Сформулируйте теорему об изменении кинетической энергии. Теорема об изменении кинетической энергии системы

Скалярная величина Т, равная сумме кинетических энергий всех точек системы, называется кинетической энергией системы.

Кинетическая энергия является характеристикой поступательного и вращательного движения системы. На ее изменение влияет действие внешних сил и так как она является скаляром, то не зависит от направления движения частей системы.

Найдем кинетическую энергию при различных случаях движения:

1. Поступательное движение

Скорости всех точек системы равны скорости центра масс . Тогда

Кинетическая энергия системы при поступательном движении равна половине произведения массы системы на квадрат скорости центра масс.

2. Вращательное движение (рис. 77)

Скорость любой точки тела: . Тогда

или используя формулу (15.3.1):

Кинетическая энергия тела при вращении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение

При данном движении кинетическая энергия складывается из энергии поступательного и вращательных движений

Общий случай движения дает формулу, для вычисления кинетической энергии, аналогичную последней.

Определение работы и мощности мы сделали в параграфе 3 главы 14. Здесь же мы рассмотрим примеры вычисления работы и мощности сил действующих на механическую систему.

1. Работа сил тяжести . Пусть , координаты начального и конечного положения точки k тела. Работа силы тяжести действующих на эту частицу веса будет . Тогда полная работа:

где Р - вес системы материальных точек, - вертикальное перемещение центра тяжести С.

2. Работа сил, приложенных к вращающемуся телу .

Согласно соотношению (14.3.1) можно записать , но ds согласно рисунку 74, в силу бесконечной малости можно представить в виде - бесконечно малый угол поворота тела. Тогда

Величина называется вращающим моментом.

Формулу (19.1.6) перепишем как

Элементарная работа равна произведению вращательного момента на элементарный поворот .

При повороте на конечный угол имеем:

Если вращательный момент постоянен , то

а мощность определим из соотношения (14.3.5)

как произведение вращающего момента на угловую скорость тела.

Теорема об изменении кинетической энергии доказанная для точки (§ 14.4) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно (19.1.1):

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав (19.2.2) получаем:

Теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение (19.2.2) теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение (19.2.5) запишется:

Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

П = А (мо) (19.3.1)

Потенциальная энергия зависит от положения точки М, то есть от ее координат

П = П(х,у,z) (19.3.2)

Поясним здесь, что силовым полем называется часть пространственного объема, в каждой точке которого на частицу действует определенная по модулю и направлению сила, зависящая от положения частицы, то есть от координат х, у, z. Например, поле тяготения Земли.

Функция U от координат, дифференциал которой равен работе, называется силовой функцией . Силовое поле, для которого существует силовая функция, называется потенциальным силовым полем , а силы действующие в этом поле, - потенциальными силами .

Пусть нулевые точки для двух силовых функций П(х,у,z) и U(x,y,z) совпадают.

По формуле (14.3.5) получаем , т.е. dA = dU(x,y,z) и

где U - значение силовой функции в точке М. Отсюда

П(x,y,z) = -U(x,y,z) (19.3.5)

Потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

То есть, при рассмотрении свойств силового поля вместо силовой функции можно рассматривать потенциальную энергию и, в частности, уравнение (19.3.3) перепишется как

Работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном положении.

В частности работа силы тяжести:

Пусть все силы, действующие на систему, будут потенциальными. Тогда для каждой точки k системы работа равна

Тогда для всех сил, как внешних, так и внутренних будет

где - потенциальная энергия всей системы.

Подставляем эти суммы в выражение для кинетической энергии (19.2.3):

или окончательно:

При движении под действием потенциальных сил сумма кинетической и потенциальной энергии системы в каждом ее положении остается величиной постоянной. Это закон сохранения механической энергии.

Груз массой 1 кг совершает свободные колебания согласно закону х = 0,1sinl0t. Коэффициент жесткости пружины с = 100 Н/м. Определить полную механическую энергию груза при х = 0,05м, если при х= 0 потенциальная энергия равна нулю . (0,5)

Груз массой m = 4 кг, опускаясь вниз, приводит с помощью нити во вращение цилиндр радиуса R = 0,4 м. Момент инерции цилиндра относительно оси вращения I = 0,2 . Определить кинетическую энергию системы тел в момент времени, когда скорость груза v = 2м/с . (10,5)

2.4.1. Кинетическая энергия механической системы. Кинетической энергией материальной точки массы , движущейся со скоростью , называют величину

Кинетической энергией механической системы называют сумму кинетических энергий включенных в эту систему материальных точек:

В тех случаях, когда масса системы распределена непрерывно, суммирование в выражении (7) заменяют интегрированием по области распределения.

