Самые известные кометы солнечной системы. Как называется ближайшее к

Ледяные тела комет, обычно диаметром несколько километров, гораздо менее массивны, чем планеты. Если комета пролетает мимо планеты, ее притяжение слишком мало, чтобы повлиять на практически круговую орбиту планеты. С другой стороны, орбиты самих комет совсем даже не круговые. В большинстве случаев они настолько вытянуты, что похожи на параболы. В отличие от планет, которые движутся вблизи средней плоскости Солнечной системы, кометы перемещаются по орбитам, произвольно ориентированным относительно этой плоскости.

Повидимому, современные орбиты кометы сильно отличаются от исходных. Двигаясь по типичной орбите, комета удаляется от Солнца в 1000 раз дальше Плутона. Но когда она входит в область планет, особенно — в мощное гравитационное поле Юпитера, ее орбита испытывает сильные возмущения. Если в результате комета затормозится, она на длительное время может перейти на орбиту меньшего размера. Если же возмущения увеличат скорость кометы, она может вообще покинуть Солнечную систему. Даже если орбита кометы вначале лежала в плоскости Солнечной системы, планетные возмущения могут вывести ее из этой плоскости на такую орбиту, какие обычно наблюдаются в наше время.

Хороший пример кометы, захваченной планетами, демонстрирует нам комета Галлея. История ее открытия восходит к Ньютону, который показал, как можно вычислить орбиту кометы, если удалось измерить ее положение на небе в течение нескольких ночей. Используя этот метод, Эдмунд Галлей занялся вычислением орбит тех комет, которые были открыты в предшествовавшие столетия. Особенно внимательно он отнесся к кометам 1531,1607 и 1682 годов, орбиты которых выглядели практически одинаковыми. В1705 году он пришел к выводу, что это одна и та же комета, которая с промежутком в 76 лет приближается к Солнцу по вытянутой орбите. Кроме того, оказалось, что практически по той же орбите двигались и кометы 1305,1380 и 1456 годов. Поэтому Галлей предсказал, что эта комета вновь появится в 1758 году.


Когда предсказанный момент возвращения кометы был близок, французский астроном Алексис Клод Клеро (17131765) сообразил, что планетные возмущения могли настолько сильно изменить орбиту кометы, что она может не вернуться к предсказанному времени. Клеро опасался, что комета вернется раньше, чем он закончит свои расчеты, но ему повезло. Законченные осенью 1758 года, его вычисления показали, что комета станет заметной позже предсказанного срока более чем на год и к наиболее близкой к Солнцу точке орбиты подойдет только в марте следующего года. Действительно, комету обнаружили в конце 1758 года, и к Солнцу она приблизилась к моменту, указанному Клеро. Успешное предсказание Галлея, дополненное вычислениями Клеро, было воспринято как триумф теории Ньютона.
Комету назвали именем Галлея, и все ее последующие возвращения в окрестности Солнца — в 1835,1910 и 1986 годах — вызывали всеобщий интерес. За прошедшие 200 лет методы вычисления орбит были настолько усовершенствованы, что время появления кометы в 1986 году было известно заранее с точностью 5 часов. Если бы не было еще и других сил, воздействующих на комету, то момент ее появления можно было бы вычислить точнее. Но из ядра кометы испаряются газы, образующие обширный хвост (см. рис. п.6). Выброс газа действует как маленький реактивный двигатель и непредсказуемо влияет на движение кометы.
Интересные изменения в орбитах комет могут возникать под влиянием возмущений со стороны Юпитера. В 1770 году Шарль Мессье открыл комету, летящую почти точно к Земле и прошедшую от нас всего в 2 миллионах километров. Андерс Лексель вычислил орбиту этой кометы и обнаружил, что ее орбитальный период равен всего лишь 5,6 года. Она стала первым представителем нового класса короткопериодических комет. Но в течение следующих ю лет эта комета не появилась,* и Лексель начал искать причину. Согласно его вычислениям, в 1779 году комета прошла вблизи Юпитера, и ее орбита поменялась настолько, что она уже никогда не подойдет к Земле. Комету обнаружили на новой орбите и теперь называют кометой Лекселя.
Вероятно, Лексель был первым ученым, понявшим, насколько чувствительна задача трех тел к начальным условиям — упомянутому выше детерминистическому хаосу. Это видно из его неопубликованного комментария, написанного при вычислении орбиты кометы Лекселя. Интересно, что к концу XVIII века недетерминистическая природа Ньютоновой механики была уже известна, хотя и полностью находилась в тени детерминистических работ Д’Аламбера, Клеро и других.
Еще одним примером возмущения орбиты под влиянием Юпитера может служить тусклая комета, открытая в 1943 году Лииси Отерма (19152001), сотрудницей университета в г. Турку (Финляндия). Отерма вычислила ее орбиту и с удивлением обнаружила, что она почти круговая, в отличие от очень вытянутых орбит остальных комет. Известна лишь еще одна комета с похожей круговой орбитой. Согласно вычислениям Отерма, эта орбита была временной. До 1937 года комета двигалась вдали от Земли, за орбитой Юпитера. Сближение с Юпитером забросило комету вн>трь орбиты Юпитера, где ее и удалось обнаружить. Отерма рассчитала, что комета вернется на свою удаленную орбиту после следующего сближения с Юпитером в 1963 году, что и случилось. Теперь комету Отерма можно увидеть только с помощью больших телескопов.


