    Если вспомнить, что синус 0 есть 0, а синус 90 градусов есть единица, становится понятно, что лучше всего с помощью катушки выдавать момент по оси, перпендикулярной вектору магнитной индукции. И наоборот, если ось магнитной катушки совпала по направлению с силовой линией магнитного поля Земли - момент такая катушка не создаст. Именно это ограничение (зависимость момента не только от тока в катушке, но и от географических координат КА) не позволило применять чисто магнитные системы ориентации для спутников дистанционного зондирования Земли с высокими требованиями по точности.
    Более того, чтобы не тратить зря электроэнергию разгрузка с помощью магнитных катушек производится в полярных областях Земли (помните, я моделировал половину витка полета «Канопуса-В» - затем момент с маховиков все равно будет сброшен), а со времен аналоговых систем разгрузки для определения, «когда уже можно включать электромагниты» в состав систем входят магнитометры.
    Вот примеры блоков систем электромагнитной разгрузки, разработки фирмы «СПУТНИКС»:


    Гравитационные системы разгрузки



    КА «Гонец-М»

    Если посмотреть на космический аппарат «Гонец-М», бросается в глаза штанга гравитационной системы ориентации, установленная на верхнем днище гермоотсека. Дело в том, что гравитационное поле Земли любое изделие, имеющее форму гантели, стремится установить в вертикальное положение, да так в этом положении и удерживать. Если же взять и повернуть «Гонец-М» по тангажу или крену даже на небольшой угол, гравитационное поле Земли тут же создаст момент, стремящийся повернуть спутник обратно. Так собственно, система ориентации «Гонца-М» и устроена.
    Для разгрузки гиродинов орбитальных станций «Мир» и «Скайлаб» использовался тот же принцип – на время пауз в работе научной аппаратуры ориентация станции менялась таким образом, что гравитационное поле создавало момент, разгружающий систему гиродинов. После завершения сброса кинетического момента, ориентацию станции восстанавливали. Тем самым здорово экономилось рабочее тело реактивных двигателей системы ориентации станции. Применяют ли гравитационную разгрузку на МКС – сказать не могу.

    Универсальный подход РКЦ «Прогресс»



    КА «Ресурс-П»

    Пример подхода специалистов Ракетно-космического центра «Прогресс» (г. Самара) к разгрузке комплекса из шести силовых гироскопов космического аппарата «Ресурс-П» оставляет глубокое впечатление и объясняет: каким образом разработанный в Самаре «Ресурс-ДК1» отлетал уже девять лет вместо трех и всё еще в строю.
    Итак, в системе управления движением «Альбатрос» для разгрузки гиродинов используются:
    - система сброса кинетического момента на базе магнитных катушек (разработка ОАО «НИИЭМ»);
    - управляющие реактивные двигатели и управление кардановым подвесом камеры маршевого двигателя комплексной двигательной установки;
    - может использоваться перекладка панелей солнечных батарей (у низкоорбитальных «Янтарей» так производился аэродинамический сброс момента).
    В общем, как и в случае систем электропитания, у «Прогресса» можно учиться борьбе за живучесть.

    В Исполнительные органы системы ориентации КА

    Пуск ракеты, но запуск космического аппарата
    Терминология


    Преимущество силовых гироскопов перед двигателями-маховиками

    Сегодня хочу обсудить интересную тему исполнительных органов системы ориентации космических аппаратов. В рассказе о применении для этих целей реактивных двигателей малой тяги, на мой взгляд, слишком мало интриги. Поэтому под катом будет обстоятельный рассказ про двигатели-маховики (ДМ) и силовые гироскопы (СГ).
    На необходимость дать определенные комментарии на эту тему меня натолкнул пост zelenyikot Спасение «Электро-Л» , в котором данные понятия оказались творчески перемешаны, в том числе и с измерительными трехстепенными гироскопами. А решение о том, что «писать нужно сейчас» созрело после того, как в одном из моих любимых научно-популярных изданий была обнаружена похожая путаница. Кстати, во многом это связано с переводом англоязычных технических текстов.

    Дисклаймер
    Про системы ориентации космических аппаратов я узнал из курса лекций, которые на базовой кафедре 533 МИРЭА (при ОАО «Корпорация «ВНИИЭМ») читал Владимир Николаевич Васильев. Через несколько лет курс лекций воплотился в отличную монографию, из которой взяты ниже приведенные схемы и описания исполнительных органов. В главе про двигатели-маховики мне встретилась информация, что по одной из классификаций ДМ являются одностепенными гироскопами.
    Спорить с научной классификацией не берусь, но могу заявить ответственно: для создателей космического аппарата разница между двигателями-маховиками и силовыми гироскопами (гиродинами) колоссальная, и о ней я попробую рассказать ниже. Поэтому, при описании систем ориентации космических аппаратов два этих термина необходимо разграничивать: мало что так действует на нервы, как упоминание в одном предложении ДМ, а в соседнем, про ту же систему - гиродинов.
    Кстати, тема одного из выступлений на конференции по малым космическим аппаратам, сделанного сотрудником фирмы SkyBox Imaging как раз был выбор между ДМ и СГ для малого КА дистанционного зондирования (да-да, для SkySat’a подбирали, куда же ещё).

    Двигатели-маховики, reaction wheels

    Силовые гироскопы, гиродины, control moment gyros


    Схема двухстепенного силового гироскопа

    Другим способом создания управляющих моментов на борту КА является применение силовых гироскопов. Они применяются тогда, когда необходим большой управляющий момент. Долгое время основным местом применения СГ были космические станции: на МИРе стояли 12 гиродинов разработки ВНИИЭМ, на МКС также установлены гиродины. Да, слово «гиродин» является синонимом словосочетания «силовой гироскоп» и введено для того, чтобы отличать силовые гироскопы от измерительных. Вместе с тем, максимальный управляющий момент исполнительных органов влияет на скорость перенацеливания съёмочной аппаратуры спутников дистанционного зондирования Земли. Поэтому применение гиродинов на них оказалось вполне оправданным. Но сначала несколько слов о принципе действия.
    Вращающийся с постоянной скоростью  маховик 1 установлен в рамке 2, которая в подшипниках 3 поворачивается вокруг оси Oz космического аппарата. За счет рамки маховик получает дополнительную степень свободы движения. Такое устройство называется двухстепенным силовым гироскопом. Вращающийся с постоянной скоростью маховик называется ротором силового гироскопа. Рамка поворачивается специальным приводом прецессии 4. Вектор кинетического момента ротора G, постоянный по модулю, меняет свое направление при поворотах рамки. Управляющий момент гиродина равен векторному произведению скорости поворота рамки на кинетический момент ротора.
    Недостатками силовых гироскопов являются повышенная сложность, как самого изделия, так и системы управления (необходимо постоянно оценивать положение рамок всех гиродинов, установленных на КА), необходимость плавной раскрутки ротора после выведения КА, бОльшие размеры и масса. Но все их перекрывает главное достоинство: высокий управляющий момент.
    Именно благодаря четырём гиродинам CMG 15-45 S, установленным по граням пирамиды, космические аппараты Pleiades обеспечивают не только двойную и тройную стереосъёмку, но и выполнение такого фокуса, как съёмка движения минутной стрелки башенных часов, выполненная в ходе одного пролёта.