Связь между значениями кинетической энергии механической системы в двух системах отсчета, одна из которых неподвижна, а другая движется поступательно со скоростью , где точка С – центр масс механической системы, дает теорема Кенига:

. (8)

Здесь - кинетическая энергия механической системы в подвижной системе координат.

Использование выражений (6, 7, 8) позволяет записать формулы для вычисления кинетической энергии твердого тела:

При поступательном движении тела массой со скоростью

При вращении с угловой скоростью вокруг неподвижной оси тела с моментом инерции

при плоскопараллельном движении твердого тела с угловой скоростью при значении центрального момента инерции относительно оси, перпендикулярной плоскости движения, и значении момента инерции относительно мгновенной оси вращения

. (11)

2.4.2. Энергетические характеристики . К энергетическим характеристикам силы относят ее мощность, работу и потенциальную энергию.

Мощностью силы , точка приложения которой движется со скоростью , называют величину

Работа силы на элементарном интервале времени и соответствующем этому промежутку времени элементарному смещению точки приложения определяется по правилу

Работой силы на конечном интервале времени и соответствующем изменении радиуса – вектора точки приложения этой силы от до называют величину

. (14)

Работа момента пары сил вычисляется аналогично.

Потенциальная энергия определена только в тех случаях, когда выражение (13) представляет собой полный дифференциал :

При выполнении условия (15) говорят, что сила потенциальна. Соотношения, связывающие проекции силы на оси выбранной координатной системы с функцией :

Если точка приложения силы переместилась из положения в положение , то путем интегрирования (15) можно получить

. (17)

Замечание: потенциальная энергия определена с точностью до постоянного слагаемого; отмеченная особенность позволяет полагать потенциальную энергию равной нулю в выбираемой нами точке (например, в начале координат).



В том случае, когда для совокупности сил, действующих на механическую систему, можно записать выражение потенциальной энергии , механическую систему называют консервативной . Такие механические системы обладают важными особенностями – работа действующих сил не зависит от вида траектории и закона движения по ней; работа при движении по замкнутому контуру равна нулю.

Условия, при выполнении которых существует функция :

2.4.3. Теорема об изменении кинетической энергии. Запись теоремы об изменении кинетической энергии механической системы в дифференциальной форме:

Производная по времени от кинетической энергии механической системы равна мощности внешних и внутренних сил.

Интегральная форма записи теоремы об изменении кинетической энергии

, (20)

где ; ; ; .

В частном случае, когда для совокупности внешних и внутренних сил системы можно записать выражение потенциальной энергии, выполняется закон сохранения полной механической энергии

а сама система оказывается консервативной.

ПРИМЕР 3. Для механической системы, изображенной на рис.2, получить дифференциальное уравнение движения груза.

РЕШЕНИЕ. Воспользуемся теоремой об изменении кинетической энергии в дифференциальной форме (19). Мысленно освободимся от связей, приложив к телам механической системы соответствующие реакции (см.рис.2). Замечание: силы, приложенные в неподвижном центе масс соосного блока не изображены, так как их мощность равна нулю.

Составим выражение для кинетической энергии механической системы.

Введем понятие еще об одной основной динамической характеристике движения о кинетической энергии. Кинетической энергией материальной точки называется скалярная величина равная половине произведения массы точки на квадрат ее скорости.

Единица измерения кинетической энергии та же, что и работы (в СИ - 1 Дж). Найдем зависимость, которой связаны эти две величины.

Рассмотрим материальную точку с массой , перемещающуюся из положения , где она имеет скорость в положение , где ее скорость

Для получения искомой зависимости обратимся к выражающему основной закон динамики уравнению Проектируя обе его части на касательную к траектории точки М, направленную в сторону движения, получим

Входящее сюда касательное ускорение точки представим в виде

В результате найдем, что

Умножим обе части этого равенства на и внесем под знак дифференциала. Тогда, замечая, что где - элементарная работа силы получим выражение теоремы об изменении кинетической энергии точки в дифференциальной форме:

Проинтегрировав теперь обе части этого равенства в пределах, соответствующих значениям переменных в точках найдем окончательно

Уравнение (52) выражает теорему об изменении кинетической энергии точки в конечном виде: изменение кинетической энергии точки при некотором ее перемещении равно алгебраической сумме работ всех действующих на точку сил на том же перемещении.