Наконец, знаменитая комета ШумейкеровЛеви была захвачена Юпитером с околосолнечной орбиты на орбиту вокруг Юпитера. При тесном сближении с планетой ядро кометы развалилось не менее чем на 21 фрагмент. В 1994 году телескопы по всей Земле и даже из космоса наблюдали, как эти фрагменты влетали в атмосферу Юпитера и разрушались. Хотя размер самых крупных фрагментов не превышал нескольких километров, места столкновений были видны даже в маленькие наземные телескопы (см. вклейку).

Эта комета, размерами в 3-5 км, далеко не единственная, которая удостаивалась непосредственного внимания межпланетных аппаратов. Однако есть все основания считать эту встречу знаковой и будем надеяться исторической.

Миссия зонда Rosetta является логичным следствием особого, и можно сказать мистического, интереса человечества к «косматым» (komḗtēs) светилам, как нарекли эти небесные тела еще древние греки. Ниже мы в популярной форме разберем накопленные человечеством знания об космических «айсбергах», и постараемся понять огромный интерес к ним со стороны научного сообщества.

Пунктуальная «горевестница»
История задокументированных наблюдений комет насчитывает несколько тысяч лет, наиболее подробное описание появлений «косматых» светил можно найти в древних китайских хрониках.

Еще тогда появление этих светил связывали с мистическими и чаще всего трагическими событиями. Так появление яркой кометы в 240г до.н.э. было истолковано как знамение о скорой кончине китайской императрицы. Та же самая комета проявившаяся в небе над Римом в 12г до.н.э. уже «предрешила» участь Агриппы, близкого друга и зятя императора Августа. В 6 веке она же «учинила» засуху и беспорядки в Византии, а в 1066г, по убеждению современников, однозначно обрекла Англию на вторжение Вильгельма Завоевателя, герцога Нормандии.

Комета Галлея на гобелене из Байе, 1066 год

Впрочем, этой комете было суждено сыграть очень важную роль в истории науки. В 1682 году английским астроном Эдмунд Галлей, вычислив орбиту наблюдаемой им яркой кометы, заметил, что она совпадает с орбитами комет 1531 и 1607г. Предположив, что речь идет об одной и той же комете, он предсказал ее появление в перигее (ближайшая к солнцу точка орбиты) в 1758г.

Ее появление с месячным запозданием в 1759г было более чем достаточно для признания триумфа теории тяготения Ньютона. Комета Галлея нынче стоит в первой строчке огромного списка наблюдавшихся с тех пор комет. Ее индекс 1P/1682 указывает что она первая из комет «вернувшаяся» к Солнцу, относится к группе Р – короткопериодических комет и была открыта в 1682г.

Параметры орбиты кометы Галлея

Опять-таки благодаря комете Галлея, прошедшей по диску солнца в 1910г, астрономы смогли оценить примерные размеры кометных ядер, оно оказалось меньше 20 км. Одновременно впервые был произведен спектральный анализ хвоста «косматого» светила, как оказалось богатого ядовитыми цианом и угарным газом. Что вызвало большую панику в том же году, когда Земля прошла сквозь хвост кометы, само собой беспочвенную.

Снимок кометы Галлея 1910 года

К следующему прилету кометы в 1986 году, человечество уже не ограничилось наблюдениями с Земли (довольно неблагоприятных в том году). На «перехват» космического «айсберга» отправилась целая флотилия космических аппаратов. Состав «Армады Галлея» был следующим:

Комета Галлея в 1986 году

Два советских зонда «Вега 1» и «Вега 2» , пролетевших на расстоянии около 9 000 км от ядра кометы, составивших 3D карту ядра и передавших 1500 снимков (картинка ниже).

Европейской зонд «Джотто», приблизившийся к ядру на расстояние в 605 км, благодаря навигационной помощи советских аппаратов (фото ниже).

Два японских зонда «Суйсэй» и «Сакигакэ», подошедших к ядру на 150 000 и 7 млн км соответственно.
- ISEE-3 (ICE) изучавший хвост кометы Галлея с точки Лагранжа L1 (система Земля-Солнце).

Иллюстрация «Армады Галлея», изучавшей комету в 86 г

Было получено огромное количество информации о кометном веществе, сделаны тысячи снимков ядра. Оценка размеров ядра кометы подтвердила наблюдения 1910г – ядро неправильной формы 15/8км. Получен большой опыт по взаимодействию разных космических агентств, в решении сложных технологических проблем.

