Решить рекуррентное соотношение примеры. Рекуррентные соотношения

Рекуррентное соотношение имеет порядок k , если оно позволяет выразить f(n+k) через f(n), f(n+1), …, f(n+k-1).

Пример.

f(n+2)=f(n)f(n+1)-3f 2 (n+1)+1 – рекуррентное соотношение второго порядка.

f(n+3)=6f(n)f(n+2)+f(n+1) – рекуррентное соотношение третьего порядка.

Если задано рекуррентное соотношение k-го порядка, то ему могут удовлетворять бесконечно много последовательностей, так как первые k элементов последовательности можно задать произвольно – между ними нет никаких соотношений. Но если первые k членов заданы, то все остальные элементы определяются однозначно.

Пользуясь рекуррентным соотношением и начальными членами, можно один за другим выписывать члены последовательности, при этом рано или поздно мы получим любой её член. Однако если необходимо узнать только один определенный член последовательности, то нерационально вычислять все предыдущие. В этом случае удобнее иметь формулу для вычисления n-го члена.

Решением рекуррентного соотношения называется любая последовательность, для которой данное соотношение выполнено тождественно.

Пример . Последовательность 2, 4, 8, …, 2 n является решением для соотношения f(n+2)=3∙f(n+1) – 2∙f(n).

Доказательство . Общий член последовательности имеет вид f(n)=2 n . Значит, f(n+2)= 2 n+2, f(n+1)= 2n+1 . При любом n имеет место тождество 2 n+2 =3∙2 n+1 – 2∙2 n . Следовательно, при подстановке последовательности 2 n в формулу f(n+2)=3f(n+1) – 2f(n) соотношение выполняется тождественно. Значит, 2 n является решением указанного соотношения.

Решение рекуррентного соотношения k-го порядка называется общим , если оно зависит от k произвольных постоянных α 1 , α 2 , … α k и путем подбора этих постоянных можно получить любое решение данного соотношения.

Пример . Дано рекуррентное соотношение: f(n+2)=5f(n+1)-6f(n). Докажем, что его общее решение имеет вид: f(n)= α 2 n + β3 n .

1. Сначала докажем, что последовательность f(n)=α 2 n + β3 n является решением рекуррентного соотношения. Подставим данную последовательность в рекуррентное соотношение.

f(n)= α 2 n + β 3 n , значит, f(n+1)= (α 2 n+1 + β 3 n +1), f(n+2)= α 2 n+2 + β 3 n +2 , тогда



5f(n+1)-6f(n)=5∙(α 2 n+1 + β 3 n +1)-6∙(α 2 n + β 3 n)= α (5 2 n+1 –6 2 n)+ β (5 3 n +1 –6 3 n)= =α2 n ∙(10–6)+ β 3 n ∙(15 – 6)= α 2 n+2 + β 3 n +2 = f(n+2).

Рекуррентное соотношение выполняется, следовательно, α 2 n + β 3 n является решением данного рекуррентного соотношения.

2. Докажем, что любое решение соотношения f(n+2)=5f(n+1)–6f(n) можно записать в виде f(n)= α 2 n + β 3 n . Но любое решение рекуррентного соотношения второго порядка однозначно определяется значениями первых двух членов последовательности. Поэтому достаточно показать, что для любых а=f(1) и b=f(2) найдутся α и β такие, что 2 α +3 β =а и 4 α +9 β =b. Легко видеть, что система уравнений имеет решение для любых значений а и b.

Таким образом, f(n)= α 2 n + β 3 n является общим решением рекуррентного соотношения f(n+2)=5f(n+1)–6f(n).

Линейные рекуррентные соотношения с постоянными коэффициентами

Для решения рекуррентных соотношений общих правил нет, но существует часто встречающийся класс рекуррентных соотношений, для которых известен алгоритм их решения. Это – линейные рекуррентные соотношения с постоянными коэффициентами, т.е. соотношения вида:

f(n+k)=c 1 f(n+k-1)+c 2 f(n+k-2)+…+c k f(n).

Найдем решение общего линейного рекуррентного соотношения с постоянными коэффициентами первого порядка.

Линейное рекуррентное соотношение с постоянными коэффициентами первого порядка имеет вид: f(n+1)=c f(n).

Пусть f(1)=а, тогда f(2)=c∙f(1)=c∙a, f(3)=c∙f(2)=c 2 ∙a, аналогично f(4)=c 3 ∙a и так далее, заметим, что f(n)=c n -1 ∙f(1).

Докажем, что последовательность c n -1 ∙f(1) является решением рекуррентного соотношения первого порядка. f(n)=c n -1 ∙f(1), значит, f(n+1)=c n f(1). Подставляя это выражение в соотношение, получим тождество c n f(1)=с∙ c n -1 ∙f(1).

Рассмотрим теперь подробнее линейные рекуррентные соотношения с постоянными коэффициентами второго порядка , то есть соотношения вида

f(n+2)=C 1 ∙f(n+1)+C 2 ∙f(n). (*).

Заметим, что все рассуждения сохраняются и для соотношений более высокого порядка.

Свойства решений :

1) Если последовательность x n является решением (*), то и последовательность a∙x n тоже является решением.

Доказательство.

x n является решением (*), следовательно, выполняется тождество x n +2 =C 1 x n +1 +C 2 x n . Домножим обе части равенства на a. Получим a∙x n +2 =a∙(С 1 ∙x n +1 +С 2 ∙x n)= С 1 ∙a∙x n +1 +С 2 ∙a∙x n . Это означает, что ax n является решением (*).

2) Если последовательности x n и y n являются решениями (*), то и последовательность x n +y n тоже является решением.

Доказательство.

x n и y n являются решениями, следовательно, выполняются следующие тождества:

x n +2 =C 1 x n +1 +C 2 x n .

y n +2 =C 1 y n +1 +C 2 y n .

Выполним почленное сложение двух равенств:

x n +2 +y n +2 =С 1 ∙x n +1 +С 2 ∙x n + С 1 ∙y n +1 +С 2 ∙y n = С 1 ∙(x n +1 + y n +1)+С 2 ∙(x n +y n). Это означает, что x n +y n является решением (*).

3) Если r 1 является решением квадратного уравнения r 2 =С 1 r+С 2 , то последовательность (r 1) n является решением для соотношения (*).

r 1 является решением квадратного уравнения r 2 =С 1 r+С 2 , значит, (r 1) 2 =C 1 r 1 +C 2 . Помножим обе части равенства на (r 1) n . Получим

r 1 2 r 1 n =(С 1 r 1 +С 2) r n .

r 1 n +2 =С 1 r 1 n +1 +С 2 r 1 n .

Это означает, что последовательность (r 1) n является решением (*).

Из этих свойств вытекает способ решения линейных рекуррентных соотношений с постоянными коэффициентами второго порядка:

1. Составим характеристическое (квадратное) уравнение r 2 =С 1 r+С 2 . Найдём его корни r 1, r 2. Если корни различны, то общее решение имеет вид f(n)= ar 1 n +βr 2 n .

2. Найдём коэффициенты a и β. Пусть f(0)=a, f(1)=b. Система уравнений

имеет решение при любых а и b. Этими решениями являются

Задача. Найдем формулу для общего члена последовательности Фибоначчи.

Решение. Характеристическое уравнение имеет вид х 2 =х+1 или х 2 -х-1=0, его корнями являются числа , значит, общее решение имеет вид f(n)= . Как нетрудно видеть, из начальных условий f(0)=0, f(1)=1 вытекает, что a=-b=1/Ö5, и, следовательно, общее решение последовательности Фибоначчи имеет вид:

.

Что удивительно, это выражение при всех натуральных значениях n принимает целые значения.

Общим решением рекуррентного соотношения (1) называется множество всех последовательностей, удовлетворяющих этому соотношению.

Частным решением соотношения (1) называется одна из последовательностей, удовлетворяющих этому соотношению.

Пример 1¢. Последовательность a n =a 0 +nd a n =a n - 1 +d . Это - формула общего члена арифметической прогрессии с разностью d и с начальным членом прогрессии a 0 .

Пример 2¢. Последовательность b n =b 0 ×q n является общим решением соотношения b n =b n - 1 ×q . Это - формула общего члена геометрической прогрессии со знаменателем q ¹0 и с начальным членом прогрессии b 0 .

