Решение диофантовых уравнений с помощью алгоритма евклида. Некоторые диофантовы уравнения

Министерство образования и науки

Научное Общество Учащихся

Секция «Алгебра»

Работа по теме:

«Диофантовы уравнения»

Выполнила:

ученица 10 «А» классаМОУ СОШ № 43

Булавина Татьяна

Научный руководитель:Пестова

Надежда Ивановна

Нижний новгород2010


Введение

О диофантовых уравнениях

Способы решения диофантовых уравнений

Список литературы

Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.

Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.

Необычайный расцвет древнегреческой науки в IV-III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии - надгробной надписи.

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять, лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход, как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.


О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении, так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая, что коэффициент перед xможно взять и другой. Решая уравнения

(x+2)²+(kx-3)²=13,

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

(x+2)²+(kx-3)²=13

x=2(3k-2)/k²+1.

А=2(k²+3k-1)/k²+1,

В=3k²-4k-3/k²+1.

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число, при котором А и В положительны.

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма, позволяющего по любому целому числу x узнавать, разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое, тоже будут решениями).

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 . (5)


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и wвзаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того, v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом, то каждый из множителей является квадратом. Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность. Теперь имеем


z=p²+q² , y=p²-q²,

x²=(p²+q²)²-(p²-q²)²=4 p² q².

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и qразной чётности, p>q , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n - целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать, чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

Чтобы решить линейное диофантово уравнение, нужно найти значения переменных «x» и «y», которые являются целыми числами. Целочисленное решение сложнее обычного и требует определенного набора действий. Сначала необходимо вычислить наибольший общий делитель (НОД) коэффициентов, а затем найти решение. Если вы нашли одно целочисленное решение линейного уравнения, можно применить простой шаблон, чтобы найти бесконечное множество других решений.

Шаги

Часть 1

Как записать уравнение
  1. Запишите уравнение в стандартной форме. Линейное уравнение - это уравнение, в котором показатели степени переменных не превышают 1. Чтобы решить такое линейное уравнение, сначала запишите его в стандартной форме. Стандартная форма линейного уравнения выглядит так: A x + B y = C {\displaystyle Ax+By=C} , где A , B {\displaystyle A,B} и C {\displaystyle C} - целые числа.

    • Если уравнение дано в другой форме, приведите его к стандартной форме с помощью основных алгебраических действий. Например, дано уравнение 23 x + 4 y − 7 x = − 3 y + 15 {\displaystyle 23x+4y-7x=-3y+15} . Приведите подобные члены и запишите уравнение так: 16 x + 7 y = 15 {\displaystyle 16x+7y=15} .
  2. Упростите уравнение (если можно). Когда вы запишете уравнение в стандартной форме, посмотрите на коэффициенты A , B {\displaystyle A,B} и C {\displaystyle C} . Если у этих коэффициентов есть НОД, разделите на него все три коэффициента. Решение такого упрощенного уравнения также будет решением исходного уравнения.

    • Например, если все три коэффициента четные, разделите их как минимум на 2. Например:
      • 42 x + 36 y = 48 {\displaystyle 42x+36y=48} (все члены делятся на 2)
      • 21 x + 18 y = 24 {\displaystyle 21x+18y=24} (теперь все члены делятся на 3)
      • 7 x + 6 y = 8 {\displaystyle 7x+6y=8} (это уравнение больше нельзя упростить)
  3. Проверьте, можно ли решить уравнение. В некоторых случаях можно сразу заявить, что уравнение не имеет решений. Если коэффициент «С» не делится на НОД коэффициентов «А» и «В», у уравнения нет решений.

    • Например, если оба коэффициента A {\displaystyle A} и B {\displaystyle B} четные, то и коэффициент C {\displaystyle C} должен быть четным. Но если C {\displaystyle C} нечетный, то решения нет.
      • У уравнения 2 x + 4 y = 21 {\displaystyle 2x+4y=21} нет целочисленных решений.
      • У уравнения 5 x + 10 y = 17 {\displaystyle 5x+10y=17} нет целочисленных решений, так как левая часть уравнения делится на 5, а правая - нет.
  4. Проанализируйте полученный результат. Когда вы найдете НОД коэффициентов A {\displaystyle A} и B {\displaystyle B} , сравните его с коэффициентом C {\displaystyle C} исходного уравнения. Если C {\displaystyle C} делится на НОД A {\displaystyle A} и B {\displaystyle B} , уравнение имеет целочисленное решение; в противном случае у уравнения нет решений.

    • Например, уравнение можно решить, потому что 3 делится на 1 (НОД=1).
    • Например, предположим, что НОД=5. 3 не делится на 5 нацело, поэтому такое уравнение не имеет целочисленных решений.
    • Как показано ниже, если уравнение имеет одно целочисленное решение, оно также имеет бесконечное множество других целочисленных решений.

    Часть 3

    Как найти решение с помощью алгоритма Евклида
    1. Пронумеруйте шаги вычисления НОД. Чтобы найти решение линейного уравнения, нужно использовать алгоритм Евклида в качестве основы процесса подстановки и упрощения.

      • Начните с нумерации шагов вычисления НОД. Процесс вычисления выглядит так:
        • Шаг 1: 87 = (1 ∗ 64) + 23 {\displaystyle {\text{Шаг 1}}:87=(1*64)+23}
        • Шаг 2: 64 = (2 ∗ 23) + 18 {\displaystyle {\text{Шаг 2}}:64=(2*23)+18}
        • Шаг 3: 23 = (1 ∗ 18) + 5 {\displaystyle {\text{Шаг 3}}:23=(1*18)+5}
        • Шаг 4: 18 = (3 ∗ 5) + 3 {\displaystyle {\text{Шаг 4}}:18=(3*5)+3}
        • Шаг 5: 5 = (1 ∗ 3) + 2 {\displaystyle {\text{Шаг 5}}:5=(1*3)+2}
        • Шаг 6: 3 = (1 ∗ 2) + 1 {\displaystyle {\text{Шаг 6}}:3=(1*2)+1}
        • Шаг 7: 2 = (2 ∗ 1) + 0 {\displaystyle {\text{Шаг 7}}:2=(2*1)+0}
    2. Обратите внимание на последний шаг, где есть остаток. Перепишите уравнение этого шага так, чтобы изолировать остаток.

