Решение слу основные определения. Система линейных уравнений называется определенной если

Решение систем линейных алгебраических уравненийявляется одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем, кроме того является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Системой линейных алгебраических уравнений называют систему уравнений вида: (1)

где неизвестные; – свободные члены.

Решением системы уравнений (1) называют всякую совокупность чисел которая будучи поставлена в систему (1) на место неизвестных обращает все уравнения системы в верные числовые равенства.

Систему уравнений называют совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений.

Совместную систему уравнений называют определенной , если она имеет одно единственное решение, и неопределенной , если она имеет, по крайней мере, два различных решения.

Две системы уравнений называют равносильными или эквивалентными , если они имеют одно и то же множество решений.

Систему (1) называют однородной , если свободные члены равны нулю:

Однородная система всегда является совместной - она имеет решение (возможно, не единственное).

Если в системе (1) , то имеем систему n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Линейная система может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

Рассмотрим систему двух линейных уравнений с двумя неизвестными

Если то система имеет единственное решение;

если то система не имеет решений;

если то система имеет бесконечное множество решений.

Пример. Система имеет единственное решение пару чисел

Система имеет бесконечное множество решений. Например, решениями данной системы являются пары чисел и т.д.

Система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

Определение. Определителем второго порядка называют выражение вида:

Обозначают определитель символом D.

Числа а 11, …, а 22 называют элементами определителя.

Диагональ, образованную элементами а 11 ; а 22 называют главной, диагональ, образованную элементами а 12 ; а 21 − побочной.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

Пример. Вычислим определители:

Рассмотрим систему двух линейных уравнений с двумя неизвестными: где х 1, х 2 неизвестные; а 11 , …, а 22 – коэффициенты при неизвестных, b 1 , b 2 – свободные члены.


Если система двух уравнений с двумя неизвестными имеет единственное решение, то его можно найти с помощью определителей второго порядка.

Определение. Определитель, составленный из коэффициентов при неизвестных, называют определителем системы: D= .

В столбцах определителя D стоят коэффициенты соответственно при х 1 и при , х 2 . Введем два дополнительных определителя, которые получаются из определителя системы заменой одного из столбцов столбцом свободных членов: D 1 = D 2 = .

Теорема 14 (Крамера, для случая n=2). Если определитель D системы отличен от нуля (D¹0), то система имеет единственное решение, которое находят по формулам:

Данные формулы называют формулами Крамера.

Пример. Решим систему по правилу Крамера:

Решение. Найдем числа

Ответ.

Определение. Определителем третьего порядка называют выражение вида:

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

В запись с плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали. Слагаемые с минусом образуют по той же схеме относительно побочной диагонали.

Пример. Вычислим определители:

Рассмотрим систему трех линейных уравнений с тремя неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

В случае единственного решения систему 3-х линейных уравнений с тремя неизвестными можно решить с помощью определителей 3-го порядка.

Определитель системы D имеет вид:

Введем три дополнительных определителя:

Теорема 15 (Крамера, для случая n=3). Если определитель D системы отличен от нуля, то система имеет единственное решение, которое находят по формулам Крамера:

Пример. Решим систему по правилу Крамера.

Решение. Найдем числа

Воспользуемся формулами Крамера и найдем решение исходной системы:

Ответ.

Заметим, что теорема Крамера применима, когда число уравнений равно числу неизвестных и когда определитель системы D отличен от нуля.

Если определитель системы равен нулю, то в этом случае система может либо не иметь решений, либо иметь бесчисленное множество решений. Эти случаи исследуются особо.

Отметим только один случай. Если определитель системы равен нулю (D=0), а хотя бы один из дополнительных определителей отличен от нуля, то система решений не имеет, то есть является несовместной.

Теорему Крамера можно обобщать для системы n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Если определитель системы линейных уравнений с неизвестными то единственное решение системы находят по формулам Крамера:

Дополнительный определитель получают из определителя D, если в нем столбец коэффициентов при неизвестном x i заменить столбцом свободных членов.

Заметим, что определители D, D 1 , … , D n имеют порядок n .

Метод Гаусса решения систем линейных уравнений

Одним из наиболее распространенных методов решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных −метод Гаусса . Данный метод представляет собой обобщение метода подстановки и состоит в последовательном исключении неизвестных до тех пор, пока не останется одно уравнение с одним неизвестным.

Метод основан на некоторых преобразованиях системы линейных уравнений, в результате которых получается система, равносильная исходной системе. Алгоритм метода состоит из двух этапов.