Случай несвободного движения. При несвободном движении точки в правую часть равенства (52) войдет работа заданных (активных) сил и работа реакции связи. Ограничимся рассмотрением движения точки по неподвижной гладкой (лишенной трения) поверхности или кривой. В этом случае реакция N (см. рис. 233) будет направлена по нормали к траектории точки и . Тогда, согласно формуле (44), работа реакции неподвижной гладкой поверхности (или кривой) при любом перемещении точки будет равна нулю, и из уравнения (52) получим

Следовательно, при перемещении по неподвижной гладкой поверхности (или кривой) изменение кинетической энергии точки равно сумме работ на этом перемещении приложенных к точке активных сил.

Если поверхность (кривая) не является гладкой, то к работе активных сил прибавится работа силы трения (см. § 88). Если же поверхность (кривая) движется, то абсолютное перемещение точки М может не быть перпендикулярно N и тогда работа реакции N не будет равна нулю (например, работа реакции платформы лифта).

Решение задач. Теорема об изменении кинетической энергии [формула (52)] позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. § 88).

Таким образом, формулу (52) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, перемещение точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от положения (координат) точки.

Теорему в дифференциальной форме [формула (51)] можно, конечно, применять при любых действующих силах.

Задача 98. Груз массой кг, брошенный со скоростью из пункта А, находящегося на высоте (рис. 235), имеет в точке падения С скорость Определить, чему равна работа действующей на груз при его движении силы сопротивления воздуха

Решение. На груз при его движении действуют сила тяжести Р и сила сопротивления воздуха R. По теореме об изменении кинетической энергии, считая груз материальной точкой, имеем

Из этого равенства, так как согласно формуле находим

Задача 99. При условиях задачи 96 (см.[§ 84) определить, какой путь пройдет груз до остановки (см. рис, 223, где - начальное положение груза, а - конечное).

Решение. На груз, как и в задаче 96, действуют силы Р, N, F. Для определения тормозного пути учитывая, что в условия данной задачи входят и постоянная сила F, воспользуемся теоремой об изменении кинетической энергии

В рассматриваемом случае - скорость груза в момент остановки). Кроме того, так как силы Р и N перпендикулярны перемещению, В итоге получаем откуда находим

По результатам задачи 96 время торможения растет пропорционально начальной скорости, а тормозной путь, как мы нашли, - пропорционально квадрату начальной скорости. Применительно к наземному транспорту это показывает, как возрастает опасность с увеличением скорости движения.

Задача 100. Груз весом Р подвешен на нити длиной l Нить вместе с грузом отклоняют от вертикали на угол (рис. 236, а) и отпускают без начальной скорости. При движении на груз действует сила сопротивления R, которую приближенно заменяем ее средним значением Найти скорость груза в тот момент времени, когда нить образует с вертикалью угол

Решение. Учитывая условия задачи, воспользуемся опять теоремой (52):

На груз действуют сила тяжести Р, реакция нити сопротивления, представленная ее средним значением R. Для силы Р по формуле (47) для силы N, так как получим наконец, для силы так как по формуле (45) будет (длина s дуги равна произведению радиуса l на центральный угол ). Кроме того, по условиям задачи В результате равенство (а) дает:

При отсутствии сопротивления получаем отсюда известную формулу Галилея справедливую, очевидно, и для скорости свободно падающего груза (рис, 236, б).

В рассматриваемой задаче Тогда, введя еще обозначение - средняя сила сопротивления, приходящаяся на единицу веса груза), получаем окончательно

Задача 101. Пружина клапана имеет в недеформироваином состоянии длину см. При полностью открытом клапане ее длина см, а высота подъема клапана см (рис. 237). Жесткость пружины масса клапана кг. Пренебрегая действием силы тяжести и сил сопротивления, определить скорость клапана в момент его закрытая.

Решение, Воспользуемся уравнением

По условиям задачи работу совершает только сила упругости пружины. Тогда по формуле (48) будет

В данном случае

Кроме того, Подставляя все эти значения в уравнение (а), получим окончательно

Задача 102. Груз, лежащий на середине упругой балки (рис. 238), прогибает ее на величину (статистический прогиб балки) Пренебрегая весом балки, определить, чему будет равен ее максимальный прогиб если груз упадет на балку с высоты Н.