      • В нашем примере последний шаг с остатком - это шаг 6. Остаток равен 1. Перепишите уравнение шага 6 следующим образом:
        • 1 = 3 − (1 ∗ 2) {\displaystyle 1=3-(1*2)}
    3. Изолируйте остаток предыдущего шага. Этот процесс представляет собой пошаговое «перемещение вверх». Каждый раз вы будете изолировать остаток в уравнении предыдущего шага.

      • Изолируйте остаток уравнения шага 5:
        • 2 = 5 − (1 ∗ 3) {\displaystyle 2=5-(1*3)} или 2 = 5 − 3 {\displaystyle 2=5-3}
    4. Сделайте замену и упростите. Обратите внимание, что уравнение шага 6 содержит число 2, а в уравнении шага 5 число 2 изолировано. Поэтому вместо «2» в уравнении шага 6 подставьте выражение шага 5:

      • 1 = 3 − 2 {\displaystyle 1=3-2} (уравнение шага 6)
      • 1 = 3 − (5 − 3) {\displaystyle 1=3-(5-3)} (вместо 2 подставили выражение)
      • 1 = 3 − 5 + 3 {\displaystyle 1=3-5+3} (раскрыли скобки)
      • 1 = 2 (3) − 5 {\displaystyle 1=2(3)-5} (упростили)
    5. Повторите процесс подстановки и упрощения. Повторите описанный процесс, перемещаясь по алгоритму Евклида в обратном порядке. Каждый раз вы будете переписывать уравнение предыдущего шага и подставлять его в последнее полученное уравнение.

      • Последним рассмотренным шагом был шаг 5. Поэтому перейдите к шагу 4 и изолируйте остаток в уравнении этого шага:
        • 3 = 18 − (3 ∗ 5) {\displaystyle 3=18-(3*5)}
      • Подставьте это выражение вместо «3» в последнее уравнение:
        • 1 = 2 (18 − 3 ∗ 5) − 5 {\displaystyle 1=2(18-3*5)-5}
        • 1 = 2 (18) − 6 (5) − 5 {\displaystyle 1=2(18)-6(5)-5}
    6. Продолжите процесс подстановки и упрощения. Этот процесс будет повторяться до тех пор, пока вы не достигнете первоначального шага алгоритма Евклида. Цель процесса - записать уравнение с коэффициентами 87 и 64 исходного уравнения, которое нужно решить. В нашем примере:

      • 1 = 2 (18) − 7 (5) {\displaystyle 1=2(18)-7(5)}
      • 1 = 2 (18) − 7 (23 − 18) {\displaystyle 1=2(18)-7(23-18)} (подставили выражение из шага 3)
        • 1 = 2 (18) − 7 (23) + 7 (18) {\displaystyle 1=2(18)-7(23)+7(18)}
        • 1 = 9 (18) − 7 (23) {\displaystyle 1=9(18)-7(23)}
      • 1 = 9 (64 − 2 ∗ 23) − 7 (23) {\displaystyle 1=9(64-2*23)-7(23)} (подставили выражение из шага 2)
        • 1 = 9 (64) − 18 (23) − 7 (23) {\displaystyle 1=9(64)-18(23)-7(23)}
        • 1 = 9 (64) − 25 (23) {\displaystyle 1=9(64)-25(23)}
      • 1 = 9 (64) − 25 (87 − 64) {\displaystyle 1=9(64)-25(87-64)} (подставили выражение из шага 1)
        • 1 = 9 (64) − 25 (87) + 25 (64) {\displaystyle 1=9(64)-25(87)+25(64)}
        • 1 = 34 (64) − 25 (87) {\displaystyle 1=34(64)-25(87)}
    7. Перепишите полученное уравнение в соответствии с исходными коэффициентами. Когда вы вернетесь к первому шагу алгоритма Евклида, вы увидите, что полученное уравнение содержит два коэффициента исходного уравнения. Перепишите уравнение так, чтобы порядок его членов соответствовал коэффициентам исходного уравнения.

      • В нашем примере исходное уравнение 87 x − 64 y = 3 {\displaystyle 87x-64y=3} . Поэтому перепишите полученное уравнение так, чтобы коэффициенты привести в соответствие. Обратите особое внимание на коэффициент «64». В исходном уравнении этот коэффициент отрицательный, а в алгоритме Евклида - положительный. Поэтому множитель 34 нужно сделать отрицательным. Окончательное уравнение запишется так:
        • 87 (− 25) − 64 (− 34) = 1 {\displaystyle 87(-25)-64(-34)=1}
  • Алгоритмы решений диофантовых уравнений
  • Алгоритм Евклида
    • Пример №1 (простой)
    • Пример №2 (сложный)
  • Решаем задачи на подбор чисел без подбора
    • Задача про кур, кроликов и их лапы
    • Задача про продавщицу и сдачу
  • По отзывам сибмам, настоящим камнем преткновения в школьном курсе математики не только для учеников, но и для родителей становятся диофантовы уравнения. Что это такое и как их правильно решать? Разобраться нам помогли учитель математики образовательного центра «Горностай» Аэлита Бекешева и кандидат физико-математических наук Юрий Шанько.

    Кто такой Диофант?

    Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначавшее неизвестное число, но в то время не было еще знаков действий и знака равенства, поэтому и записывать уравнения они не умели.