Первый этап называют прямым ходом метода Гаусса. Он заключается в последовательном исключении неизвестных из уравнений. Для этого на первом шаге делят первое уравнение системы на ( в противном случае осуществляют перестановку уравнений системы). Обозначают коэффициенты полученного приведенного уравнения, домножают его на коэффициент и вычитают из второго уравнения системы, исключая, тем самым, из второго уравнения (обнуляя коэффициент ).

Аналогично поступают с остальными уравнениями и получают новую систему, во всех уравнениях которой, начиная со второго коэффициенты при , содержатся только нули. Очевидно, что полученная при этом новая система, будет равносильна исходной системе.

Если новые коэффициенты, при , не все равны нулю, можнотаким же образом исключить из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приводят систему к так называемому треугольному виду:

Здесь символами и обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

Из последнего уравнения системы единственным образом определяют , а затем последовательной подстановкой – остальные неизвестные.

Замечание. Иногда, в результате преобразований, в каком-либо из уравнений все коэффициенты и правая часть обращаются в ноль, то есть уравнение превращается в тождество 0=0. Исключив такое уравнение из системы, уменьшают число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

где неизвестные; – коэффициенты при неизвестных, – свободные члены. , подставляя найденное

Решение. Применив к этой системе метод Гаусса, получим

Откуда Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

Ответ. Система не имеет решений.

Заметим, что рассмотренный ранее метод Крамера можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений.

Однако на практике широко распространены еще два случая:

– Система несовместна (не имеет решений);
– Система совместна и имеет бесконечно много решений.

Примечание : термин «совместность» подразумевает, что у системы существует хоть какое-то решение. В ряде задач требуется предварительно исследовать систему на совместность, как это сделать – см. статью о ранге матриц .

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса для чайников .

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Если количество уравнений меньше, чем количество переменных , то сразу можно сказать, что система либо несовместна, либо имеет бесконечно много решений. И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) На левой верхней ступеньке нам нужно получить +1 или –1. Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Я поступил так: К первой строке прибавляем третью строку, умноженную на –1.

(2) Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую строку, умноженную на 5.

(3) После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную –1 на второй ступеньке. Третью строку делим на –3.

(4) К третьей строке прибавляем вторую строку.

Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований: . Ясно, что так быть не может. Действительно, перепишем полученную матрицу обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида , где – число, отличное от нуля, то система несовместна (не имеет решений) .

Как записать концовку задания? Нарисуем белым мелом: «в результате элементарных преобразований получена строка вида , где » и дадим ответ: система не имеет решений (несовместна).

Если же по условию требуется ИССЛЕДОВАТЬ систему на совместность, тогда необходимо оформить решение в более солидном стиле с привлечением понятия ранга матрицы и теоремы Кронекера-Капелли .

Обратите внимание, что здесь нет никакого обратного хода алгоритма Гаусса – решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Снова напоминаю, что ваш ход решения может отличаться от моего хода решения, у алгоритма Гаусса нет сильной «жёсткости».

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица . Матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет никакой необходимости, так как появилась строка вида , где . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия.

Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом его и универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1) Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на –4. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –1.

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: К четвертой строке прибавляем первую строку, умноженную на –1 – именно так!

(2) Последние три строки пропорциональны, две из них можно удалить.

Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки (особенно, чайнику) не лишним будет вторую строку умножить на –1, а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них.

В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки тоже нет. Значит, это третий оставшийся случай – система имеет бесконечно много решений. Иногда по условию нужно исследовать совместность системы (т.е. доказать, что решение вообще существует), об этом можно прочитать в последнем параграфе статьи Как найти ранг матрицы? Но пока разбираем азы:

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса.

Сначала нужно определить, какие переменные у нас являются базисными , а какие переменные свободными . Не обязательно заморачиваться терминами линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы .
В данном примере базисными переменными являются и

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные .

Обратный ход алгоритма Гаусса традиционно работает снизу вверх.
Из второго уравнения системы выражаем базисную переменную :

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную через свободные переменные :

В итоге получилось то, что нужно – все базисные переменные ( и ) выражены только через свободные переменные :

Собственно, общее решение готово:

Как правильно записать общее решение?
Свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные следует записать на второй и четвертой позиции:
.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Придавая свободным переменным произвольные значения , можно найти бесконечно много частных решений . Самыми популярными значениями являются нули, поскольку частное решение получается проще всего. Подставим в общее решение:

– частное решение.