К сожалению, долго ожидавшийся научным сообществом «год кометы Галлея» был омрачен двумя техногенными катастрофами – гибелью экипажа «Челленджера» и аварией на Чернобыльской АЭС.

Помимо кометы Галлея, астрономы насчитывают тысячи наблюдавшихся за последние 300 лет комет. Ядра имеют размеры от нескольких десятков метров до десятков километров, и представляют собой смесь пыли и льда, чаще всего водяного, аммиачного и/или метанового (так называемая модель «грязного снежка» Уиппла). Однако очевидно, что многие ядра могут в некоторой мере отходить от этой модели. Так космический зонд Deep impact, сбросивший «снаряд» на комету Темпеля 1, в 2005 году, позволил установить, что комета состоит в основном из пористого пылевого каркаса.

«Бомбардировка» кометы Темпеля зондом Deep impact и последующий пролет около кометы зонда Stardust

Являясь сохранившимися кирпичиками первичного стройматериала солнечной системы, кометы представляют огромный интерес для геологии, химии и биологии. Предположительно именно кометы доставили в древности на Землю основную часть воды ее гидросферы. В спектральных линиях многих комет обнаружены сложные органические соединения вплоть до аминокислот и мочевины. Ученые предполагают, что именно кометы, являясь инкубаторами сложных органических соединений, могли занести на Землю химическую базу для появления жизни.

Приближаясь к перигелию, кометные ядра, под действием солнечного излучения, начинают извергать огромные объемы газов, минуя жидкое агрегатное состояние таящего льда (возгонка). Газы в свою очередь увлекают за собой большие массы смешанной во льду пыли, которая вместе с частицами льда сдувается, под действием солнечного излучения и ветра, в противоположную от звезды сторону.

Размеры кометных «хвостов» могут достигать нескольких сотен миллионов километров в длину. Так, в 1996 году, космический зонд «Ulysses» (НАСА/ЕКА), неожиданно прошел сквозь хвост Большой кометы 1996 года C/1996 Хякутакэ… в 500 млн километров позади нее!

Впрочем, хвосты комет далеко не всегда бывают «прямыми» или направленными обратно от солнца. В зависимости от орбитальных особенностей кометы, его состава, солнечного ветра или взаимодействия магнитного поля солнца с ионизированным веществом «косматого» светила, хвост может быть направлен как перпендикулярно, так и в сторону солнечного излучения. Причем у одной кометы хвост может состоять из нескольких разнонаправленных частей, или вовсе иметь вид огромной газово-пылевой оболочки.

Комета 17Р/ Холмса является примером атипичного строения газопылевой оболочки (кома) кометы, показаны сравнительные размеры ее комы с Солнцем и Сатурном

С 1995года, все кометы обычно разделяются на классы: P/ - Короткопериодические кометы, с периодом обращения менее 200 лет. С/ - долгопериодические кометы, с периодом обращения более чем в 200 лет. Х/ - кометы с неизвестными параметрами орбиты (исторические кометы). D/ - разрушившиеся или «утерянные» кометы и наконец класс А/ - астероиды, принятые за кометы.

Столкновение кометы Шумейкеров-Леви 9 с Юпитером в 1994г. Позднее комета переквалифицирована в класс «смертников» D/ 1993 F

Перед индексом класса (чаще всего Р/) обычно располагают порядковый номер подтвержденного прохода кометой перигелия (ближайшей точки орбиты), а после - год открытия. После года открытия обычно выставляют букву обозначающую ½ месяца и порядковый номер открытия, например А для комет открытых в первую половину января и Y соответственно для второй половины декабря. И уже в конце указываются имена первооткрывателей. Так, номенклатурное имя кометы Чурюмова-Герасименко выгляделo бы примерно так: 67P/ 1969 R1. Однако чаще всего сокращается в виде (n)P/Фамилия первооткрывателя.

Особое внимание заслуживает класс «комет экстремалов», проходящих чрезвычайно близко с Солнцу. Почти всегда они фиксируются космическими зондами изучающими нашу звезду - SOHO и «близнецы» Stereo A и B. Предполагается что основная часть этих комет представляет из себя осколки одной гигантской кометы, разрушившейся тысячи лет назад (кометы Крейца)
«Гарем Царя» планет
Основная часть короткопериодических комет в свою очередь делится на 4 больших семейства, по параметрам орбиты и гравитационному влиянию «хозяйской» планеты-гиганта. Наиболее многочисленным «семейством» обладает Юпитер, именно ему «принадлежат » следующие кометы:

19Р/ Борелли , рядом с которой работал зонд Deep Space 1 (НАСА) в 2001г;

103Р/ Хартли 2, изучалась зондом Deep Impact (НАСА) в 2010г (анимация ниже), после выше упомянутого посещения кометы 9Р/ Темпеля (Темпель 1), другого типичного представителя «семейства»;

Комета 81Р/Вильда, рядом с которой зонд Stardust (НАСА) смог собрать образцы пыли и доставить их на Землю в 2006г;

Комета 67Р/ Чурюмова-Герасименко , изучаемая зондом Rosetta (ЕКА), так же по своим характеристикам относится к «семейству царя» планет.