    Первым, кто придумал, как можно записать уравнение, был замечательный ученый Диофант Александрийский. Александрия была большим культурным, торговым и научным центром древнего мира. Этот город существует и сейчас, он находится на Средиземноморском побережье Египта.

    Жил Диофант, по-видимому, в III веке н.э. и был последним великим математиком античности. До нас дошли два его сочинения — «Арифметика» (из тринадцати книг сохранилось шесть) и «О многоугольных числах» (в отрывках). Творчество Диофанта оказало большое влияние на развитие алгебры, математического анализа и теории чисел.

    А ведь вы знаете кое-что о диофантовых уравнениях…

    Диофантовы уравнения знают все! Это задачки для учеников младших классов, которые решаются подбором.

    Например, «сколькими различными способами можно расплатиться за мороженое ценой 96 копеек, если у вас есть только копейки и пятикопеечные монеты?»

    Если дать диофантовому уравнению общее определение, то можно сказать, что это алгебраическое уравнение с дополнительным условием: все его решения должны быть целыми числами (а в общем случае и рациональными).

    Зачастую мамы (особенно те, кто окончил школу еще при развитом социализме) полагают, что основная цель таких задач - научить детей расплачиваться мелочью за мороженое. И вот, когда они искренне убеждены, что раскладывание мелочи кучками осталось далеко в прошлом, их любимый семиклассник (или восьмиклассник) подходит с неожиданным вопросом: «Мама, как это решать?», и предъявляет уравнение с двумя переменными. Раньше таких задачек в школьном курсе не было (все мы помним, что уравнений должно быть столько же, сколько и переменных), так что мама не-математик нередко впадает в ступор. А ведь это та же самая задача про мелочь и мороженое, только записанная в общем виде!

    Кстати, а зачем к ней вдруг возвращаются в седьмом классе? Все просто: цель изучения диофантовых уравнения - дать основы теории целых чисел, которая дальше развивается как в математике, так и в информатике и программировании. Диофантовы уравнения часто встречаются среди задач части «С» единого госэкзамена. Трудность, прежде всего в том, что существует множество методов решения, из которых выпускник должен выбрать один верный. Тем не менее, линейные диофантовы уравнения ax + by = c могут быть решены относительно легко с помощью специальных алгоритмов.

    Алгоритмы для решения диофантовых уравнений

    Изучение диофантовых уравнения начинается в углубленном курсе алгебры с 7 класса. В учебнике Ю.Н. Макарычева, Н.Г. Миндюка приводятся некоторые задачи и уравнения, которые решают с использованием алгоритма Евклида и метода перебора по остаткам , - рассказывает Аэлита Бекешева. - Позже, в 8 - 9 классе, когда уже рассматриваем уравнения в целых числах более высоких порядков, показываем ученикам метод разложения на множители , и дальнейший анализ решения этого уравнения, оценочный метод . Знакомим с методом выделения полного квадрата . При изучении свойств простых чисел знакомим с малой теоремой Ферма, одной из основополагающих теорем в теории решений уравнений в целых числах. На более высоком уровне это знакомство продолжается в 10 - 11 классах. В это же время мы подводим ребят к изучению и применению теории «сравнений по модулю», отрабатываем алгоритмы, с которыми знакомились в 7 - 9 классах. Очень хорошо это материал прописан в учебнике А.Г. Мордковича «Алгебра и начала анализа, 10 класс» и Г.В. Дорофеева «Математика» за 10 класс.

    Алгоритм Евклида

    Сам метод Евклида относится к другой математической задаче - нахождению наибольшего общего делителя: вместо исходной пары чисел записывают новую пару - меньшее число и разность между меньшим и большим числом исходной пары. Это действие продолжают до тех пор, пока числа в паре не уравняются - это и будет наибольший общий множитель. Разновидность алгоритма используется и при решении диофантовых уравнений - сейчас мы вместе с Юрием Шанько покажем на примере, как решать задачи "про монетки".

    Рассматриваем линейное диофантово уравнение ax + by = c, где a, b, c, x и y — целые числа. Как видите, одно уравнение содержит две переменных. Но, как вы помните, нам нужны только целые корни, что упрощает дело - пары чисел, при которых уравнение верно, можно найти.

    Впрочем, диофантовы уравнения не всегда имеют решения. Пример: 4x + 14y = 5. Решений нет, т.к. в левой части уравнения при любых целых x и y будет получаться четное число, а 5 — число нечетное. Этот пример можно обобщить. Если в уравнении ax + by = c коэффициенты a и b делятся на какое-то целое d, а число c на это d не делится, то уравнение не имеет решений. С другой стороны, если все коэффициенты (a, b и c) делятся на d, то на это d можно поделить все уравнение.

    Например, в уравнении 4x + 14y = 8 все коэффициенты делятся на 2. Делим уравнение на это число и получаем: 2𝑥 + 7𝑦 = 4. Этот прием (деления уравнения на какое-то число) позволяет иногда упростить вычисления.

    Зайдем теперь с другой стороны. Предположим, что один из коэффициентов в левой части уравнения (a или b) равен 1. Тогда наше уравнение уже фактически решено. Действительно, пусть, например, a = 1, тогда мы можем в качестве y взять любое целое число, при этом x = c − by. Если научиться сводить исходное уравнение к уравнению, в котором один из коэффициентов равен 1, то мы научимся решать любое линейное диофантово уравнение!

    Я покажу это на примере уравнения 2x + 7y = 4.

    Его можно переписать в следующем виде: 2(x + 3y) + y = 4.

    Введем новую неизвестную z = x + 3y, тогда уравнение запишется так: 2z + y = 4.

    Мы получили уравнение с коэффициентом один! Тогда z — любое число, y = 4 − 2z.