Другой сладкой парочкой являются единицы, подставим в общее решение:

– еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений (так как свободным переменным мы можем придать любые значения)

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Но, строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно.

Поэтому более основательна и надёжна проверка общего решения. Как проверить полученное общее решение ?

Это несложно, но довольно муторно. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:


В левую часть второго уравнения системы:


Получена правая часть исходного уравнения.

Пример 4

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. Что важно в самом процессе решения? Внимание, и еще раз внимание . Полное решение и ответ в конце урока.

И еще пара примеров для закрепления материала

Пример 5

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.
(2) К третьей строке прибавляем вторую строку, умноженную на –5. К четвертой строке прибавляем вторую строку, умноженную на –7.
(3) Третья и четвертая строки одинаковы, одну из них удаляем.

Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.
Свободная переменная, которой не досталось ступеньки здесь всего одна:

Обратный ход:
Выразим базисные переменные через свободную переменную:
Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :


Рассмотрим первое уравнение и подставим в него найденные выражения и :

Да, всё-таки удобен калькулятор, который считает обыкновенные дроби.

Таким образом, общее решение:

Еще раз, как оно получилось? Свободная переменная одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , тоже заняли свои порядковые места.

Сразу выполним проверку общего решения. Работа для негров, но она у меня уже выполнена, поэтому ловите =)

Подставляем трех богатырей , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, общее решение найдено верно.

Теперь из найденного общего решения получим два частных решения. Шеф-поваром здесь выступает единственная свободная переменная . Ломать голову не нужно.

Пусть , тогда – частное решение.
Пусть , тогда – еще одно частное решение.

Ответ : Общее решение: , частные решения: , .

Зря я тут про негров вспомнил... ...потому что в голову полезли всякие садистские мотивы и вспомнилась известная фотожаба, на которой куклуксклановцы в белых балахонах бегут по полю за чернокожим футболистом. Сижу, тихо улыбаюсь. Знаете, как отвлекает….

Много математики вредно, поэтому похожий заключительный пример для самостоятельного решения.

Пример 6

Найти общее решение системы линейных уравнений.

Проверка общего решения у меня уже сделана, ответу можно доверять. Ваш ход решения может отличаться от моего хода решения, главное, чтобы совпали общие решения.

Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановлюсь на некоторых особенностях решения, которые не встретились в прорешанных примерах.

В общее решение системы иногда может входить константа (или константы), например: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Метод Гаусса работает в самых суровых условиях, следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Системы линейных уравнений. Лекция 6.

Системы линейных уравнений.

Основные понятия.

Система видa

называется системой - линейных уравнений с неизвестными .

Числа , , называются коэффициентами системы .

Числа , называются свободными членами системы , – переменными системы . Матрица

называется основной матрицей системы , а матрица

расширенной матрицей системы . Матрицы - столбцы

И - соответственно матрицами свободных членов и неизвестных системы . Тогда в матричной форме систему уравнений можно записать в виде . Решением системы называется значений переменных , при подстановке которых, все уравнения системы обращаются в верные числовые равенства. Всякое решение системы можно представить в виде матрицы - столбца . Тогда справедливо матричное равенство .

Система уравнений называется совместной если она имеет хотя бы одно решение и несовместной если не имеет ни одного решения.

Решить систему линейных уравнений это значит выяснить совместна ли она и в случае совместности найти её общее решение.

Система называется однородной если все её свободные члены равны нулю. Однородная система всегда совместна, так как имеет решение

Теорема Кронекера – Копелли.

Ответ на вопрос существования решений линейных систем и их единственности позволяет получить следующий результат, который можно сформулировать в виде следующих утверждений относительно системы линейных уравнений с неизвестными

(1)

Теорема 2 . Система линейных уравнений (1) совместна тогда и только тогда когда ранг основной матрицы равен рангу расширенной (.

Теорема 3 . Если ранг основной матрицы совместной системы линейных уравнений равен числу неизвестных, то система имеет единственное решение.

Теорема 4 . Если ранг основной матрицы совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.

Правила решения систем.

3. Находят выражение главных переменных через свободные и получают общее решение системы.

4. Придавая свободным переменным произвольные значения получают все значения главных переменных.

Методы решения систем линейных уравнений.

Метод обратной матрицы.

причем , т. е. система имеет единственное решение. Запишем систему в матричном виде

где , , .

Умножим обе части матричного уравнения слева на матрицу

Так как , то получаем , откуда получаем равенство для нахождения неизвестных

Пример 27. Методом обратной матрицы решить систему линейных уравнений

Решение. Обозначим через основную матрицу системы

.