«Хаос» в поясе «стабильности»
Некоторые короткопериодические кометы по наиболее популярной среди ученых версии, «прилетают» к нам из внешних границ пояса Койпера – Рассеяного диска (РД). РД вместе с поясом Койпера представляет собой огромный диск из крупных ледяных тел диаметром от нескольких десятков метров, до тысяч километров (Плутон и Харон). Простираясь с расстояния от 35 астрономических единиц (орбита Нептуна), до внешних границ в 50 а.е. (или 100 а.е. с РД) пояс имеет оценочную массу в 1-8 масс Луны (пояс астероидов не массивнее 0,04 масс Луны). Собственно пояс Койпера в целом стабилен, благодаря орбитальным резонансам с Нептуном и друг с другом.

Карта распределения известных объектов пояса Койпера (график расстояний в a.e.)

Современное состояние пояса Койпера и облака Оорта, связывают с древнейшей миграцией Нептуна во внешние области солнечной системы, под действием резонансов Юпитера и Сатурна. Часть вещества была выброшена из солнечной системы, часть, вместе с облаком Оорта - в ее внешние части. Миллионы же других обломков были отброшены во внутреннюю часть солнечной системы, вызвав позднюю тяжелую бомбардировку 4-3,5 млрд лет назад.

Солнечная система перед «миграцией» Нептуна (фиолетовая орбита) - (а), во время (b) и после (с). Зеленым обозначена орбита Урана

Для объяснения нестабильности внешнего, рассеянного диска, придется прибегнуть к азам небесной механики. Два главных параметра орбиты небесного тела это апоцентр (точка наибольшего удаления от поверхности планеты или звезды, в последнем случае говорят о апогелии) и перицентр (наиболее близкая точка орбиты, или в случае обращения вокруг солнца - перигелий). Разница между этими значениями выражается в эксцентриситете орбиты – степень ее отклонения от идеального круга (е=0) к эллипсу (e>0, но <1) и дальше к параболе (е=1) и гиперболе (e>1)

В двух последних случаях речь идет о траектории невозвращения. Изменение параметров орбиты возможно в любой ее точке, но сильнее всего на апогелий влияют изменения скоростей в перигелии (увеличение апогелия при ускорении и уменьшение при торможении) и наоборот. И чем сильнее эксцентриситет, тем больше эффект от изменения скоростей. Более того, «чувствительность» орбиты к возмущениям возрастает с ее высотой, так как с увеличением орбиты обратно пропорционально падает скорость орбитального обращения тела (люди знакомые с симуляторами Orbiter и KSP знают об этом не по наслышке).

Во внутренней части солнечной системы, в зоне планет земной группы и пояса астероидов, орбитальные скорости тел довольно велики (десятки км/с), а эксцентриситеты относительно малы. Поэтому для сильных орбитальных возмущений необходимо затратить много энергии. На внешней границе пояса Койпера, в рассеянном диске, орбитальные скорости тел обычно лежат в пределах от нескольких км до нескольких сотен м/с, поэтому даже небольшие гравитационные возмущения или столкновения очень сильно изменяют эксцентриситет. Небесное тело значительно увеличивает свой апогелий (ускорение), или уменьшает перигелий (торможение), направляясь во внутренние части солнечной системы.

Таблица разности орбитальных скоростей в солнечной системе? Меркурий - Марс (земная группа), Юпитер - Нептун (гиганты) и Плутон (внутреняя часть пояса Койпера)

Космические дальнобойщики
Но все же по наиболее распространенному в научном сообществе мнению, большинство короткопериодических комет класса Р/ и все кометы класса С/ прилетают к нам из предполагаемого облака Оорта. Внутренняя часть Облака, имеет вид тороидального пояса, протянувшегося на расстояние от 2000 до 20 000 астрономических единиц (облако Хиллса). Массу этого облака оценивают минимум в два десятка масс Земли.

Сравнительные размеры орбит планет земной группы на фоне пояса Койпера, и соответственно размеры последнего на фоне облака Оорта

Облако Хиллса служит своеобразной подпиткой внешнего, сферического облака, массовой в несколько земных масс, протянувшегося с расстояния с 20 000 а.е. до 1 светового года, до гравитационной границы солнечной системы (сфера Хилла). Именно внешнее облако Оорта и считают главным «поставщиком» комет во внутреннюю часть солнечной системы. Предположительно это остатки первичного «строительного материала» солнечной системы, поэтому данные объекты представляют огромный научный интерес. Эффекты торможения и ускорения, описанные для пояса Койпера, действуют тут гораздо сильнее, из за крайне низких орбитальных скоростей комет (метры в секунду).