    Осталось найти x: x = z − 3y = z − 3(4 − 2z) = 7z − 12.

    Пусть z=1. Тогда y=2, x=-5. 2 * (-5)+7 * 2=4

    Пусть z=5. Тогда y=-6, x=23. 2 * (23)+7 * (-6)=4

    В этом примере важно понять, как мы перешли от уравнения с коэффициентами 2 и 7 к уравнению с коэффициентами 2 и 1. В данном случае (и всегда!) новый коэффициент (в данном случае - единица) это остаток от деления исходных коэффициентов друг на друга (7 на 2).

    В этом примере нам повезло, мы сразу после первой замены получили уравнение с коэффициентом 1. Такое бывает не всегда, но и мы можем повторять предыдущий трюк, вводя новые неизвестные и выписывая новые уравнения. Рано или поздно после таких замен получится уравнение с коэффициентом 1.

    Давайте попрообуем решить более сложное уравнение, предлагает Аэлита Бекешева.

    Рассмотрим уравнение 13x - 36y = 2.

    Шаг №1

    36/13=2 (10 в остатке). Таким образом, исходное уравнение можно переписать следующим образом: 13x-13* 2y-10y=2. Преобразуем его: 13(x-2y)-10y=2. Введем новую переменную z=x-2y. Теперь мы получили уравнение: 13z-10y=2.

    Шаг №2

    13/10=1 (3 в остатке). Исходное уравнение 13z-10y=2 можно переписать следующим образом: 10z-10y+3z=2. Преобразуем его: 10(z-y)+3z=2. Введем новую переменную m=z-y. Теперь мы получили уравнение: 10m+3z=2.

    Шаг №3

    10/3=3 (1 в остатке). Исходное уравнение 10m+3z=2 можно переписать следующим образом: 3* 3m+3z+1m=2. Преобразуем его: 3(3m+z)+1m=2. Введем новую переменную n=3m+z. Теперь мы получили уравнение: 3n+1m=2.

    Ура! Мы получили уравнение с коэффициентом единица!

    m=2-3n, причем n может быть любым числом. Однако нам нужно найти x и y. Проведем замену переменных в обратном порядке. Помните, мы должны выразить x и y через n, которое может быть любым числом.

    y=z-m; z=n-3m, m=2-3n ⇒ z=n-3* (2-3n), y=n-3*(2-3n)-(2-3n)=13n-8; y=13n-8

    x=2y+z ⇒ x=2(13n-8)+(n-3*(2-3n))=36n-22; x=36n-22

    Пусть n=1. Тогда y=5, x=24. 13 * (14)-36 * 5=2

    Пусть n=5. Тогда y=57, x=158. 13 * (158)-36 * (57)=2

    Да, разобраться не очень просто, зато теперь вы всегда сможете решить в общем виде задачи, которые решаются подбором!

    Решаем задачи на подбор чисел

    Примеры задач для учеников младших классов, которые решаются подбором: посоревнуйтесь с ребенком, кто решит их быстрее: вы, используя алгорит Евклида, или школьник - подбором?

    Задача про лапы

    Условия

    В клетке сидят куры и кролики. Всего у них 20 лап. Сколько там может быть кур, а сколько - кроликов?

    Решение

    Пусть у нас будет x кур и y кроликов. Составим уравнение: 2х+4y=20. Сократим обе части уравнения на два: x+2y=10. Следовательно, x=10-2y, где x и y - это целые положительные числа.

    Ответ

    Число кроликов и куриц: (1; 8), (2; 6), (3; 4), (4; 2), (5; 0)

    Согласитесь, получилось быстрее, чем перебирать «пусть в клетке сидит один кролик...»

    Задача про монетки

    Условия

    У одной продавщицы были только пяти- и двухрублевые монетки. Сколькими способами она может набрать 57 рублей сдачи?

    Решение

    Пусть у нас будет x двухрублевых и y пятирублевых монеток. Составим уравнение: 2х+5y=57. Преобразуем уравнение: 2(x+2y)+y=57. Пусть z=x+2y. Тогда 2z+y=57. Следовательно, y=57-2z , x=z-2y=z-2(57-2z) ⇒ x=5z-114 . Обратите внимание, переменная z не может быть меньше 23 (иначе x, число двухрублевых монеток, будет отрицательным) и больше 28 (иначе y, число пятирублевых монеток, будет отрицательным). Все значения от 23 до 28 нам подходят.

    Ответ

    Шестью способами.

    Подготовила Татьяна Яковлева

    Муниципальное бюджетное общеобразовательное учреждение

    средняя общеобразовательная школа №1

    г. Павлово.

    Научно-исследовательская работа

    Методы решения диофантовых уравнений.

    Отделение: физико-математическое

    Секция: математика

    Выполнил:

    ученик 8 А класса Трухин Николай (14 лет)

    Научный руководитель:

    учитель математики

    Лефанова Н. А.

    г. Павлово

    2013 г.

    Оглавление

    I Введение…………………………………………………………………………3

    II Обзор литературы……………………………………………………………....5

    III Основная часть…………………………………………………………………6

    IV Заключение…………………………………………………………………...15

    V Список литературы……………………………………………………………16

    VI Приложение…………………………………………………………………..17

      Введение.

    В 2011-2012 году я выполнял исследовательскую работу на тему: «Решение уравнений в Древней Греции и Индии». При работе над ней я познакомился с трудами Диофанта Александрийского и Мухаммеда аль - Хорезми. В своей прошлой работе я рассмотрел некоторые способы решения уравнений первой степени с двумя неизвестными, познакомился с некоторыми старинными задачами, приводящими к решению уравнений первой степени с двумя неизвестными.