Пример 3¢. Так называемая формула Бине j n =является частным решением соотношения j n =j n - 2 +j n - 1 при j 0 =j 1 =1.

Так как простые корни x 1 ,…,x k попарно различные, то D¹0. Значит, система (5) имеет (единственное) решение.

Задача 1. Найти общий член геометрической прогрессии по формуле (4).

Решение b n =qb n - 1 имеет вид . Поэтому .


Задача 2. Найти общее решение соотношения Фибоначчи a n + 2 =a n +a n + 1 .

Решение . Характеристический многочлен рекуррентного соотношения a n + 2 =a n +a n + 1 имеет вид . Поэтому .

Приведем без доказательства следующее обобщение теоремы 1.

Теорема 2 . Пусть характеристический многочлен однородного линейного рекуррентного соотношения (3) имеет k корней: a 1 кратности , …, a k кратности , , . Тогда общее решение рекуррентного соотношения (3) имеет следующий вид:

Задача 3. Найти общее решение соотношения .

Решение. Характеристический многочлен имеет корень 2 кратности 3. Поэтому .

Замечание . Общее решение неоднородного линейного соотношения (2) можно найти как сумму общего решения однородного линейного соотношения (3) и частного решения неоднородного линейного соотношения (2).

4. Производящие функции. Формальный ряд a 0 +a 1 x +a 2 x 2 +…+a k x k +… называется производящей функцией последовательности a 0 ,a 1 ,a 2 ,…,a k ,…

Производящая функция является или сходящимся рядом, или расходящимся рядом. Два расходящихся ряда могут быть равны как функции, но быть производящимися функциями различных последовательностей. Например, ряды 1+2x +2 2 x 2 +…+2 k x k +… и 1+3x +3 2 x 2 +…+3 k x k +… определяют одну и ту же функцию (равную 1 в точке x =1, неопределенную в точках x >1), но являются производящими функциями различных последовательностей.

Свойства производящих функций последовательностей:

сумма (разность) производящих функций последовательностей a n и b n равна производящей функции сумме (разности) последовательностей a n +b n ;

произведение производящих функций последовательностей a n и b n является производящей функцией свёртки последовательностей a n и b n :

c n =a 0 b n +a 1 b n - 1 +…+a n - 1 b 1 +a n b 0 .

Пример 1. Функция является производящей для последовательности

Пример 2. Функция является производящей для последовательности 1, 1, 1, …

Комбинаторные вычисления на конечных множествах

Введение в комбинаторику

Предметом теории комбинаторных алгоритмов, часто называемой комбинаторными вычислениями, являются вычисления на дискретных математических структурах. В этой теории большое внимание уделяется алгоритмическому подходу к решению задач дискретной математики, оптимизации перебора вариантов, сокращению числа рассматриваемых решений.

Область комбинаторных алгоритмов включает в себя задачи, которые требуют подсчёта (оценивания) числа элементов в конечном множестве или перечисления этих элементов в специальном порядке (приложение Б). При этом широко применяется процедура выбора элементов с возвращением и её варианты.

Существуют два вида задач подсчёта. В простом случае задаётся конкретное множество и требуется определить точно число элементов в нём. В общем случае имеется семейство множеств, заданное некоторым параметром, и определяется мощность множества как функция параметра. При этом часто бывает достаточной оценка порядка функции , а иногда требуется только оценка скорости её роста . Например, если мощность подлежащего рассмотрению множества растёт по некоторому параметру экспоненциально, то этого может оказаться достаточно для того, чтобы отказаться от предложенного подхода к изучению проблемы, не занимаясь различными деталями. К этому, более общему, типу проблем применяются процедуры асимптотических разложений, рекуррентных соотношений и производящих функций.

Асимптотика

Асимптота - особая линия (чаще всего прямая), являющаяся предельной для рассматриваемой кривой.

Асимптотика - это искусство оценивания и сравнения скоростей роста функций. Говорят, что при х ®¥ функция "ведёт себя, как х ", или "возрастает с такой же скоростью, как х ", и при х ®0 "ведёт себя, как 1/x ". Говорят, что "logx при x ®0 и любом e>0 ведёт себя, как x e , и что при n ®¥ растёт не быстрее, чем n logn ". Такие неточные, но интуитивно ясные утверждения полезны при сравнении функций так же, как и соотношения <, £ и = при сравнивании чисел.

Определим три основных асимптотических соотношения.

Определение 1. Функция f (x ) эквивалентна g (x ) при х ®x 0 , если и только если =1.

В этом случае говорят, что функция f (x ) асимптотически равна функции g (x ) или что f (x ) растёт с такой же скоростью, как и g (x ).

Определение 2 . f (x )=o(g (x )) при x ®x 0 , если и только если =0.

Говорят, что при x ®x 0 f (x ) растёт медленнее, чем g (x ), или что f (x ) "есть о-малое" от g (x ).

Определение 3. f (x )=О(g (x )) при x ®x 0 , если и только если существует константа С такая, что sup =С.

В этом случае говорят, что f (x ) растёт не быстрее, чем g (x ), или что при x ®x 0 f (x ) "есть О-большое" от g (x ).

Cоотношение f (x )=g (x )+o (h (x )) при x ®¥ означает, что f (x)-g (x )=o (h (x )). Аналогично f (x )=g (x )+О (h (x )) означает, что f (x )-g (x )(h (x )).

Выражения О(·) и о(·) могут использоваться также и в неравенствах. Например, неравенство x +o (x )£2x при x ®0 означает, что для любой функции f (x ) такой, что f (x )=o (x ), при x ®¥ имеет место соотношение x+f (x )£2x для всех достаточно больших значений х .

Приведём некоторые полезные асимптотические равенства.

Полином асимптотически равен своему старшему члену:

при x ®¥; (4.1)

при x ®¥; (4.2)

при x ®¥ и a k ¹0. (4.3)

Суммы степеней целых чисел удовлетворяют соотношению:

при n ®¥. (4.4)

Отсюда, в частности, имеем при n ®¥

В более общем случае при n ®¥ и для любого целого k ³0

; (4.6)

. (4.7)

Рекуррентные соотношения

Понятие рекуррентных соотношений проиллюстрируем на классической проблеме, поставленной и изученной Фибоначчи около 1200 г.

Фибоначчи поставил свою проблему в форме рассказа о скорости роста популяции кроликов при следующих предположениях. Все начинается с одной пары кроликов. Каждая пара кроликов становится фертильной (fertile – плодовитый) через месяц, после чего каждая пара рождает новую пару кроликов каждый месяц. Кролики никогда не умирают, и их воспроизводство никогда не прекращается. Пусть F n - число пар кроликов в популяции по прошествии n месяцев и пусть эта популяция состоит из N n пар приплода и O n “старых” пар, т.е. F n = N n + O n . Таким образом, в очередном месяце произойдут следующие события:

Старая популяция в (n +1)-й момент увеличится на число родившихся в момент времени n , т.е. O n+1 = O n + N n = F n ;

Каждая старая в момент времени n пара производит в момент времени (n +1) пару приплода, т.е. N n+1 = C n .

В последующий месяц эта картина повторяется:

O n+2 = O n+1 + N n+1 = F n+1 ,

N n+2 = O n+1 ;

объединив эти равенства, получим рекуррентное соотношение Фибонначи:

O n+2 + N n+2 = F n+1 + O n+1 ,

F n+2 = F n+1 + F n . (4.8)

Выбор начальных условий для последовательности чисел Фибоначчи не важен; существенные свойства этой последовательности определяются рекуррентным соотношением (4.8). Обычно полагают F 0 =0, F 1 =1 (иногда полагают F 0 =F 1 =1).

Рекуррентное соотношение (4.8) является частным случаем однородных линейных рекуррентных соотношений с постоянными коэффициентами:

x n = a 1 x n-1 + a 2 x n-2 +…a k x n-k , (4.9)

где коэффициенты a i не зависят от n и x 1 , x 2 , …, x k считаются заданными.