Из наиболее известных долгопериодических комет последних десятилетий следует отметить кометы C/1996 B2 Хякутакэ, С/ 2006 R1 и С/ 2009 Р1 Макнота. Явившись к нaм из далеких областей облака Оорта, обе кометы в первый и последний раз, пролетев перигелий, навсегда покинули солнечную систему по гиперболической траектории (эксцентриситет больше 1).

C/1996 B2 Хякутакэ на земном небосводе

С/ 2006 Р1 Макнота («Большая комета 2007 года») с очередным примером арочной «неправильной» комы

В 2010 году комета Еленина (С/ 2010 Х1) намеревалась поступить так же, однако гравитационное возмущение Юпитера «прописало» комету в солнечной системе, снизив эксцентриситет ниже 1 (апогелий около 500 а.е.). Знаменитая «Большая комета 1997 года» Хейла Боппа (С/ 1995 01) намеревалась лишь дать очередной круг почета у перигелия своей, почти перпендикулярной к плоскости Земной, орбиты. Однако неумолимая гравитация Юпитера и в этот раз сократила перигелий кометы вдвое – с 600 (период обращения 4800 лет) до 350 а.е (период обращения 2400 лет).

«Большая комета 1997 года» Хейла Боппа

И пожалуй самым большим астрономическим разочарованием 2013 года стала комета ISON (С/2012 S1), двигаясь по параболической траектории (e=1) из самых окраин солнечной системы, небесное тело буквально развалилось при прохождении своего перигелия.

Моделирование истории изменения орбиты нашей старой знакомой кометы Галлея, показало, что она тоже пришла в солнечную систему из далекого облака Оорта. Гравитационные возмущения планет гигантов, как в случае со многими другими кометами, «прописало» ее в семействе комет Нептуна. Апогелий орбиты кометы едва касается пояса Койпера (35 а.е.), а перигелий проходит ближе чем Венера в 88млн км от Солнца. В следующий раз комета вернется к перигелию в 2061 году.

В заключение хотел бы вспомнить слова Марка Твена, как и я родившегося в год появления кометы Галлея (хоть и разницей в 150 лет): «Я пришёл в этот мир с кометой и уйду тоже с ней, когда она прилетит в следующем году» (с) 1909г. Мистер Твен действительно ушел в 1910, а вместе с ним Лев Толстой и известный итальянский астроном Скиапарелли. Согласитесь, не самая скучная компания для путешествия по солнечной системе.

Читателям же я искренне желаю дожить до того знаменательного времени, и пускай никакие техногенные катастрофы или смерть кумиров не испортят вашего впечатления от восхищения красотой знаменитой космической странницы.