    Мухаммед Бен Мусса аль – Хорезми, - или Магомед сын Моисея Хорезмского, состоящий членом «дома мудрости» в Иране, около 820 года нашего летоисчисления написал книгу, где учил решать простые и сложные вопросы арифметики, которые необходимы людям при дележе наследства, составлении завещаний, разделе имущества и судебных делах, в торговле, всевозможных сделках. С именем аль – Хорезми связаны понятия «алгебра», «арабские цифры», «алгоритм». Он отделил алгебру от геометрии, внёс большой вклад в математику исламского средневековья. Мухаммед аль – Хорезми был известен и уважаем, как при жизни, так и после смерти.

    Но мне захотелось больше узнать о Диофанте. И тема моего исследования в этом году: «Методы решения диофантовых уравнений»

    Диофант Александрийский - один из самых своеобразных древнегреческих математиков, труды которого имели большое значение для алгебры и теории чисел. Из работ Диофанта самой важной является «Арифметика», из 13 книг которой, только 6 сохранились до наших дней. В сохранившихся книгах содержится 189 задач с решениями. В первой книги изложены задачи, приводящиеся к определенным уравнениям первой и второй степени. Остальные пять книг содержат в основном неопределенные уравнения (неопределенными называются уравнения, содержащие более чем одно неизвестное). В этих книгах ещё нет систематической теории неопределённых уравнений, методы решения меняются от случая к случаю. Диофант довольствуется одним решением, целым или дробным, лишь бы оно было положительным. Тем не менее, методы решения неопределённых уравнений, составляют основной вклад Диофанта в математику. В символике Диофанта был один только знак для неизвестного. Решая неопределённые уравнения, он применял в качестве нескольких неизвестных произвольные числа, вместо которых можно было взять и любые другие, что и сохраняло характер общности его решений.

    Цель моей работы:

    1.Продолжить знакомство с диофантовыми уравнениями.

    2.Исследовать методы перебора и рассеивания (измельчения) при решении диофантовых уравнений.

    3.Исследовать возможность применения диофантовых уравнений для решения некоторых практических задач.

    II . Обзор литературы.

    При написании работы мной использовалась следующая литература:

    Мной использована информация о Диофанте и аль – Хорезми.

    Книга посвящена методам Диофанта при решении неопределённых уравнений. В ней рассказывается о жизни и самого Диофанта. Эта информация использована мной в работе.

    В книги рассказывается об истории алгебры с древних времён. Я использовал информацию о теории уравнений, начиная с древности.

    В этой книге собрано около 200 статей, посвященных основным понятиям математики и её приложения. Мной были использованы материалы статей «Алгебра», «Уравнения», «Диофантовы уравнения»

    Из книги взяты тексты задач для практического использования.

      По теме мной использовался сайт:

    http :// ru . wikipedia . org (информация об аль – Хорезми и Диофанте. О методах решения диофантовых уравнений).

      Основная часть

    В наши дни каждый, кто занимался математикой, слышал о диофантовых уравнениях. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых (реже рациональных) чисел, вошли в историю математики как диофантовы. Наиболее изучены диофантовы уравнения 1 и 2 степени. В содержании моей работы включены задачи, которые сводятся к решению уравнения первой степени с двумя неизвестными

    (1)

    Рассмотрим задачу.

    Задача 1. В клетке находится x фазанов и у кроликов. Сколько в клетке фазанов и кроликов, если общее количество ног равно 62.

    Общее число ног можно записать с помощью уравнения 2х+4у=62 (2)

    Это равенство, которое я составил по условию задачи, называют уравнением с двумя переменными. Данное уравнение называют линейным уравнением. Линейные уравнения играют важную роль при решении различных задач. Напомню основные положения, связанные с этим понятием.

    Линейным уравнением с двумя переменными называется уравнение вида ax +by =c , где x и у – переменные, а, b и с – некоторые числа.

    Однозначно определить из уравнения (2) значения x и y нельзя. Даже если ограничиться только натуральными значениями переменных, здесь могут быть такие случаи: 1 и 15, 3 и 14, 5 и 13 и т. д.

    Пара чисел (a , b ) называется решением уравнения с двумя переменными, если при замене x на а и y на b получаем истинное равенство.

    Каждому уравнению с двумя переменными соответствует множество его решений, т. е. множество, состоящее из всех пар чисел (a , b ), при подстановке которых в уравнение получается истинное равенство. При этом, конечно, если заранее указаны множества Х и Y , которые могут принимать неизвестные x и у, то надо брать лишь такие пары (a , b ), для которых а принадлежит Х и b принадлежит Y .

    Пару чисел (a , b ) можно изобразить на плоскости точкой М, имеющей координаты а и b , М= М (a , b ). Рассматривая изображения всех точек множества решений уравнения с двумя неизвестными, получим некоторое подмножество плоскости. Его называют графиком уравнения.

    Можно доказать, что графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов не равен нулю, является прямая линия. Для построения графика этого уравнения достаточно взять две точки с координатами и провести через них прямую. Графический метод решения я использовал в предыдущей работе.

    Два уравнения с двумя переменными, имеющие одни и те же решения называются равносильными.

    Например, равносильны уравнения х+2у=5 и 3х+6у=15 – любая пара чисел, удовлетворяющая одному из этих уравнений, удовлетворяет и второму.

    Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

    1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

    2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    Существует несколько способов решения диофантовых уравнений:

      Метод перебора вариантов

      Использование алгоритма Евклида

      С использованием цепной дроби

      Метод рассеивания (измельчения)

      При помощи программирования на языке программирования Паскаль

    В своей работе я исследовал методы – перебор вариантов и рассеивание (измельчения)

    Рассматривая способ перебора вариантов, необходимо учитывать количество возможных решений уравнения. Например, этот способ можно применить, решая следующую задачу:

    Задача 2 . Андрей работает летом в кафе. За каждый час ему платят 10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.

    Решение.