Существует общий метод решения (т.е. отыскания x n как функции n ) линейных рекуррентных соотношений с постоянными коэффициентами. Этот метод рассмотрим на примере соотношения (4.8). Найдём решение в виде

F n =cr n (4.10)

с постоянными с и r . Подставляя это выражение в (4.8), получим

cr n + 2 = cr n+ 1 + cr n ,

cr n (r n -r -1)=0. (4.11)

Это означает, что F n =cr n является решением, если либо с =0, либо r = 0 (и отсюда F n =0 для всех n ), а также (и это более интересный случай) если r 2 - r -1=0, причём константа с произвольна. Тогда из (4.11) следует

r = или r = . (4.12)

Число »1,618 известно как ²золотое² сечение, поскольку с древних времен считается, что треугольник (прямоугольник) со сторонами 1 и имеет наиболее приятные для глаза пропорции.

Сумма двух решений однородного линейного рекуррентного соотношения, очевидно, также является решением, и можно на самом деле показать, что общее решение последовательности Фибоначчи имеет вид

F n = , (4.13)

где константы с и с’ определяются начальными условиями. Положив F 0 =0 и F 1 =1, получим следующую систему линейных уравнений:

, (4.14)

решение которой даёт

c = -c" = . (4.15)

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный университет имени Н. А. Некрасова Т. Н. Матыцина ДИСКРЕТНАЯ МАТЕМАТИКА РЕШЕНИЕ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ Практикум Кострома 2010

2 ББК я73-5 М348 Печатается по решению редакционно-издательского совета КГУ им. Н. А. Некрасова Рецензент А. В. Чередникова, кандидат физико-математических наук, доцент М348 Матыцина Т. Н. Дискретная математика. Решение рекуррентных соотношений: практикум [Текст] / Т. Н. Матыцина. Кострома: КГУ им. Н. А. Некрасова, с. Практикум содержит индивидуальные задания для студентов и предназначен для обеспечения самостоятельной работы по освоению первой части курса «Дискретная математика». Для студентов 2 3 курсов физико-математического факультета, обучающихся по специальностям «Математика» с дополнительной специальностью «Информатика», «Информатика» с дополнительной специальностью «Математика». ББК я73-5 Т. Н. Матыцина, 2010 КГУ им. Н. А. Некрасова,


3 ОГЛАВЛЕНИЕ Введение Методические рекомендации по решению линейных рекуррентных соотношений Основные понятия и определения рекуррентных (возвратных) последовательностей Алгоритмы решения ЛОРС и ЛРС Примеры решения ЛОРС и ЛРС Задачи для самостоятельного решения Задачи для решения ЛОРС и ЛРС Ответы Заключение Библиографический список


4 ВВЕДЕНИЕ Первая часть курса «Дискретная математика», изучаемая студентами 2 3 курсов физико-математического факультета, обучающихся по специальностям «Информатика» с дополнительной специальностью «Математика» (IV семестр) и «Математика» с дополнительной специальностью «Информатика» (V семестр), предполагает решение рекуррентных соотношений. В настоящее издание включены задачи на вычисление однородных и неоднородных линейных рекуррентных соотношений. Поводом для написания практикума послужило то обстоятельство, что у студентов практически нет навыков решения задач по данному курсу. Одной из причин является отсутствие доступного учебника или сборника задач. Задачи из предлагаемого практикума помогут каждому из студентов (индивидуально) разобраться с основными методами и приемами решения задач. С целью более легкого освоения материала в начале пособия рассмотрены все типы задач, предлагаемых для самостоятельного решения. В конце помещен список рекомендуемой литературы, которая поможет глубже изучить данный предмет. Тема «Рекуррентные соотношения» близка к школьному курсу (арифметические и геометрические прогрессии, последовательность квадратов и кубов натуральных чисел, и т. п.), поэтому не требует от студентов предварительного изучения каких-либо других дисциплин. Основы теории рекуррентных соотношений (возвратных последовательностей) были разработаны и опубликованы в 20-х гг. XVIII в. французским математиком А. Муавром и одним из первых по времени членов Петербургской Академии наук швейцарским математиком Д. Бернулли. Развёрнутую теорию дал крупнейший математик XVIII в. 4


5 петербургский академик Л. Эйлер. Из более поздних работ следует выделить изложение теории возвратных последовательностей в курсах исчисления конечных разностей, читанных знаменитыми русскими математиками академиками П. Л. Чебышевым и А. А. Марковым. Рекуррентные соотношения (от латинского слова recurrere возвращаться) играют большую роль в дискретной математике, являясь по существу в некотором смысле дискретным аналогом дифференциальных уравнений. Кроме того, они позволяют сводить данную задачу от параметров к задаче от 1 параметров, потом к задаче от 2 параметров и т. д. Последовательно уменьшая число параметров, можно дойти до задачи, которую уже легко решить. Понятие рекуррентного соотношения (возвратной последовательности) является широким обобщением понятия арифметической или геометрической прогрессии. Как частные случаи оно охватывает также последовательности квадратов или кубов натуральных чисел, последовательности цифр десятичного разложения рационального числа (и вообще любые периодические последовательности), последовательности коэффициентов частного от деления двух многочленов, расположенных по возрастающим степеням х, и т. д. 5


6 1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО РЕШЕНИЮ ЛИНЕЙНЫХ РЕКУРРЕНТНЫХ СООТНОШЕНИЙ 1.1. Основные понятия и определения рекуррентных (возвратных) последовательностей Будем записывать последовательности в виде a 1, a 2, a 3, a, (1) или, коротко, {a }. Если существует натуральное число k и числа α 1, α 2, α k (действительные или мнимые), такие, что, начиная с некоторого номера и для всех следующих номеров, a +k = α 1 a +k 1 + α 2 a +k α k a, (k 1), (2) то последовательность (1) называется рекуррентной (возвратной) последовательностью порядка k, а соотношение (2) рекуррентным (возвратным) уравнением порядка k. Таким образом, рекуррентная последовательность характеризуется тем, что каждый её член (начиная с некоторого из них) выражается через одно и то же количество k непосредственно предшествующих ему членов по формуле (2). Само название «рекуррентная» (а также возвратная) употребляется именно потому, что здесь для вычисления последующего члена возвращаются к предшествующим членам. Приведём несколько примеров рекуррентных последовательностей. Пример 1. Геометрическая прогрессия. Пусть имеем геометрическую прогрессию: a 1 = α, a 2 = α q, a 3 = α q 2, a = α q 1, ; (3) для неё уравнение (2) принимает вид: a +1 = q a. (4) 6


7 Здесь k = 1 и α 1 = q. Таким образом, геометрическая прогрессия является рекуррентной последовательностью первого порядка. Пример 2. Арифметическая прогрессия. В случае арифметической прогрессии a 1 = α, a 2 = α + d, a 3 = α + 2d, a = α + (1)d, имеем a +1 = a + d соотношение, не имеющее вида уравнения (2). Однако если мы рассмотрим два соотношения, написанные для двух соседних значений: a +2 = a +1 + d и a +1 = a + d, то получим из них путём почленного вычитания a +2 a +1 = a +1 a, или a +2 = 2a +1 a уравнение вида (2). Здесь k = 2, α 1 = 2, α 2 = 1. Следовательно, арифметическая прогрессия является рекуррентной последовательностью второго порядка. Пример 3. Рассмотрим старинную задачу Фибоначчи 1 о числе кроликов. В ней требуется определить число пар зрелых кроликов, образовавшихся от одной пары в течение года, если известно, что каждая зрелая пара кроликов ежемесячно рождает новую пару, причём новорождённые достигают полной зрелости в течение месяца. В этой задаче интересен отнюдь не результат, получить который совсем нетрудно, но последовательность, члены которой выражают общее число зрелых пар кроликов в начальный момент (a 1) через месяц (a 2), через два месяца (a 3) и, вообще, через месяцев (a +1). Очевидно, что a 1 = 1. Через месяц прибавится пара новорождённых, но число зрелых пар будет прежнее: a 2 = 1. Через два месяца крольчата достигнут зрелости и общее число зрелых пар будет равно двум: a 3 = 2. Пусть мы вычислили уже количество 1 Фибоначчи, или Леонардо Пизанский, итальянский средневековый математик (около 1200 г.) оставил после себя книгу «Об абаке», содержащую обширные арифметические и алгебраические сведения, заимствованные у народов Средней Азии и византийцев и творчески им переработанные и развитые. 7