Комета (от др.-греч. κομ?της , kom?t?s — «волосатый, косматый») — небольшое ледяное небесное тело, движущееся по орбите в Солнечной системе, которое частично испаряется при приближении к Солнцу, в результате чего возникает диффузная оболочка из пыли и газа, а также один или несколько хвостов.
Первое появление кометы, которое удалось зарегистрировать в хрониках, датируется 2296 годом до н.э. И сделала это женщина, жена императора Яо, у которого появился на свет сын ставший впоследствии императором Та-Ю, основателем династии Хиа. Именно с этого момента и следили за ночным небом китайские астрономы и лишь благодаря им, мы знаем об этой дате. С нее и начинает отсчет история кометной астрономии. Китайцы не только описывали кометы, но и наносили на звездную карту пути комет, что позволило современным астрономам отождествить самые яркие из их, проследить эволюцию их орбит и получить другую полезную информацию.
Невозможно не заметить на небе зрелища столь редкостного, когда на небе видно туманное светило, иногда настолько яркое, что может сверкать сквозь облака (1577 год), затмевая даже Луну. Аристотель в IV веке до н.э. объяснил явление кометы следующим образом: легкая, теплая, «сухая пневма» (газы Земли) поднимается к границам атмосферы, попадает в сферу небесного огня и воспламеняется - так образуются «хвостатые звезды». Аристотель утверждал, что кометы вызывают сильные бури, засуху. Его представления были общепризнанными в течение двух тысячелетий. В средние века кометы считались предвестниками войн и эпидемий. Так вторжение норманнов в Южную Англию в 1066 году связывали с появлением в небе кометы Галлея. С появлением в небе кометы ассоциировалось и падение Константинополя в 1456 году. Изучая появление кометы в 1577 году, Тихо Браге установил, что она движется далеко за орбитой Луны. Начиналось время исследования орбит комет...
Первым фанатиком, жаждущим открытия комет, был служащий Парижской обсерватории Шарль Мессье. В историю астрономии он вошел как составитель каталога туманностей и звездных скоплений, предназначавшегося для поиска комет, чтобы не принимать далекие туманные объекты за новые кометы. За 39 лет наблюдений Мессье открыл 13 новых комет! В первой половине XIX столетия среди «ловцов» комет особенно отличился Жан Понс. Сторож Марсельской обсерватории, а позднее ее директор, соорудил небольшой любительский телескоп и, следуя примеру своего соотечественника Мессье, занялся поисками комет. Дело оказалось столь увлекательным, что за 26 лет он открыл 33 новых кометы! Не случайно астрономы прозвали его «Кометным магнитом». Рекорд, установленный Понсом, до сих пор остается непревзойденным. Доступно наблюдениям порядка 50 комет. В 1861 году получен первый снимок кометы. Однако, согласно архивных данных в анналах Гарвардского университете обнаружена запись от 28 сентября 1858 года, в которой Георг Бонд сообщил о попытке получить фотографическое изображение кометы в фокусе 15" рефрактора! При выдержке 6" проработалась наиболее яркая часть комы размером 15 угловых секунд. Фотография не сохранилась.
Каталог кометных орбит 1999г содержит 1722 орбиты для 1688 кометных появлений, относящихся к 1036 различным кометам. С древнейших времен до наших дней замечено и описано уже около 2000 комет. За 300 лет после Ньютона вычислены орбиты более 700 из них. Общие результаты таковы. Большинство комет движется по эллипсам, умеренно или сильно вытянутым. Самым коротким маршрутом ходит комета Энке - от орбиты Меркурия до Юпитера и обратно за 3,3 года. Самая далекая из тех, что наблюдались дважды, - комета, открытая в 1788 г. Каролиной Гершель и вернувшаяся через 154 года с расстояния 57 а.е. В 1914 г. на побитие рекорда дальности пошла комета Делавана. Она удалится на 170 000 а.е. и "финиширует" через 24 млн лет.
На данный момент обнаружено более 400 короткопериодических комет . Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, приблизительно 50 самых короткопериодических комет (их полный оборот вокруг Солнца длится 3—10 лет) образуют семейство Юпитера . Немного малочисленнее семейства Сатурна , Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).
Земные наблюдения многих комет и результаты исследований кометы Галлея с помощью космических аппаратов в 1986г подтвердили гипотезу, высказанную впервые Ф. Уипплом в 1949г о том, что ядра комет представляют собой что-то вроде “грязных снежков” нескольких километров в поперечнике. По-видимому, они состоят из замерзших воды, двуокиси углерода, метана и аммиака с вмерзшей внутрь пылью и каменистым веществом. При приближении кометы к Солнцу лед под действием солнечного тепла начинает испаряться, а улетучивающийся газ образует вокруг ядра диффузную светящуюся сферу, называемую комой. Кома может достигать в поперечнике миллиона километров. Само по себе ядро слишком мало, чтобы его можно было непосредственно увидеть. Наблюдения в ультрафиолетовом диапазоне спектра, проведенные с космических аппаратов, показали, что кометы окружены огромными облаками водорода, размером во много миллионов километров. Водород получается в результате разложения молекул воды под действием солнечного излучения. В 1996г было обнаружено рентгеновское излучение кометы Хиякутаке, а впоследствии открыли, что и другие кометы являются источниками рентгеновского излучения.
Наблюдения в 2001г, проведенные с помощью высоко-дисперсионного спектрометра телескопа Subara, позволили астрономам впервые измерить температуру заледенелого аммиака в ядре кометы. Значение температуры в 28 + 2 градуса по Кельвину позволяет предположить, что комета LINEAR (C/1999 S4) сформировалась между орбитами Сатурна и Урана. Это означает, что теперь астрономы могут не только определять условия, в которых формируются кометы, но и находить место их возникновения. С помощью спектрального анализа в головах и хвостах комет были обнаружены органические молекулы и частицы: атомарный и молекулярный углерод, гибрид углерода, окись углерода, сульфид углерода, цианистый метил; неорганические составляющие: водород, кислород, натрий, кальций, хром, кобальт, марганец, железо, никель, медь, ванадий. Наблюдаемые в кометах молекулы и атомы, в большинстве случаев, являются «обломками» более сложных родительских молекул и молекулярных комплексов. Природа происхождения родительских молекул в кометных ядрах до сих пор не разгадана. Пока только ясно, что это очень сложные молекулы и соединения типа аминокислот! Некоторые исследователи считают, что такой химический состав может служить катализатором возникновения жизни или начальным условием ее зарождения при попадании этих сложных соединений в атмосферы или на поверхности планет с достаточно устойчивыми и благоприятными условиями.

Страх столкновения кометы с Землей всегда будет жить в сердцах наших ученых. А пока они будут бояться, давай вспомним о самых нашумевших кометах, которые когда-либо будоражили человечество.

Комета Лавджоя

В ноябре 2011 года австралийский астроном Терри Лавджой обнаружил одну из крупнейших комет околосолнечной группы Крейца, диаметром около 500 метров. Она пролетела сквозь солнечную корону и не сгорела, была хорошо видна с Земли и даже сфотографирована с Международной космической станции.