Пусть , тогда решение найдем по формуле .

Вычислим .

Так как , то и система имеет единственное решение. Найдем все алгебраические дополнения

, ,

, ,

, ,

, ,

Таким образом

.

Сделаем проверку

.

Обратная матрица найдена верно. Отсюда по формуле , найдем матрицу переменных .

.

Сравнивая значения матриц, получим ответ: .

Метод Крамера.

Пусть дана система линейных уравнений с неизвестными

причем , т. е. система имеет единственное решение. Запишем решение системы в матричном виде или

Обозначим

. . . . . . . . . . . . . . ,

Таким образом, получаем формулы для нахождения значений неизвестных, которые называются формулами Крамера .

Пример 28. Решить методом Крамера следующую систему линейных уравнений .

Решение. Найдем определитель основной матрицы системы

.

Так как , то , система имеет единственное решение.

Найдем остальные определители для формул Крамера

,

,

.

По формулам Крамера находим значения переменных

Метод Гаусса.

Метод заключается в последовательном исключении переменных.

Пусть дана система линейных уравнений с неизвестными.

Процесс решения по методу Гаусса состоит из двух этапов:

На первом этапе расширенная матрица системы приводится с помощью элементарных преобразований к ступенчатому виду

,

где , которой соответствует система

После этого переменные считаются свободными и в каждом уравнении переносятся в правую часть.

На втором этапе из последнего уравнения выражается переменная , полученное значение подставляется в уравнение. Из этого уравнения

выражается переменная . Этот процесс продолжается до первого уравнения. В результате получается выражение главных переменных через свободные переменные .

Пример 29. Решить методом Гаусса следующую систему

Решение. Выпишем расширенную матрицу системы и приведем ее к ступенчатому виду

.

Так как больше числа неизвестных, то система совместна и имеет бесконечное множество решений. Запишем систему для ступенчатой матрицы

Определитель расширенной матрицы этой системы, составленный из трех первых столбцов не равен нулю, поэтому его считаем базисным. Переменные

Будут базисными а переменная – свободной. Перенесем ее во всех уравнениях в левую часть

Из последнего уравнения выражаем

Подставив это значение в предпоследнее второе уравнение, получим

откуда . Подставив значения переменных и в первое уравнение, найдем . Ответ запишем в следующем виде

Тема 2. Решение систем линейных алгебраических уравнений прямыми методами.

Системами линейных алгебраических уравнений (сокращенно - СЛАУ) называются системы уравнений вида

или, в матричном виде,

A × x = B , (2.2)

A - матрица коэффициентов системы размерности n ´ n

x - вектор неизвестных, состоящий из n компонент

B - вектор правых частей системы, состоящий из n компонент.

A = x = B = (2.3)

Решением СЛАУ является такой набор из n чисел, который будучи подставленным вместо значений x 1 , x 2 , … , x n в систему (2.1) обеспечивает равенство левых частей правым во всех уравнениях.

Каждая СЛАУ в зависимости от значений матриц A и B может иметь

Одно решение

Бесконечно много решений

Ни одного решения.

В данном курсе будем рассматривать только те СЛАУ, которые имеют единственное решение. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A .

Для поиска решений над системами линейных алгебраических уравнений могут проводиться некоторые преобразования, не изменяющие ее решений. Эквивалентными преобразованиями системы линейных уравнений называются такие ее преобразования, которые не изменяют ее решения. К их числу относятся:

Перестановка местами двух любых уравнений системы (следует отиетить, что в некоторых случаях, рассматриваемых ниже, это преробразование использовать нельзя);

Умножение (или деление) какого-либо уравнения системы на число, не равное нулю;

Прибавление к одному уравнению системы другого ее уравнения, умноженного (или разделенного) на некоторое не равное нулю число.

Методы решения СЛАУ делятся на две больших группы, называемые - прямые методы и итерационные методы . Имеется также способ сведения задачи решения СЛАУ к задаче поиска экстремума функции нескольких переменных с последующем решением ее методами поиска экстремума (об этом подробнее - при прохождении соответствующей темы). Прямые методы обеспечивают получение точного решения системы (если оно существует) за один шаг. Итерационные методы (если при этом обеспечена их сходимость) позволяют многократно улучшать некоторое начальное приближение к искомому решению СЛАУ и, вообще говоря, точного решения не дадут никогда. Однако, учитывая то, что прямые методы решения из-за неизбежных ошибок округления на промежуточных этапах расчетов тоже дают не идеально точные решения, итерационные методы могут тоже обеспечить примерно такой же результат.