8 зрелых пар через 1 месяцев a и через месяцев a +1. Так как к этому времени a ранее имевшихся зрелых пар дадут ещё a пар приплода, то через + 1 месяцев общее число зрелых пар будет: a +2 = a +1 + a. (6) Отсюда a 4 = a 3 + a 2 = 3, a 5 = a 4 + a 3 = 5, a 6 = a 5 + a 4 = 8, a 7 = a 6 + a 5 = 13,. Мы получили, таким образом, последовательность a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13, a 13 = 233, (7) в которой каждый последующий член равен сумме двух предыдущих. Последовательность эта называется последовательностью Фибоначчи, а члены её числами Фибоначчи. Уравнение (6) показывает, что последовательность Фибоначчи есть рекуррентная последовательность второго порядка. Пример 4. В качестве следующего примера рассмотрим последовательность квадратов натуральных чисел: a 1 = 1 2, a 2 = 2 2, a 3 = 3 2, a = 2,. (8) Здесь a +1 = (+ 1) 2 = и, следовательно, a +1 = a (9) Увеличивая на единицу, получим: a +2 = a (10) И, следовательно (вычитая почленно (9) из (10)), a +2 a +1 = a +1 a + 2, или a +2 = 2a +1 a + 2. (11) Увеличивая в равенстве (11) на единицу, будем иметь: a +3 = 2a +2 a ; (12) откуда (вычитая почленно (11) из (12)) a +3 a +2 = 2a +2 3a +1 + a, 8


9 или a +3 = 3a +2 3a +1 + a. (13) Мы получили рекуррентное уравнение третьего порядка. Следовательно, последовательность (8) есть рекуррентная последовательность третьего порядка. Пример 5. Рассмотрим последовательность кубов натуральных чисел: a 1 = 1 3, a 2 = 2 3, a 3 = 3 3, a = 3,. (14) Подобным же образом, как в примере 4, можно убедиться в том, что последовательность кубов натуральных чисел есть рекуррентная последовательность четвёртого порядка. Члены её удовлетворяют уравнению a +4 = 4a +3 6a a +1 a. (15) В случае простейших рекуррентных последовательностей, например арифметической и геометрической прогрессий, последовательности квадратов или кубов натуральных чисел, мы можем находить любой член последовательности, не прибегая к вычислению предшествующих членов. В случае же последовательности чисел Фибоначчи мы, на первый взгляд, не имеем возможности для этого и, чтобы вычислить тринадцатое число Фибоначчи a 13, находим предварительно, один за другим, все предшествующие члены (пользуясь уравнением a +2 = a +1 + a (6)): a 1 = 1, a 2 = 1, a 3 = 2, a 4 = 3, a 5 = 5, a 6 = 8, a 7 = 13, a 8 = 21, a 9 = 34, a 10 = 55, a 11 = 89, a 12 = 144, a 13 = 233. В ходе детального исследования структуры членов рекуррентной последовательности можно получить формулы, позволяющие вычислить в самом общем случае любой член рекуррентной последовательности, не прибегая к вычислению предшествующих членов. Другими словами, следующая задача состоит в том, чтобы отыскать формулу -го члена последовательности, зависящую только от номера. 9


10 Рекуррентное соотношение в общем случае может быть записано в виде a +k = F(, a +k 1, a +k 2, a), где F функция от k + 1 переменной, а число k называют порядком соотношения. Решением рекуррентного соотношения называется числовая последовательность b 1, b 2, b 3, b, для которой выполняется равенство: b +k = F(, b +k 1, b +k 2, b) при любом = 0, 1, 2,. Вообще говоря, произвольное рекуррентное соотношение имеет бесконечно много решений. Например, если рассмотреть рекуррентное соотношение второго порядка a +2 = a +1 + a, то ему, кроме последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34,..., характеризующейся тем, что здесь a 1 = a 2 = 1, удовлетворяет ещё бесконечное множество других последовательностей, получающихся при различном выборе значений a 1 и a 2. Так, например, при a 1 = 3 и a 2 = 1 получаем последовательность: 3, 1, 2, 1, 3, 4, 7, 11, 18, 29,. Чтобы однозначно определить решение рекуррентного соотношения, необходимо задать начальные условия (начальных условий должно быть ровно столько, каков порядок рекуррентного соотношения). Решить рекуррентное соотношение значит найти формулу -го члена последовательности. К сожалению, не существует общего метода решения произвольных рекуррентных соотношений. Исключением является класс так называемых линейных рекуррентных соотношений с постоянными коэффициентами. Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a, где a i некоторые числа, i = 1, 2, k, называется линейным однородным рекуррентным соотношением (ЛОРС) с постоянными коэффициентами порядка k. 10


11 Рекуррентное соотношение вида a +k = α 1 a +k 1 + α 2 a +k α k a + f(), где a i некоторые числа, i = 1, 2, k, f() 0 функция от, называется линейным рекуррентным соотношением (ЛРС) с постоянными коэффициентами порядка k Алгоритмы решения ЛОРС и ЛРС Алгоритм решения ЛОРС. Имеем ЛОРС: a +k = α 1 a +k 1 + α 2 a +k α k a. 1 шаг. Каждому ЛОРС порядка k соответствует алгебраическое уравнение степени k с теми же коэффициентами, и оно называется характеристическим уравнением ЛОРС. Составляем характеристическое уравнение x k = α 1 x k 1 + α 2 x k α k x 0 и находим его корни x i, где i = 1, k. 2 шаг. Если x i корни кратности 1 (т. е. все различны между собой), то общее решение ЛОРС имеет вид: a = c 1 (x 1) + c 2 (x 2) + c 3 (x 3) + + c k (x k) = c i x i Если x i корни кратности r i, то общее решение ЛОРС имеет вид k a = i= 1 (c 1 2 ri 1 i1 + ci2 + ci cir) (например, если корень x кратности 2, то a = (c 1 + c 2) x). i x i k i= 1 3 шаг. Коэффициенты c i находятся с помощью начальных условий. 11


12 Алгоритм решения ЛРС. Имеем ЛРС: a +k = α 1 a +k 1 + α 2 a +k α k a + f(). Функцию f() можно представить в виде R m () λ, где R m () многочлен степени m от переменной. В самом деле, например: f() = 10 3= (10 3)1 = R 1 () 1, или f() = = (2 + 3) 3 = R 2 () 3. Перепишем ЛРС в виде a +k α 1 a +k 1 α 2 a +k 2 α k a = R m () λ. 1 шаг. Выписываем соответствующий ЛОРС: a +k α 1 a +k 1 α 2 a +k 2 α k a = 0 и находим его общее решение. Для этого составляем характеристическое уравнение x k α 1 x k 1 α 2 x k 2 α k x 0 = 0 и находим его корни x i, где i = 1, k. Пусть, например, x i различные корни, тогда общее решение соответствующего ЛОРС имеет вид: a = c 1 (x 1) + c 2 (x 2) + c 3 (x 3) + + c k (x k). 2 шаг. Находим a частное решение ЛРС: а) если λ не корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0, то a = Q m () λ, где Q m () многочлен степени m от переменной; б) если λ корень характеристического уравнения x k α 1 x k 1 α 2 x k 2 α k = 0 кратности r, то a = r Q m () λ, где Q m () многочлен степени m от переменной. Далее, подставляем a в исходное ЛРС и находим коэффициенты в многочлене Q m (). 12


13 3 шаг. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a. Коэффициенты c i находятся с помощью начальных условий Примеры решения ЛОРС и ЛРС Пользуясь приведенным алгоритмом нахождения решения ЛОРС и ЛРС, разберём несколько задач. Задача 1. Найти решение линейного однородного рекуррентного соотношения второго порядка: a +2 = 6 a +1 8 a, a 0 = 3, a 1 = Составляем характеристическое уравнение x 2 = 6 x 8 x 0 и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1) + c 2 (x 2) = c c Так как заданы начальные условия, то коэффициенты c 1 и c 2 определяются однозначно. a 0 = c c = c 1 + c 2 = 3; a 1 = c c = 2c 1 + 4c 2 = 4. Получили систему: c1 + c2 = 3, 2c1 + 4c2 = 4. Решая её, найдём коэффициенты: c 1 = 8, c 2 = 5. Таким образом, решение ЛОРС имеет вид a = Задача 2. Найти решение линейного однородного рекуррентного соотношения: 13