Источник: space.com

Комета Макнота

Первая ярчайшая комета XXI века, также названная «Большая комета 2007 года». Открыта астрономом Робертом Макнотом в 2006 году. В январе и феврале 2007 была отлично видна невооруженным глазом жителям южного полушария планеты. Следующее возвращение кометы нескоро — через 92600 лет.


Источник: wyera.com

Кометы Хейла-Боппа и Хякутакэ

Появились одна за другой — в 1996 и 1997 годах, соревнуясь в яркости. Если комета Хейла-Боппа была открыта еще в 1995 и летела строго «по расписанию», Хякутакэ обнаружили лишь за пару месяцев до ее сближения с Землей.


Источник: сайт

Комета Лекселя

В 1770 году комета D/1770 L1, открытая русским астрономом Андреем Ивановичем Лекселем, прошла на рекордно близком расстоянии от Земли — лишь 1,4 миллиона километров. Это примерно в четыре раза дальше, чем от нас находится Луна. Комета была видна невооруженным глазом.


Источник: solarviews.com

Комета затмения 1948 года

1 ноября 1948 года во время полного солнечного затмения астрономы неожиданно обнаружили яркую комету неподалеку от Солнца. Официально названная C/1948 V1, она являлась последней «внезапной» кометой нашего времени. Ее можно было разглядеть невооруженным глазом вплоть до конца года.


Источник: philos.lv

Большая январская комета 1910 года

Появилась в небе за пару месяцев до кометы Галлея, которую все ждали. Первой новую комету заметили шахтеры из алмазных шахт Африки 12 января 1910 года. Как и многие сверхяркие кометы, ее было видно даже днем.


Источник: arzamas.academy

Большая мартовская комета 1843 года

Также входит в семейство околосолнечных комет Крейца. Она пролетела лишь в 830 тысячах километров от центра Солнца и была хорошо заметна с Земли. Ее хвост — один из самых длинных среди всех известных комет = две астрономических единицы (1 астрономическая единица равняется расстоянию между Землей и Солнцем).


Космос таит в себе множество неизведанных тайн. Взгляды человечества постоянно обращены ко Вселенной. Каждый полученный нами знак из космоса дает ответы и одновременно ставит множество новых вопросов.

Какие космические тела невооруженным глазом видно с

Группа космических тел

Как называется ближайшее к

Что такое небесные тела?

Небесные тела — это объекты, наполняющие Вселенную. К космическим объектам относятся: кометы, планеты, метеориты, астероиды, звезды, которые обязательно имеют свои названия.

Предметами изучения астрономии являются космические (астрономические) небесные тела.

Размеры небесных тел, существующих во вселенском пространстве очень разные: от гигантских до микроскопических.

Структура звездной системы рассматривается на примере Солнечной. Около звезды (Солнца) передвигаются планеты. Эти объекты, в свою очередь, имеют природные спутники, пылевые кольца, а между Марсом и Юпитером образовался астероидный пояс.

30 октября 2017 года жители Свердловска будут наблюдать астероид Ирида. По научным расчетам астероид главного астероидного пояса приблизится к Земле на 127 млн километров.

На основании спектрального анализа и общих законов физики установлено, что Солнце состоит из газов. Вид Солнца в телескоп — это гранулы фотосферы, создающие газовое облако. Единственная звезда в системе производит и излучает два вида энергии. По научным расчетам диаметр Солнца в 109 раз больше диаметра Земли.

В начале 10-х годов ХХІ века мир был охвачен очередной истерией конца света. Распространялась информация о том, что «планета дьявол» несет апокалипсис. Магнитные полюса Земли сместятся в результате нахождения Земли между Нибиру и Солнцем.

Сегодня сведения о новой планете уходят на задний план и не подтверждаются наукой. Но, вместе с тем, есть утверждения о том, что Нибиру уже пролетела мимо нас, или через нас, изменив свои первичные физические показатели: сравнительно уменьшив размеры или критично изменив плотность.

Какие космические тела образуют Солнечную систему?

Солнечная система — это Солнце и 8 планет с их спутниками, межпланетная среда, а также астероиды, или карликовые планеты, объединенные в два пояса —ближний или главный и дальний или пояс Койпера. Самая крупная планета Койпера—Плутон. Такой подход дает конкретный ответ на вопрос: сколько больших планет в Солнечной системе?

Список известных больших планет системы разделяется на две группы — земную и юпитерианскую.

Все земные планеты имеют схожее строение и химический состав ядра, мантии и коры. Что дает возможность изучить процесс атмосферного образования на планетах внутренней группы.

Падение космических тел подвластно законами физики

Скорость движения Земли—30 км/с. Передвижение Земли вместе с Солнцем относительно центра галактики может стать причиной глобальной катастрофы. Траектории планет иногда пересекаются с линиями движения других космических тел, что является угрозой падения этих объектов на нашу планету. Последствия столкновений или падений на Землю могут быть очень тяжелыми. Паражающими факторами в следствие падения крупных метеоритов, как и столкновений с астероидом или кометой, будут взрывы с генерированием колоссальной энергии, и сильнейшие землетрясения.