    Пусть x часов он всего работал в неделю, тогда 10х р. ему заплатили, но он разбил у тарелок, и с него вычли р. Имеем уравнение 10х – 2у =180 , причем x меньше или равен 21. Получим: 5х-у=90, 5х=90+у, х=18+у:5.

    Так как x целое число, то у должно нацело делится на 5, чтобы в правой части получилось целое число. Возможны четыре случая

      у=0, х=18, т. е. решением является пара – (18, 0);

      у=5, х=19, (19, 5);

      у=10, х=20, (20, 10);

      у=15, х=21, (21, 15).

    Эту задачу я решил, используя способ перебора вариантов. Ответ содержит четыре возможных варианта. Я попробовал решить этим способом ещё несколько задач.

    Задача 3. Из двухрублевых и пятирублевых монет составлена сумма в 23 рубля. Сколько среди этих монет двухрублевых?

    Решение.

    Пусть x – количество двухрублевых монет, у – количество пятирублевых монет. Составим и решим уравнение: 2х+5у=23; 2х=23–5у; x = (23 – 5у):2; x =(22+1 – 5у):2, почленно поделим 22 на 2 и (1 – 5у) на 2, получим: x = 11 + (1 – 5у):2.

    Так как x и y натуральные числа по условию задачи, то левая часть уравнения есть натуральное число, значит, и правая часть должна быть натуральным числом. К тому же, чтобы получить в правой части число натуральное, нужно чтобы выражение (1 – 5у) нацело делилось на 2. Осуществим перебор вариантов.

      y =1, х=9, то есть двухрублевых монет может быть 9;

      у=2, при этом выражение (1 – 5у) не делится нацело на 2;

      у=3, х=4, то есть двухрублевых монет может быть 4;

      при у больше или равном 4 значение x не является числом натуральным.

    Таким образом, ответ в задаче следующий: среди монет 9 или 4 двухрублевых.

    Задача 4. Шехерезада рассказывает свои сказки великому правителю. Всего она должна рассказать 1001 сказку. Сколько ночей потребуется Шехерезаде, чтобы рассказать все свои сказки, если x ночей она будет рассказывать по 3 сказки, а остальные сказки по 5 за у ночей

    Решение.

    Сказочнице потребуется x + у ночей, где x и у – натуральные корни уравнения 3х+5у=1001

    x = (1001 – 5у):3; так как x – натуральное число, то и в правой части равенства также должно быть натуральное число, а значит выражение (1001 – 5у) должно нацело делиться на 3.

    Осуществим перебор вариантов.

    у=1, 1001 – 5у=1001-5= 996, 996 делится на 3, следовательно, х=332; решение (332;1);

    у=2, 1001– 10=991, 991 не делится на 3;

    у=3, 1001 – 15 = 986; 986 не делится на3;

    у =4, 1001 – 20 = 981, 981 делится на 3, следовательно, x = 327, решение (327;4) и т. д.

    В этой задаче существует 67 пар возможных корней, я не стал показывать все решения данной задачи, т. к. это занимает много времени.

    Уравнение ax + by = c (1) в приведённых задачах я решал способом перебора вариантов. Я уяснил для себя, что способ перебора вариантов не всегда эффективен для решения данной задач, так как для нахождения всех решений уравнения требуются значительные временные затраты. И, на мой взгляд, в настоящее время он неактуален.

    Поэтому я решил задачу про Шехерезаду, используя метод рассеивания (измельчения).

    Метод рассеивания – это общий метод для решения в целых числах неопределённых уравнений первой степени с целыми коэффициентами.

    Итак, решим задачу про Шехерезаду методом рассеивания:

    Обратимся к уравнению 3х + 5у = 1001.

    Перепишем его иначе: 3х= 1001- 5у; 3х= 1001 - 2у - 3у;

    x = – y +
    и обозначим x l = у + x

    В результате уравнение примет вид 3х 1 = 1001 – 2у или

    у = –x l
    .

    Если вновь произвести замену у 1 = у + х 1 , то придем к уравнению

    x 1 + 2у 1 = 1001. Заметим, что коэффициенты при неизвестных уменьшились - измельчились.

    Здесь коэффициент при x 1 , равен 1, а поэтому при любом целом у 1 = t число х 1 тоже целое. Остается выразить исходные переменные через t :

    х 1 = 1001 – 2 t , следовательно, у = – 1001 + 3 t , а x = 2002 – 5 t . Итак, получаем бесконечную последовательность (2002 – 5 t , – 1001 + 3 t ) целочисленных решений. Внешний вид формул для нахождения значений переменных отличается от решений, полученных ранее, но с учетом условия задачи, корни получаются те же самые. Так, пара (332;1) получается при t =334.

    На мой взгляд, этот метод не только более удобный (у него есть алгоритм действий), но и интересный. Известно, что этот метод в первые применил в начале VI в. индийский математик Ариабхатта.

    В прошлом году я показывал решение древней индийской задачи Брахмагупты методам рассеивания, которое предложил сам Брахмагупта. Решение было нерациональным.

    Оно представлено ниже:

    «Найти два целых числа, зная, что разность произведений первого на 19 и второго на 8 равно 13. »

    В задаче требуется найти все целые решения уравнений.

    Решение:

    (1) 19x – 8y = 13

    Выражаю y – неизвестное с наименьшим по абсолютной величине коэффициентом через x , получаю:

    (2) y = (19x 13)/8

    Нужно теперь узнать, при каких целых значениях x соответствующие значения y являются тоже целыми числами. Перепишу уравнение (2) следующим образом:

    (3) y = 2x + (3x – 13)/8

    Из (3) следует, что y при целом x принимает целое значение только в том случае, если выражение (3x -13)/8 является целым числом, скажем y 1 . Полагая

    (4) (3x - 13)/8 = y 1 ,

    вопрос сводится к решению в целых числах уравнения (4) с двумя неизвестными x и y 1 ; его можно записать так:

    (5) 3x – 8y 1 = 13.