14 a +2 = 6 a +1 9 a, a 0 = 5, a 1 = Составляем характеристическое уравнение x 2 = 6x 9 и находим его корни. x 2 6x + 9 = 0; (x 3) 2 = 0; x 1 = x 2 = 3 два корня, при этом x 1 и x 2 совпали, следовательно, кратность корня равна Находим общее решение ЛОРС: a = (c 1 + c 2) (x 1) = (c 1 + c 2) С помощью начальных условий определяем коэффициенты c 1 и c 2: a 0 = (c 1 + c 2 0) 3 0 = c 1 = 5; a 1 = (c 1 + c 2 1) 3 1 = (c 1 + c 2) 3 = 6. Получили систему c1 = 5, c1 + c2 = 2. Решая её, найдём коэффициенты c 1 = 5, c 2 = 3. Таким образом, решение ЛОРС имеет вид: a = (5 3) 3. Замечание. Как известно, корнями квадратного уравнения могут служить рациональные, иррациональные, комплексные числа и т. п. Метод решения линейных рекуррентных соотношений с такими корнями решается аналогично. Задача 3. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = 3 a a +1 8 a, a 0 = 9, a 1 = 9, a 2 = Составляем характеристическое уравнение x 3 = 3 x x 8 и находим его корни. x 3 3x 2 6x + 8 = 0; (x 1)(x + 2)(x 4) = 0; x 1 = 1, x 2 = 2, x 3 = 4 корни различные, следовательно, их кратность равна Находим общее решение ЛОРС: a = c 1 (x 1) + c 2 (x 2) + c 3 (x 3) = c c 2 (2) + c


15 3. С помощью начальных условий, находим коэффициенты c 1, c 2 и c 3. a 0 = c c 2 (2) 0 + c = c 1 + c 2 + c 3 = 9; a 1 = c c 2 (2) 1 + c = c 1 2c 2 + 4c 3 = 9; a 2 = c c 2 (2) 2 + c = c 1 + 4c c 3 = 9. c1 + c2 + ñ3 = 9, Решая систему c1 2c2 + 4c3 = 9, получим c 1 = 7, c 2 = 4, c 3 = 2. Таким c1 + 4c2 + 16c3 = 9, образом, решение ЛОРС имеет вид: a = (2) 2 4. Задача 4. Найти решение линейного однородного рекуррентного соотношения третьего порядка: a +3 = a a +1 3 a, a 0 = 6, a 1 = 15, a 2 = Составляем характеристическое уравнение x 3 = x 2 + 5x 3 и находим его корни. x 3 + x 2 5x + 3 = 0; (x 1) 2 (x + 3) = 0; x 1 = x 2 = 1 корень кратности 2; x 3 = 3 корень кратности Находим общее решение ЛОРС: a = (c 1 + c 2) (x 1) + c 3 (x 3) = (c 1 + c 2) 1 + c 3 (3). 3. С помощью начальных условий находим коэффициенты c 1, c 2 и c 3. a 0 = (c 1 + c 2 0) c 3 (3) 0 = c 1 + c 3 = 6; a 1 = (c 1 + c 2 1) c 3 (3) 1 = c 1 + c 2 3c 3 = 15; a 2 = (c 1 + c 2 2) c 3 (3) 2 = c 1 + 2c 2 + 9c 3 = 8. c1 + ñ3 = 6, Решая систему c1 + c2 3c3 = 15, получим c 1 = 8, c 2 = 1 и c 3 = 2. Таким c1 + 2c2 + 9c3 = 8, образом, решение ЛОРС имеет вид: a = (8 +) 1 2 (3). 15


16 Задача 5. Найти решение линейного рекуррентного соотношения второго порядка: Перепишем ЛРС в виде a +2 = 18 a a + 128, a 0 = 5, a 1 = 2. a a a = () 1. Выписываем соответствующий ЛОРС: a a a = 0. Составляем характеристическое уравнение и находим его корни. x 2 18x + 81 = 0; (x 9) 2 = 0; x 1 = x 2 = 9 корни характеристического уравнения совпали, следовательно, их кратность равна 2. Тогда общее решение a = (c 1 + c 2) (x 1) = (c 1 + c 2) Находим a частное решение ЛРС. По условию f() = R m () λ = = = R 0 () λ, где R 0 () = 128 многочлен нулевой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 0 () 1, где Q 0 () многочлен нулевой степени от переменной, в общем виде Q 0 () = с. Таким образом, a = с 1. Далее, подставляем a в исходное ЛРС () и находим коэффициент с в многочлене Q 0 (): с с с 1 = ; с 18с + 81с = 128; 64с = 128; с = 2. Следовательно, получили a = с 1 = 2 1 = 2. 16


17 3. Находим общее решение ЛРС, оно представляет собой сумму общего решения соответствующего ЛОРС a и частного решения ЛРС a, то есть a = a + a = (c 1 + c 2) Осталось с помощью начальных условий найти коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) = c = 5; a 1 = (c 1 + c 2 1) = 9c 1 + 9c = 2; Решая систему c1 + 2 = 5, 9c1 + 9c2 + 2 = 2, получим c 1 = 3, c 2 = 3. Таким образом, решение ЛРС имеет вид: a = (3 3) Задача 6. Найти решение линейного рекуррентного соотношения: a +2 = 10 a a , a 0 = 7, a 1 = 50. Перепишем ЛРС в виде a a a = Выписываем соответствующий ЛОРС: a a a = 0; составляем характеристическое уравнение и находим его корни. x 2 10 x + 25 = 0; (x 5) 2 = 0; x 1 = x 2 = 5 корень кратности 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2) (x 1) = (c 1 + c 2) Находим a частное решение ЛРС. По условию f() = R m () λ = 50 5 = R 0 () λ, где R 0 () = 50 многочлен нулевой степени от переменной, а λ = 5 совпадает с корнем x 1 кратности 2 характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = = 2 Q 0 () 5, где Q 0 () = с многочлен нулевой степени от переменной. Таким образом, a = 2 с 5. Далее, подставляем a в исходное ЛРС и находим коэффициент с: 17


18 с (+ 2) с (+ 1) с 2 5 = 50 5 (разделим на 5 0); 25с (+ 2) 2 50с (+ 1) с 2 = 50; с () 2с () + с 2 = 2; с = 1. Следовательно, a = 2 с 5 = Выписываем общее решение ЛРС: a = a + a = (c 1 + c 2) С помощью начальных условий находим коэффициенты c 1, и c 2: a 0 = (c 1 + c 2 0) = c 1 = 7; a 1 = (c 1 + c 2 1) = 5c 1 + 5c = 50; Решая систему c1 = 7, c1 + c2 + 1 = 10, получим c 1 = 7, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = (7 + 2) = () 5. Задача 7. Найти решение линейного рекуррентного соотношения: a +2 = 6 a +1 8 a , a 0 = 0, a 1 = 11. Перепишем ЛРС в виде a +2 6 a a = Выписываем соответствующий ЛОРС: a +2 6 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 6x + 8 = 0; x 1 = 2, x 2 = 4 корни кратности равной 1. Тогда общее решение ЛОРС имеет вид a = c 1 (x 1) + c 2 (x 2) = c c Находим a частное решение ЛРС. По условию f() = R m () λ = = (3 + 2) 1 = R 1 () λ, где R 1 () = многочлен первой степени от переменной, а λ = 1 не корень характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 1 () 1, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = = a + b. Таким образом, a = (a + b) 1. 18


19 a и b: Далее, подставляем a в исходное ЛРС и находим коэффициенты (a (+ 2) + b) (a (+ 1) + b) (a + b) 1 = 3 + 2; 25с (+ 2) 2 50с (+ 1) с 2 = 3 + 2; 3a + (3b 4a) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 3a = 3, a = 1, 3b 4a = 2 b = 2. Следовательно, a = (a + b) 1 = Выписываем общее решение ЛРС: a = a + a = c c (+ 2). С помощью начальных условий находим коэффициенты c 1, и c 2: a 0 = c c (0 + 2) = 0; a 1 = c c (1 + 2) = 11; Решая систему c1 + c2 = 2, 2c1 + 4c2 = 14, получим c 1 = 3, c 2 = 5. Таким образом, решение ЛРС имеет вид: a = Задача 8. Найти решение линейного рекуррентного соотношения: a +2 = 5 a +1 6 a + (10 4) 2, a 0 = 5, a 1 = 12. Перепишем ЛРС в виде a +2 5 a a = (10 4) Выписываем соответствующий ЛОРС: a +2 5 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 5x + 6 = 0; x 1 = 3, x 2 = 2 корни различные кратности 1. Тогда общее решение ЛОРС имеет вид: a = c 1 (x 1) + c 2 (x 2) = c c