Прямые методы решения СЛАУ. Наиболее часто используемыми прямыми методами решения СЛАУ являются:

Метод Крамера,

Метод Гаусса (и его модификация - метод Гаусса-Жордана)

Матричный метод (с использованием обращения матрицы A ).

Метод Крамера основан на вычислении определителя основной матрицы A и определителей матриц A 1 , A 2 , …, A n , которые получаются из матрицы A заменой в ней одного (i -го) столбца (i = 1, 2,…, n ) на столбец, содержащий элементы вектора B . После этого решения СЛАУ определяются как частное от деления значений этих определителей. Точнее, расчетные формулы имеют такой вид

(2.4)

Пример 1 . Найдем методом Крамера решение СЛАУ, у которой

A = , B = .

Имеем

A 1 = , A 2 = , A 3 = , A 4 = .

Вычислим значения определителей всех пяти матриц (c использованием функции МОПРЕД среды Excel ). Получим

Так как определитель матрицы A не равен нулю - система имеет единственное решение. Тогда определим его по формуле (2.4). Получим

Метод Гаусса. Решение СЛАУ этим методом предполагает составление расширенной матрицы системы A * . Расширенная матрица системы - это матрица размером в n строк и n +1 столбцов, включающая в себя исходную матрицу A c присоединенным к ней справа столбцом, содержащим вектор B .

A* = (2.4)

Здесь a in+1 =b i (i = 1, 2, …, n ).

Суть метода Гаусса состоит в приведении (посредством эквивалентных преобразований ) расширенной матрицы системы к треугольному виду (так, чтобы ниже ее главной диагонали находились только нулевые элементы).

A * =

Тогда, начиная с последней строки и двигаясь вверх, можно последовательно определить значения всех компонент решения.

Начало преобразований расширенной матрицы системы к необходимому виду заключается в просмотре значений коэффициентов при x 1 и выборе строки, в которой он имеет максимальное по абсолютной величине значение (это необходимо для уменьшения величины вычислительной ошибки при последующих вычислениях). Эту строку расширенной матрицы необходимо поменять местами с первой ее строкой (или же, что лучше, сложить (или вычесть) с первой строкой и результат поместить на место первой строки). После этого все элементы этой новой первой строки (в том числе и в последнем ее столбце) необходимо разделить на этот коэффициент. После этого вновь полученный коэффициент a 11 станет равным единице. Дальше от каждой из оставшихся строк матрицы необходимо вычесть ее первую строку, умноженную на значение коэффициента при x 1 в этой строке (т.е. на величину a i 1 , где i =2, 3, … n ). После этого во всех строках, начиная со второй коэффициенты при x 1 (т.е. все коэффициенты a i 1 (i =2, …, n ) будут равными нулю. Поскольку мы выполняли только эквивалентные преобразования - решение вновь полученной СЛАУ не будет отличаться от исходной системы.

Дальше, оставляя неизменной первую строку матрицы, проделаем все вышеописанные действия с остальными строками матрицы и, в результате, вновь полученный коэффициент a 22 станет равным единице, а все коэффициенты a i 2 (i =3, 4, …, n ) станут равными нулю. Продолжая аналогичные действия, мы в конечном итоге приведем нашу матрицу к виду, в котором все коэффициенты a ii = 1 (i =1, 2, …, n ), а все коэффициенты a ij = 0 (i =2, 3, …, n , j < i ). Если же на каком-то шаге при поиске наибольшего по абсолютной величине коэффициента при x j мы не сможем найти не равного нулю коэффициента - это будет значить, что исходная система не имеет единственного решения. В этом случае процесс решения необходимо прекратить.

Если процесс эквивалентных преобразований закончился успешно, то полученная в результате «треуголиная» расширенная матрица будет соответствовать такой системе линейных уравнений:

Из последнего уравнения этой системы найдем значение x n . Далее, подставляя это значение в предпоследнее уравнение, найдем значение x n -1 . После этого, подставляя оба эти найденных значения в третье снизу уравнение системы, найдем значение x n -2 . Продолжая так далее и продвигаясь по уравнением этой системы снизу вверх, будем последовательно находить значения других корней. И, наконец, подставляя найденные значения x n , x n -1 , x n -2 , x 3 и x 2 в первое уравнение системы найдем значение х 1 . Такая процедура поиска значений корней по найденной треугольной матрице называется обратным ходом. Процесс приведения исходной расширенной матрицы эквивалентными преобразованиями к треугольному виду назавают прямым ходом метода Гаусса..