    Это уравнение имеет по сравнению с первоначальным (1) преимущество, что 3 – наименьшее из абсолютных величин коэффициентов при неизвестных – меньше, чем в (1), т.е. 8. Это было достигнуто благодаря тому, что коэффициент при x (19) был заменен остатком от деления на 8.

    Продолжая тем же способом, мы получим из (5):

    (6) x = (8y 1 +13)/3 = 2y 1 + (2y 1 + 13)/3.

    Итак, неизвестное x при целом y 1 только тогда принимает целые значения, когда (2y 1 + 13)/3 есть целое число, скажем y 2 :

    (7) (2y 1 + 1)/3 = y 2 ,

    или

    (8) 3y 2 2 y 1 = 13.

    (9) y 1 = (3y 2 - 13)/2 = y 2 + (y 2 - 13)/2

    Полагая

    (10) (y 2 - 13)/2 = y 3 ,

    получаю

    (11) y 2 2 y 3 = 13.

    Это самое простое из всех рассмотренных неопределенных уравнений, так как один из коэффициентов равен 1.

    Из (11) получаю:

    (12) y 2 = 2y 3 + 13.

    Отсюда видно, что y 2 принимают целые значения при любых целых значениях y 3 . Из равенств (6), (9), (12), (3) путем последовательных подстановок можно найти следующие выражения для неизвестных x и y уравнения (1):

    x = 2y 1 + y 2 = 2(y 2 + y 3 ) + y 2 = 3y 2 + 2y 3 = 3(2y 2 + 13) + 2y 3 = 8y 3 + 39;

    у = 2x + y 1 = 2(8y 3 + 39) + y 2 + y 3 = 19y 3 +91.

    Таким образом, формулы

    x = 8y 3 + 39,

    y = 19y 3 + 91.

    При y 3 = 0, + 1,+ 2, + 3, … дают все целые решения уравнения (1).

    В следующей таблице приведены примеры таких решений.

    Таблица 1.

    y3

    x

    y

    Решим эту задачу рационально. В решении используется определённый алгоритм.

    Задача 5.

    Найти два числа, если разность произведений первого на 19 и второго на 8 равна 13.

    Решение. Требуется решить уравнение 19х - 8у = 13

    Перепишем его иначе: 8y =19x –13; 8y =16x +3x –13; у = 2х +

    и обозначим y 1 = у - 2х.

    В результате уравнение примет вид 8у 1 = Зx - 13 или x = 2y 1
    .

    Если вновь произвести замену х 1 = x - 2у 1 , то придем к уравнению

    3x l - 2у 1 = 13.

    Коэффициенты при неизвестных уменьшились - измельчились. Дальнейшее измельчение: y 1 = x l +
    , то получим у 2 =у 1 –х 1 .

    В результате последнее уравнение преобразуется к виду х 1 - 2у 2: = 13. Здесь коэффициент при х 1 , равен 1, а поэтому при любом целом у 2 = t число х 1 тоже целое.

    Остается выразить исходные переменные через t :

    вначале выразим х 1 =2t +13, y 1 = 3t +13; а затем x = 8 t +39, y = 19 t + 91.

    Итак, получаем бесконечную последовательность (39 + 8 t , 91 + 19 t ) целочисленных решений . Уравнение ax + by = c (1) в приведённых задачах я решал способом рассеивания (измельчения).

    IV . Заключение.

    Изучая диофантовы уравнения для их решения, я использовал методы перебора вариантов и рассеивания (измельчения). Этими методами я решал, как современные, так и древние задачи. В содержании моей работы были включены задачи, которые сводятся к решению уравнений первой степени с двумя переменными ах+b у=с (1)

    В ходе своей работы я сделал выводы:

      Метод перебора требует значительные временные затраты, а значит он не очень удобен и рационален.

      Более рациональным, на мой взгляд, является метод рассеивания. Когда я решал старинную индийскую задачу этим методом, я понял, что существует определённый алгоритм решения. Мне было достаточно полученных в школе знаний. Я убедился, что методы решения дофантовых уравнений с развитием математики постоянно совершенствуются.

    На следующий год я хочу продолжить изучение методов решения диофантовых уравнений.

    V . Список литературы

      Г. И. Глейзер «История математики в школе» М.: изд. «Просвещение» 1964г. 376с.

      И. Г. Башмакова «Диофант и диофантовы уравнения» М.: изд. «Наука» 1972г. 68с.

      В. А. Никифоровский «В мире уравнений» М.: изд. «Наука» 1987г. 176с.

      А. П. Савин «Энциклопедический словарь юного математика» М.: изд. «Педагогика» 1985г.

      Г. М. Возняк, В. Ф. Гусев «Прикладные задачи на экстремумы» М.: изд. «Просвещение» 1985г. 144с.

      http :// ru . wikipedia . org

    VI . Приложение.

      На фермерском хозяйстве нужно провести водопровод длиной 167м. Имеются трубы длиной 5м и 7м. Сколько нужно использовать тех и других труб, чтобы сделать наименьшее количество соединений (трубы не резать)?

    Учитывая, что количество как одних, так и других труб может изменяться, количество 7 – метровые трубы обозначаем через х, 5 – метровые – через у

    Тогда 7х – длина 7 – метровых труб, 5у – длина 5 – метровых труб.

    Отсюда получаем неопределённое уравнение:

    7х+5у=167

    Выпазив, например, переменную у через переменную х , получим:

    Методом перебора легко найти соответствующие пары значений х и у , которые удовлетворяют уравнению 7х+5у=167

    (1;32), (6;25), (11;18), (16;11), (21;4).