20 2. Находим a частное решение ЛРС. По условию имеем, что f() = = R m () λ = (10 4) 2 = R 1 () λ, где R 1 () = (10 4) многочлен первой степени от переменной, а λ = 2, то есть совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = r Q m () λ = 1 Q 1 () 2, где Q 1 () многочлен первой степени от переменной, в общем виде Q 1 () = a + b. Таким образом, получаем a = = (a + b) 2. Далее, подставляем a в исходное соотношение и находим коэффициенты a и b. (+ 2)(a (+ 2) + b) (+ 1) (a (+ 1) + b) (a + b) 2 = = (10 4) 2. Разделим это уравнение на 2 0: 4(+ 2)(a (+ 2) + b) 10(+ 1) (a (+ 1) + b) + 6(a + b) = 10 4; 4a + (6a 2b) = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 4a = 4, a = 1, 6a 2b = 10 b = 2. Следовательно, a = (a + b) 2 = (2) Выписываем общее решение ЛРС, то есть a = a + a = c c (2) 2. С помощью начальных условий находим коэффициенты c 1, и c 2. a 0 = c c (0 2) 2 0 = 5; a 1 = c c (1 2) 2 1 = 12. Решая систему c1 + c2 = 5, 3c1 + 2c2 = 14, получим c 1 = 4, c 2 = 1. Таким образом, решение ЛРС имеет вид: a = (2) 2 = () 2. 20


21 Задача 9. Найти решение линейного рекуррентного соотношения: a +2 = 8 a a , a 0 = 1, a 1 = 7. Перепишем ЛРС в виде a +2 8 a a = () Выписываем соответствующий ЛОРС: a +2 8 a a = 0; составляем характеристическое уравнение и находим его корни. x 2 8 x + 16 = 0; x 1 = x 2 = 4 корни совпали, следовательно, кратность корня равна 2. Тогда общее решение ЛОРС имеет вид: a = (c 1 + c 2) (x 1) = (c 1 + c 2) Находим a частное решение ЛРС. По условию f() = R m () λ = = () 1 = R 2 () λ, где R 2 () = многочлен второй степени от переменной, а λ = 1 не совпадает с корнем характеристического уравнения соответствующего ЛОРС. Следовательно, a = Q m () λ = Q 2 () 1, где Q 2 () многочлен второй степени от переменной, в общем виде Q 2 () = a 2 + b + c. Таким образом, a = = (a 2 + b + c) 1. Далее, подставляем a в исходное соотношение и находим коэффициенты a, b и c. (a (+ 2) 2 + b (+ 2)+ c) (a (+ 1) 2 + b (+ 1) + c) (a b + c) 1 = () 1 ; a(+ 2) 2 + b(+ 2)+ c 8a(+ 1) 2 8b(+ 1) 8c + 16a b + 16c = = ; 9a 2 12a + 9b 4a 6b + 9c = Таким образом, получили, что два многочлена равны, а тогда равны соответствующие коэффициенты: 9a = 9, 12a + 9b = 6, 4a 6b + 9c = 2 a = 1, b = 2, c = 2. 21

22 Следовательно, a = (a 2 + b + c) 1 = Выписываем общее решение ЛРС, то есть a = a + a = (c 1 + c 2) (). С помощью начальных условий, находим коэффициенты c 1, и c 2. a 0 = (c 1 + c 2 0) () = 1; a 1 = (c 1 + c 2 1) () = 7. Решая систему c1 + 2 = 1, 4c1 + 4c2 + 5 = 7, получим c 1 = 1, c 2 = 2. Таким образом, решение ЛРС имеет вид: a = (1 2)

23 2. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 2.1. Задачи для решения ЛОРС и ЛРС Линейные однородные рекуррентные соотношения второго порядка 1. a +2 = 9 a a, a 0 = 2, a 1 = a +2 = 3,5 a +1 2,5 a, a 0 = 3,5, a 1 = a +2 = 8 a a, a 0 = 4, a 1 = a +2 = 2 a a, a 0 = 3, a 1 = i. 5. a +2 = 10 a a, a 0 = 3, a 1 = a +2 = 6 a a, a 0 = 0, a 1 = 2i a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 4 a a, a 0 = 7, a 1 = a +2 = a +1 + a, a 0 = 2, a 1 = a +2 = 8 a a, a 0 = 8, a 1 = a +2 = () a a, a 0 = 7, a 1 = a +2 = 5 a +1 4 a, a 0 = 0, a 1 = a +2 = 2 a +1 5 a, a 0 = 5, a 1 = 6i a +2 = 3 a a, a 0 = 7, a 1 = a +2 = 6 a +1 9 a, a 0 = 8, a 1 = a +2 = 6 a a, a 0 = 3, a 1 = 9 2i. 17. a +2 = a a, a 0 = 4, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 8 a a, a 0 = 2, a 1 = a +2 = 7 a a, a 0 = 5, a 1 = a +2 = 2 a +1 + a, a 0 = 2, a 1 =

24 1 22. a +2 = a +1 a, a 0 = 4, a 1 = a +2 = 4 a +1 a, a 0 = 12, a 1 = a +2 = a a, a 0 = 2, a 1 = a +2 = 2 a a, a 0 = 8, a 1 = a +2 = 6 a +1 9 a, a 0 = 12, a 1 = a +2 = 4 a +1 5 a, a 0 = 5, a 1 = 10 i a +2 = 3 a +1 a, a 0 = 8, a 1 = a +2 = 14 a a, a 0 = 5, a 1 = a +2 = 4 a a, a 0 = 2, a 1 = a +2 = 4 a +1 5 a, a 0 = 3, a 1 = 6 7i. 32. a +2 = a a, a 0 = 5, a 1 = a +2 = 16 a a, a 0 = 7, a 1 = a +2 = 5 a +1 6 a, a 0 = 2, a 1 = a +2 = 10 a a, a 0 = 2, a 1 = 10 4i a +2 = 6 a +1 5 a, a 0 = 11, a 1 = a +2 = 2 a a, a 0 = 11, a 1 = a +2 = 6 a a ; a 0 = 3, a 1 = 0. Линейные однородные рекуррентные соотношения третьего порядка 39. a +3 = 7 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 4 a +2 a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 6 a a a, a 0 = 5, a 1 = 8, a 2 = a +3 = 8 a a a, a 0 = 4, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 1, a 1 = 3, a 2 = a +3 = 15 a a a, a 0 = 8, a 1 = 40, a 2 =

25 45. a +3 = 27 a a, a 0 = 6, a 1 = 3, a 2 = a +3 = 6 a a a, a 0 = 15, a 1 = 32, a 2 = a +3 = 15 a a a, a 0 = 1, a 1 = 20, a 2 = a +3 = 9 a a a, a 0 = 0, a 1 = 4, a 2 = a +3 = 2 a a +1 6 a, a 0 = 4, a 1 = 5, a 2 = a +3 = 4 a +2 5 a a, a 0 = 2, a 1 = 6, a 2 = a +3 = 6 a +2 5 a a, a 0 = 4, a 1 = 2, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 17, a 2 = a +3 = 9 a a a, a 0 = 1, a 1 = 3, a 2 = a +3 = 6 a a +1 6 a, a 0 = 13, a 1 = 31, a 2 = a +3 = 5 a +2 3 a +1 9 a, a 0 = 3, a 1 = 14, a 2 = a +3 = a a +1 4 a, a 0 = 2, a 1 = 1, a 2 = a +3 = 3 a a a, a 0 = 2, a 1 = 3, a 2 = a +3 = 12 a a a, a 0 = 2, a 1 = 16, a 2 = a +3 = 4 a a a, a 0 = 0,2, a 1 = 6, a 2 = a +3 = 8 a a a, a 0 = 3, a 1 = 13, a 2 = a +3 = 4 a a a, a 0 = 3, a 1 = 29, a 2 = a +3 = 5 a +2 7 a a, a 0 = 11, a 1 = 34, a 2 = a +3 = 11 a a a, a 0 = 27, a 1 = 17, a 2 = a +3 = 12 a a a, a 0 = 1, a 1 = 37, a 2 = a +3 = 3 a a a, a 0 = 11, a 1 = 23, a 2 = a +3 = 7 a a a, a 0 = 3, a 1 = 6, a 2 = a +3 = 4 a a a, a 0 = 4, a 1 = 1, a 2 = 4.; 68. a +3 = 7 a a a, a 0 = 1, a 1 = 0, a 2 = a +3 = 5 a a a, a 0 = 6, a 1 = 0, a 2 = a +3 = 5 a +2 3 a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 3 a +2 3 a +1 + a, a 0 = 2, a 1 = 4, a 2 = a +3 = 3 a a a, a 0 = 6, a 1 = 5, a 2 =