Достаточно подробный алгоритм решения СЛАУ методом Гаусса приведен на рис. .2.1 и рис. 2.1а.

Пример 2 . Найти методом Гаусса решение той же СЛАУ, которую мы уже решали методом Крамера. Составим сначала ее расширенную матрицу. Получим

A * = .

Сначала переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Получим

A * = .

A * =

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и, аналогично вышеописаному, обнулим коэффициенты во втором столбце третьей и четвертой строк матрицы. Получим

A * = .

После выполнения подобных действий над третьей и четвертой строками матрицы получим

A * = .

Разделив теперь четвертую строку на -5.3076, закончим проведение расширенной матрицы системы к диагональному виду. Получим




Рис. 2.1. Алгоритм решения систем линейных алгебраических уравнений методом Гаусса



Рис. 2.1а. Макроблок “Расчет значений решения”.

A * = .

Из последней строки сразу получим x 4 = 0.7536. Поднимаясь теперь вверх по строкам матрицы и выполняя расчеты, последовательно получим x 3 = 0.7971, x 2 =- 0.1015 и x 1 = 0.3333. Сравнивая полученное этим методом решение с решением, полученным методом Крамера, нетрудно убедиться в их совпадении.

Метод Гаусса-Жордана. Этот метод решения СЛАУ во многом похож на метод Гаусса. Основным отличием является то, что используя эквивалентные преобразования расширенная матрица системы уравнений приводится не к треугольному виду, а к диагональному виду, на главной диагонали которой находятся единицы, а вне нее (кроме последнего n +1 столбца) - нули. После окончания такого преобразования - последний столбец расширенной матрицы будет содержать решение исходной СЛАУ (т,е. . x i = a i n +1 (i = 1, 2, … , n ) в полученной матрице). Обратный ход (как в методе Гаусса) для окончательных расчетов значений компонент решения - не нужен.

Приведение матрицы к диагональному виду проводится, в основном, также как и в методе Гаусса. Если в строке i коэффициент при x i (i = 1, 2, … , n ) по абсолютной величине мал, то производится поиск строки j , в которой коэффициент при x i будет наибольшим по абсолютной величине эта (j -я) строка прибавляется поэлементно к i - й строке. Затем все элементы i - й строки делятся на значение элемента x i Но, в отличие от метода Гаусса, после этого идет вычитание из каждой строки с номером j строки с номером i ,умноженной на a ji , но условие j > i заменено на другоеВ методе Гаусса-Жордана идет вычитание из каждой строки с номером j , причем j # i , строки с номером i ,умноженной на a ji . Т.е. производится обнуление коэффициентов как ниже, так и выше главной диагонали.

Достаточно подробный алгоритм решения СЛАУ методом Гаусса–Жордана приведен на рис. 2.2.

Пример 3 . Найти методом Гаусса-Жордана решение той же СЛАУ, которую мы уже решали методами Крамера и Гаусса.

Полностью аналогично методу Гаусса составим расширенную матрицу системы. Затем переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Дальше проведем вычитание из каждой строки матрицы (кроме первой) элементов первой строки, умноженных на коэффициент в первом столбце этой строки. Получим то же, что и в методе Гаусса

A * = .

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и (уже в отличие от метода Гаусса ) обнулим коэффициенты во втором столбце первой, третьей и четвертой строк матрицы. Получим

где x * - один из решений неоднородной системы (2) (например (4)), (E−A + A) образует ядро (нуль пространство) матрицы A .

Сделаем скелетное разложение матрицы (E−A + A) :

E−A + A=Q·S

где Q n×n−r - матрица rank(Q)=n−r , S n−r×n -матрица rank(S)=n−r .

Тогда (13) можно записать в следующем виде:

x=x*+Q·k, kR n-r .

где k=Sz .

Итак, процедура нахождения общего решения системы линейных уравнений с помощью псевдообратной матрицы можно представить в следующем виде:

  1. Вычисляем псевдообратную матрицу A + .
  2. Вычисляем частное решение неоднородной системы линейных уравнений (2): x *=A + b .
  3. Проверяем совместность системы. Для этого вычисляем AA + b . Если AA + b b , то система несовместна. В противном случае продолжаем процедуру.
  4. Высисляем E−A + A.
  5. Делаем скелетное разложение E−A + A=Q·S.
  6. Строим решение

x=x*+Q·k, kR n-r .

Решение системы линейных уравнений онлайн

Онлайн калькулятор позволяет найти обшее решение системы линейных уравнений с подробными объяснениями.