    Из этих решений наиболее выгодное последнее, т. е. х=21; у=4.

    Многие старинные способы отгадывания чисел и дат рождения основываются на решении диофантовых уравнений. Так, например, чтобы отгадать дату рождения (месяц и число) собеседника, достаточно узнать у него сумму, получаемую от сложения двух произведений: числа даты (х ) на 12 и номера месяца (у ) на 31.

    2. Пусть сумма произведений, о которых идёт речь, равна 330. Найти дату рождения.

    Решим неопределённое уравнение

    12 х + 31 у = 330.

    С помощью метода рассеивания получим:

    х = 43 – 31 у 4 ,

    у = 6 – 12 у 4 .

    Ввиду ограничений, легко констатировать, что единственным решением является

    у 4 = 1, х = 12, у = 6.

    Итак, дата рождения: 12-е число 6-го месяца, т.е. 12 июня.


    Сегодня предлагаю поразмышлять над некоторой интересной математической задачкой.
    А именно, давайте-ка для разминки решим следующее линейной уравнение:

    «Чего сложного?» - спросите вы. Действительно, лишь одно уравнение и целых четыре неизвестных. Следовательно, три переменных есть свободные, а последняя зависит от оных. Так давайте выразим скорее! Например, через переменную , тогда множество решений следующее:

    где - множество любых действительных чисел.

    Что же, решение действительно оказалось слишком тривиальным. Тогда будем нашу задачу усложнять и делать её более интересной.

    Вспомним про линейные уравнения с целыми коэффициентами и целыми корнями , которые, собственно, являются разновидностью диофантовых уравнений . Конкретно - наложим на наше уравнение соответствующие ограничение на целочисленность коэффициентов и корней. Коэффициенты при неизвестных у нас и так целые (), а вот сами неизвестные необходимо ограничить следующим:

    где - множество целых чисел.

    Теперь решение, полученное в начале статьи, «не проканает», так как мы рискуем получить как рациональное (дробное) число. Так как же решить это уравнение исключительно в целых числах?

    Заинтересовавшихся решением данной задачи прошу под кат.

    А мы с вами продолжаем. Попробуем произвести некоторые элементарные преобразования искомого уравнения:

    Задача выглядит по-прежнему непонятной, в таких случаях математики обычно производят какую-нибудь замену. Давайте и мы с вами её бахнем:

    Опа, мы с вами достигли интересного результата! Коэффициент при у нас сейчас равен единице , а это значит, что мы с вами можем выразить эту неизвестную через остальные неизвестные в этом уравнении без всяких делений (чем грешили в самом начале статьи). Сделаем это:

    Обращу внимание, что это говорит нам о том, что какие бы не были (в рамках диофантовых уравнений), всё равно останется целым числом, и это прекрасно.

    Вспоминая, что справедливо говорить, что . А подставив заместо полученный выше результат получим:

    Тут мы также видим, что что какие бы не были , всё равно останется целым числом, и это по-прежнему прекрасно.

    Тогда в голову приходит гениальная идея: так давайте же объявим как свободные переменные, а будем выражать через них! На самом деле, мы уже это сделали. Осталось только записать ответ в систему решений:

    Теперь можно лицезреть, что в системе решений нигде нет деления , а это значит, что всегда решения будут целочисленными. Попробуем найти частное решение исходного уравнения, положив, к примеру, что :

    Подставим в исходное уравнение:

    Тождественно, круто! Давайте попробуем ещё разок на другом примере?

    Тут мы видим отрицательный коэффициент, он может доставить нам изрядных проблем, так что давайте от греха избавимся от него заменой , тогда уравнение будет следующим:

    Как мы помним, наша задача сделать такие преобразования, чтобы в нашем уравнении оказалась неизвестная с единичным коэффициентом при ней (чтобы затем выразить её через остальные без любого деления). Для этого мы должны снова что-нибудь взять «за скобку», самое быстрое - это брать коэффициенты из уравнения которые самые близкие к единице. Однако нужно понимать, что за скобку можно взять только лишь то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Итак:

    Введем замену , тогда получим:

    Вновь возьмем за скобку и наконец получим в уравнении неизвестную с единичным коэффициентом:

    Введем замену , тогда:

    Выразим отсюда нашу одинокую неизвестную :

    Из этого следует, что какие бы мы не взяли, все равно останется целым числом. Тогда найдем из соотношения :

    Аналогичным образом найдем из соотношения :

    На этом наша система решений созрела - мы выразили абсолютно все неизвестные, не прибегая к делению, тем самым показывая, что решение точно будет целочисленным. Также не забываем, что , и нам надо ввести обратную замену. Тогда окончательная система решений следующая:

    Таким образом, осталось ответить на вопрос - а любое ли подобное уравнение можно так решить? Ответ: нет, если уравнение в принципе нерешаемо. Такое возникает в тех случаях, если свободный член не делится нацело на НОД всех коэффициентов при неизвестных. Иными словами, имея уравнение:

    Для его решения в целых числах достаточно выполнение следующего условия:

    (где - наибольший общий делитель).

    Доказательство

    Доказательство в рамках этой статьи не рассматривается, так как это повод для отдельной статьи. Увидеть его вы можете, например, в чудесной книге В. Серпинского «О решении уравнений в целых числах» в §2.

    Резюмируя вышесказанное, выпишем алгоритм действий для решения линейных диофантовых уравнений с любым числом неизвестных:

    В заключение стоит сказать, что также можно добавить ограничения на каждый член уравнения в виде неравенства на оного (тогда к системе решений добавляется система неравенств, в соответствии с которой нужно будет скорректировать ответ), а также добавить ещё чего-нибудь интересное. Ещё не стоит забывать и про то, что алгоритм решения является строгим и поддается записи в виде программы для ЭВМ.

    С вами был Петр,
    спасибо за внимание.