26 73. a +3 = 10 a a a, a 0 = 0, a 1 = 1, a 2 = a +3 = 8 a a a, a 0 = 8, a 1 = 23, a 2 = a +3 = 5 a +2 8 a +1 4 a, a 0 = 11, a 1 = 15, a 2 = a +3 = a a a, a 0 = 6, a 1 = 5, a 2 = a +3 = 10 a a a, a 0 = 1, a 1 = 2, a 2 = a +3 = a a a, a 0 = 1, a 1 = 14, a 2 = a +3 = 2 a +2 + a a, a 0 = 10, a 1 = 1, a 2 = a +3 = 5 a +2 8 a a, a 0 = 9, a 1 = 9, a 2 = a +3 = 8i a a +1 10i a, a 0 = 8, a 1 = 14i, a 2 = 38. Линейные рекуррентные соотношения первого порядка 82. a +1 = 4 a + 6, a 0 = a +1 = a + + 1, a 0 = a +1 = 5 a , a 0 = a +1 = 3 a + 5 2, a 0 = a +1 = 3 a + (4) 5 1, a 0 = a +1 = 4 a + 8 4, a 0 = a +1 = 3 a , a 0 = 14. Линейные рекуррентные соотношения второго порядка 89. a +2 = 7 a a + 10, a 0 = 4, a 1 = a +2 = 10 a a + 32, a 0 = 1, a 1 = a +2 = 6 a +1 9 a 2 3, a 0 = 0, a 1 = a +2 = 7 a a , a 0 = 3, a 1 = a +2 = 9 a a + (18 20) 2, a 0 = 6, a 1 = a +2 = 8 a +1 7 a , a 0 = 9, a 1 = a +2 = 4 a +1 9 a , a 0 = 15, a 1 = 27 i a +2 = 12 a a , a 0 = 13, a 1 = 6. 26


Благовещенский государственный педагогический университет кафедра алгебры, геометрии и МПМ 16 апреля 2011 г. 1 Решение рекуррентных соотношений Определение Рекуррентным соотношением называется соотношение

Лекция 3. Последовательности, определяемые рекуррентными соотношениями. Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Лектор - доцент Селезнева Светлана

Лекция: Последовательности. Однородные и неоднородные линейные рекуррентные уравнения. Общие решения линейных рекуррентных однородных и неоднородных уравнений. Лектор - доцент Селезнева Светлана Николаевна

Лекция. Функции натурального аргумента (последовательности). Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева Светлана

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Пензенский государственный педагогический университет им В Г Белинского О А Монахова, Н А Осьминина Рекуррентные последовательности Алгебра формальных рядов Методические рекомендации для студентов специальностей

Лекция 3. Последовательности, определяемые рекуррентными соотношениями. Однородные и неоднородные линейные рекуррентные уравнения (ЛОРУ и ЛНРУ). Общие решения ЛОРУ и ЛНРУ. Примеры Лектор - доцент Селезнева

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Министерство транспорта Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра «Математический анализ»

Лекции по Математике Вып ТММ- Ю В Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 00 УДК 5+5 ББК Ч35 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С-Петерб техн ун-та М А Салль Кандидат

А А КИРСАНОВ КОМПЛЕКСНЫЕ ЧИСЛА ПСКОВ ББК 57 К45 Печатается по решению кафедры алгебры и геометрии, и редакционно-издательского совета ПГПИ им СМ Кирова Рецензент: Медведева ИН, кандидат физ мат наук, доцент

Михайлова Инна Анатольевна Институт математики и естественных наук. Кафедра алгебры и фундаментальной информатики. 30 сентября 2018 г. Примеры Числа Фибоначчи Числа Фибоначчи 1, 1, 2, 3, 5, 8, 13, 21,...

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Понятие многочлена Определения Многочленом от одной переменной называется выражение вида

Глава 0 ПОСЛЕДОВАТЕЛЬНОСТИ Алгоритмы А- Задание числовых последовательностей А- Арифметическая прогрессия А- Геометрическая прогрессия А- Суммирование А-5 Бесконечно убывающая геометрическая прогрессия

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) ПРЕДЕЛ ФУНКЦИИ Методические

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Геометрической прогрессией называется числовая последовательность b, первый член которой отличен от нуля, а каждый последующий член, начиная со второго,

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное общеобразовательное учреждение высшего профессионального образования «Тверской государственный университет» Математический факультет Кафедра алгебры

Глава 0 ТЕСТОВЫЕ ЗАДАНИЯ И ДИКТАНТЫ Т-00 Вычисление членов последовательности по рекуррентной формуле Т-00 Составление рекуррентной формулы Т-00 Формула общего члена Т-004 Составление арифметической прогрессии

6-7 уч год 6, кл Математика Комплексные числа 4 Алгебраические уравнения Квадратные уравнения В школьном курсе алгебры рассматривались квадратные уравнения ax bx c =, a, () с действительными коэффициентами

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Лекция Глава Множества и операции над ними Понятие множества Понятие множество относится к наиболее первичным понятиям математики не определяемым через более простые Под множеством понимают совокупность

Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 010 УДК 511+51 ББК Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн. ун-та

Прогрессии Последовательность функция натурального аргумента.. Задание последовательности формулой общего члена: a n = f(n), n N, например, a n = n + n + 4, а = 43, а = 47, а 3 = 3,. Задание последовательности

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. И. ЛОБАЧЕВСКОГО Факультет вычислительной математики и кибернетики Кафедра математической

Лекция. Задача о кроликах. Числа Фибоначчи, последовательность Фибоначчи, рекуррентная формула 3. Свойства чисел Фибоначчи (a) Линейность (b) Теоретико-числовые свойства (c) Суммы: F + F +... + F n, нечетных

ЛИНЕЙНАЯ АЛГЕБРА Издательство ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО "Тамбовский государственный технический университет" ЛИНЕЙНАЯ АЛГЕБРА Методические указания для студентов

Тишин В И Основные методы решения тригонометрических уравнений г Тишин В И Математика для учителей и учащихся Материал подготовлен учителем математики Тишиным Владимиром Ивановичем года Тишин В И Основные

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Лекция.7. Расширение понятия числа. Комплексные числа, действия над ними Аннотация: В лекции указывается на необходимость обобщения понятия числа от натурального до комплексного. Вводятся алгебраическая,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Заочная школа Математическое отделение МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ И БЕСКОНЕЧНЫЕ ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ 0-й класс, задание ПРАВИЛА ОФОРМЛЕНИЯ ЗАДАНИЯ Приступая

ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ По дисциплине: «Алгебра» Специальность: «Математика» заочная форма обучения 6 семестр Составитель: зав кафедрой Трофимук АА Многочлены от нескольких переменных результант алгебраические

Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство (4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Лекция. Понятие множества. Определение функции основные свойства. Основные элементарные функции СОДЕРЖАНИЕ: Элементы теории множеств Множество вещественных чисел Числовая

Рабочая программа по алгебре для учащихся 8-9 классов разработана на основе требований к результатам освоения основной образовательной программы основного общего образования. Рабочая программа рассчитана

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им НИ Лобачевского Национальный исследовательский университет АВ Леонтьева СБОРНИК ЗАДАЧ (МЕТОД МАТЕМАТИЧЕСКОЙ

АГЕНТСТВО ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ КРАСНОЯРСКОГО КРАЯ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАОЧНАЯ ЕСТЕСТВЕННО-НАУЧНАЯ ШКОЛА при КрасГУ ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИКИ 10 класс Модуль 4 МЕТОДЫ РЕШЕНИЯ

Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

СТЕПЕНЬ С ДРОБНЫМ ПОКАЗАТЕЛЕМ Если показатель t степени числа является дробным, те t, N, то для неотрицательных значений (0) по определению полагают def Для отрицательных чисел (0) < операция возведения

Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная сельскохозяйственная академия имени