Профилактика таких космических катастроф возможна при условии объединения усилий всего мирового сообщества.

Разрабатывая системы защиты и противостояния необходимо учитывать то, что правила поведения при космических атаках должны предусматривать возможность проявления неизвестных человечеству свойств.

Что является космическим телом? Какими характеристиками оно должно обладать?

Земля рассматривается как космическое тело, способное отражать свет.

Все видимые тела Солнечной системы отражают свет звезд. Какие объекты относятся к космическим телам? В космосе, кроме хорошо заметных больших объектов, очень много маленьких и даже крохотных. Список очень маленьких космических объектов начинается с космической пыли (100 мкм), которая является результатом выбросов газов после взрывов в атмосферах планет.

Астрономические объекты бывают разных размеров, форм и расположения относительно Солнца. Некоторые из них объединяют в отдельные группы, чтобы их легче было классифицировать.

Какие бывают космические тела в нашей галактике?

Наша Вселенная наполнена разнообразными космическими объектами. Все галактики представляют собой пустоту, наполненную разными формами астрономических тел. Из школьного курса астрономии мы знаем о звездах, планетах и спутниках. Но видов межпланетарных наполнителей много: туманности, звездные скопления и галактики, почти не изученные квазары, пульсары, черные дыры.

Большие астрономически — это звезды — горячие светоизлучающие объекты. В свою очередь они разделяются на большие и малые. В зависимости от спектра они бывают коричневыми и белыми карликами, переменными звездами и красными гигантами.

Все небесные тела можно разделить на два типа: дающие энергию (звезды), и не дающие (космическая пыль, метеориты, кометы, планеты).

Каждое небесное тело имеет свои характеристики.

Классификация космических тел нашей системы по составу:

  • силикатные;
  • ледяные;
  • комбинированные.

Искусственные космические объекты это космические объекты: пилотируемые корабли, обитаемые орбитальные станции, обитаемые станции на небесных телах.

На Меркурии Солнце движется в обратную сторону. В атмосфере Венеры, по полученным сведениям, предполагают найти земные бактерии. Земля движется вокруг Солнца со скоростью 108 000 км в час. У Марса два спутника. Юпитер имеет 60 спутников и пять колец. Сатурн сжимается на полюсах из-за быстрого вращения. Уран и Венера движутся вокруг Солнца в обратном направлении. На Нептуне есть такое явление как .

Звезда — это раскаленное газообразное космическое тело, в котором происходят термоядерные реакции.

Холодные звезды—это коричневые карлики, не имеющие достаточно энергии. Завершает список астрономических открытий холодная звезда из созвездия Волопаса CFBDSIR 1458 10ab.

Белые карлики — это космические тела с остывшей поверхностью, внутрикоторых уже не происходит термоядерный процесс, при этом они состоят из вещества высокой плотности.

Горячие звезды — это небесные светила, излучающие голубой свет.

Температура главной звезды туманности «Жук» —200 000 градусов.

След на небе, который светится, могут оставлять кометы, небольшие бесформенные космические образования оставшиеся от метеоритов, болиды, различные остатки искусственных спутников, которые входят в твердые слои атмосферы.

Астероиды иногда классифицируют как маленькие планеты. В действительности они похожи на звезды малой яркости из-за активного отражения света. Самым большим астероидом во вселенной считается Церцера из созвездия Пса.

Какие космические тела невооруженным глазом видно с Земли?

Звезды— это космические тела, которые излучают в пространство тепло и свет.

Почему в ночном небе видны планеты, которые не излучают свет? Все звезды светятся за счет выделения энергии при ядерных реакциях. Полученная энергия используется для сдерживания гравитационных сил и для световых излучений.

Но почему холодные космические объекты тоже издают свечение? Планеты, кометы, астероиды не излучают, а отражают звездный свет.

Группа космических тел

Космос наполнен телами разных размеров и форм. Эти объекты по-разному движутся относительно Солнца и других объектов. Для удобства существует определенная классификация. Примеры групп: «Кентавры» — находятся между поясом Койпера и Юпитером, «Вулканоиды» —предположительно между Солнцем и Меркурием, 8 планет системы также разделены на две: внутреннюю (земную) группу и внешнюю (юпитерианскую) группу.

Как называется ближайшее к земле космическое тело?

Как называется обращающееся вокруг планеты небесное тело? Вокруг Земли, согласно силам гравитации, двигается естественный спутник Луна. Некоторые планеты нашей системы также имеют спутники: Марс — 2, Юпитер — 60, Нептун — 14, Уран — 27, Сатурн — 62.

Все объекты, подчиненные Солнечной гравитации— часть огромной и такой непостижимой Солнечной системы.