РАЦИОНАЛЬНЫЕ ЧИСЛА Обыкновенные дроби Определение Дроби вида, называются обыкновенными дробями Обыкновенные дроби, правильные и неправильные Определение Дробь, правильной, если < при, где Z, N Z, N Z,

Лекция. 5. ОПИСАНИЕ И АНАЛИЗ ДИСКРЕТНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ РАЗНОСТНЫХ УРАВНЕНИЙ 5.. ОДНОМЕРНЫЕ СИСТЕМЫ ПРИ ДЕТЕРМИНИРОВАННЫХ ВОЗДЕЙСТВИЯХ 5... Описание сигналов и систем. Описание сигналов. Сигналы

В заключение этого пункта заметим что говорят также о собственных векторах матрицы порядка имея при этом ввиду собственные векторы оператора -мерного пространства имеющего своей матрицей в некотором базисе

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Тема 14 «Алгебраические уравнения и системы нелинейных уравнений» Многочленом степени n называется многочлен вида P n () a 0 n + a 1 n-1 + + a n-1 + a n, где a 0, a 1, a n-1, a n заданные числа, a 0,

Тема: Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение `` МЕТОДИЧЕСКИЕ УКАЗАНИЯ,

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение:, Получены два различных действительных корня Всё, что осталось сделать записать ответ, руководствуясь формулой

ЛЕКЦИЯ КОМПЛЕКСНЫЕ ЧИСЛА РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ Числовые множества Множество комплексных чисел Многочлены с вещественными коэффициентами Разложение на множители ЧИСЛОВЫЕ МНОЖЕСТВА МНОЖЕСТВО

Данный метод состоит в том, что решение комбинаторной задачи с n предметами выражается через решение аналогичной задачи с меньшим числом предметов с помощью некоторого соотношения, называемого рекуррентным. Говорят, что последовательность элементов u0 , u1 , … un , … над полем комплексных чисел C удовлетворяет рекуррентному соотношению порядка k, если

где a1 , … , ak - коэффициенты из C. Соотношения такого типа естественным образом возникают при решении комбинаторных задач.

Пример. Пусть имеется последовательность позиций, занумерованных числами 1, 2, … , n, … и в начальный момент предмет находится в 1-ой позиции. За один ход предмет продвигается вперед на 1 и 2 позиции. Найти число способов попадания в n-ю позицию.

♦ Пусть un - интересующее нас число. Ясно, что u2 = 1, u3 = 2 . Далее, разобьем все способы попадания в позицию с номером n на два класса: те, при которых на последнем шаге предмет передвигается на 1 шаг и те, при которых он передвигается на 2 шага. Ясно, что в первом случае имеем un-1 вариантов, во втором un-2 вариантов. Следовательно, имеем

Многочлен P(x) называется характеристическим для линейного рекуррентного соотношения (2). Заметим, что всякая рекуррентная последовательность k-го порядка однозначно определяется заданием k ее первых членов.

Пусть λ - корень характеристического многочлена P(x).

Теорема 1. Последовательность u0 , u1 , … un , … , где un = cλ n , c - произвольная константа из C, удовлетворяет линейному рекуррентному соотношению (2).

♦ Подставляя данные значения un , n = 0, 1, … в (2), имеем

cλ n - a1 cλ n-1 - a2 cλ n-2 - … - ak cλ n-k = cλ n-k (λ k - a1 λ k-1 - … - ak ) ≡ 0. ♦

Теорема 2. Пусть последовательности un , vn , n = 0, 1, … удовлетворяют линейному рекуррентному соотношению (2). Тогда этим свойством обладает последователь-

ность rn , n = 0, 1, … , где rn = α un + β vn , n , α, β - произвольные константы из C.

♦ Доказательство очевидно. ♦

Теорема 3. Пусть λ 1 , … , λ k - простые (т.е. не являющиеся кратными) корни характеристического многочлена P(x) для последовательности (2).

Тогда общее решение данного рекуррентного соотношения имеет вид

где c1 , … , ck - подходящие константы из C.

♦ Согласно предыдущему замечаем, что последовательностьun , n = 0, 1, … есть решение соотношения (2). Чтобы доказать, что любое решение имеет вид (5) достаточно показать, что для произвольной последовательности vn , n = 0, 1, … , удовлетворяющей

(2), существуют константы c1 , … , ck , такие, что un = vn , n . Для этого достаточно, чтобы выполнялось v0 = u0 , v1 = u1 , … , vk-1 = uk-1 . Рассмотрим данные условия

относительно c1 , c2 , … , ck . Определитель этой системы есть определитель Вандермонда и согласно (7, стр. 118).

= ∏ (λi − λj ) ≠ 0

λ k− 1

λ k− 1

L λ k − 1

согласно предположению о корнях λ 1 , … , λ k . Отсюда и следует утверждение. ♦ В качестве примера рассмотрим рекуррентное соотношение (3). Имеем характеристический многочлен

P(x) = x2 - x -1

Его корни равны λ 1 = 1 + 2 5 , λ 2 = 1 − 2 5 , Общее решение имеет вид

u n = c 1 1+ 2 5 n + c 2 1− 2 5 n

Система уравнений для констант c1 , c2 : c1 1 + 2 5 + c2 1 − 2 5 = 1

1− 5

Откуда получаем c1

C2 = -

Пусть теперь λ - корень кратности r характеристического многочлена P(x). Аналогично предыдущему доказывается

Теорема 4. Последовательности c1 λ n , c2 nλ n ,K , cr n r − 1 λ n , n = 0, 1, … для про-

извольных констант c1 , … , cr из C удовлетворяют соотношению (2).

Теорема 5. Пусть характеристический многочлен P(x) имеет корни λ 1 , … , λ s кратностей r1 , … , rs (r1 + … + rs = k) . Тогда общее решение рекуррентного соотношения

Укажем еще одно полезное свойство линейных рекуррентных соотношений. Теорема 6. Пусть имеем соотношение

un = a1 un-1 + … + ak un-k

с начальными условиями u1 , … , uk . Тогда справедливо соотношение при всех n ≥ k

a 1 a 2

A k n − k uk

u k− 1

u n− 1

u n− k+ 1

♦ Доказательство индукцией по n. При n = k равенство (8) справедливо. Пусть оно верно при n. При n + 1 имеем

a 1 a 2

A k n + 1 − k uk

u k− 1

0 . . 1 0

a 1 a 2

a k a 1 a 2

a k n − k uk

u k− 1

a 1 a 2

u n+ 1

u n− 1

1 0 un − k + 1

u n− k+ 2

В большинстве случаев, однако, при изучении перечислительных задач возникают нелинейные рекуррентные соотношения, для разрешения которых используются специфические приемы. Некоторые из них будут рассмотрены в дальнейшем. Приведем важный пример нелинейного рекуррентного соотношения.

Теорема 7. Пусть C(n, k) - число подстановок n-элементного множества, имеющих точно k циклов. Тогда справедливо

C(n - 1, k - 1) + (n - 1)C(n - 1, k)

1, C(0, 1) = 0

♦ Разобьем множество подстановок множества X = {1, 2, … n,} имеющих точно k циклов, на два класса - подстановки, в которых элемент n содержится в единичном цикле, и подстановки, в которых элемент n находится в цикле длины l, l > 1. В первом случае число подстановок совпадает с числом подстановок множества X′ = {1, 2, …, n - 1}, имеющих k - 1 циклов, т.е. C(n - 1, k - 1). Во втором случае, удаляя элемент n, полу-

чаем подстановку множества X′ = {1, 2, …, n - 1} с k циклами, число которых равно C(n - 1, k). Выясним теперь, каким числом способов в подстановку степени n - 1 с k циклами можно добавить элемент n. Если имеется цикл длины i, то это можно сделать i способами. Общее число способов равно i1 + … + ik , где i1 , … , ik - длины циклов подстановки. Однако i1 + … + ik = n - 1. Значит число подстановок второго класса равно

(n - 1)C(n - 1, k). Отсюда и получаем (9). ♦

Полученные числа C(n, k) связаны с известными числами Стирлинга первого рода sn,k , которые определяются так:

sn,k = (- 1)n+k C(n, k)

Приведем таблицу нескольких первых значений чисел sn,k .

s n,1

s n,2

s n,3

s n,4

s n,5

Табл. Числа Стирлинга первого рода