Решение. Как и в предыдущей задаче, воспользуемся для решения уравнением (52). В данном случае начальная скорость груза и конечная его скорость (В момент максимального прогиба балки) равны нулю и уравнение (52) принимает вид

Работу здесь совершают сила тяжести Р на перемещении и сила упругости балки F на перемещении При этом так как для балкн Подставляя эти величины в равенство (а), получим

Но при равновесии груза на балке сила тяжести уравновешивается силой упругости, следовательно, и предыдущее равенство можно представить в виде

Решая это квадратное уравнение и учитывая, что по условиям задачи должно быть находим

Интересно отметить, что при получается Следовательно, если груз положить на середину горизонтальной балки, то ее максимальный прогиб при опускании груза будет равен удвоенному статическому. В дальнейшем груз начнет вместе с балкой совершать колебания около равновесного положения. Под влиянием сопротивлений эти колебания затухнут и система уравновесится в положении, при котором прогиб балки равен

Задача 103. Определить, наименьшую направленную вертикально виерх начальную скорость надо сообщить телу, чтобы оно поднялось с поверхности Земли на заданную высоту Н (рис 239) Силу притяжения считать изменяющейся обратно пропорционально квадрату расстояния от центра Земли. Сопротивлением воздуха пренебречь.

Решение. Рассматривая тело как материальную точку с массой , воспользуемся уравнением

Работу здесь совершает сила тяготения F. Тогда по формуле (50), учитывая, что в данном случае где R - радиус Земли, получим

Так как в наивысшей точке то при найденном значении работы уравнение (а) дает

Рассмотрим частные случай:

а) пусть Н очень мало по сравнению с R. Тогда - величина, близкая к нулю. Деля числитель и знаменатель получим

Таким образом, при малых Н приходим к формуле Галилея;

б) найдем, при какой начальной скорости брошенное тело уйдет в бесконечность, Деля числитель и знаменатель на А, получим

Просмотр: эта статья прочитана 49915 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Два случая преобразования механического движения материальной точки или системы точек:

  1. механическое движение переносится с одной механической системы на другую в качестве механического движения;
  2. механическое движение превращается в другую форму движения материи (в форму потенциальной энергии, теплоту, электричество и т.д.).

Когда рассматривается преобразование механического движения без перехода его в другую форму движения, мерой механического движения является вектор количества движения материальной точки или механической системы. Мерой действия силы в этом случае является вектор импульса силы.

Когда механическое движение превращается в другую форму движения материи, в качестве меры механического движения выступает кинетическая энергия материальной точки или механической системы. Мерой действия силы при превращении механического движения в другую форму движения является работа силы

Кинетическая энергия

Кинетическая энергия это способность тела преодолевать препятствование во время движения.

Кинетическая энергия материальной точки

Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.

Кинетическая энергия:

  • характеризует и поступательное, и вращательное движения;
  • не зависит от направления движения точек системы и не характеризует изменение этих направлений;
  • характеризует действие и внутренних, и внешних сил.

Кинетическая энергия механической системы

Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.

Определение кинетической энергии твердого тела при разных видах движения движениях.

Кинетическая энергия поступательного движения
При поступательном движении кинетическая энергия тела равна Т =m V 2 /2.

Мерой инертности тела при поступательном движении является масса.

Кинетическая энергия вращательного движения тела

При вращательном движении тела кинетическая энергия равняется половине произведения момента инерции тела относительно оси вращения и квадрата его угловой скорости.

Мерой инертности тела при вращательном движении является момент инерции.

Кинетическая энергия тела не зависит от направления вращения тела.

Кинетическая энергия плоскопаралельного движения тела

При плоскопаралельном движении тела кинетическая энергия равна

Работа силы

Работа силы характеризует действие силы на тело при некотором перемещении и определяет изменение модуля скорости подвижной точки.

Элементарная работа силы

Элементарная работа силы определяется как скалярная величина, равная произведению проекции силы на касательную к траектории, направленную в направлении движения точки, и бесконечно малого перемещения точки, направленного вдоль этой касательной.

Работа силы на конечном перемещении

Работа силы на конечном перемещении равна сумме ее работ на элементарных участках.

Работа силы на конечном перемещении М 1 М 0 равняется интегралу вдоль этого перемещения от элементарной работы.

Работа силы на перемещении М 1 М 2 изображается площадью фигуры, ограниченной осью абсцисс, кривой и ординатами, соответствующими точкам М 1 и М 0 .

Единица измерения работы силы и кинетической энергии в системе СИ 1 (Дж).

Теоремы о работе силы

Теорема 1 . Работа равнодействующей силы на некотором перемещении равна алгебраической сумме работ составляющих сил на том же перемещении.

Теорема 2. Работа постоянной силы на результирующем перемещении равна алгебраической сумме работ этой силы на составляющих перемещениях.

Мощность

Мощность - это величина, которая определяет работу силы за единицу времени.

Единицей измерения мощности есть 1Вт = 1 Дж/с.

Случаи определения работы сил

Работа внутренних сил

Сумма работ внутренних сил твердого тела на любом его перемещении равна нулю.

Работа силы тяжести

Работа силы упругости

Работа силы трения

Работа сил, приложенных к вращающемуся телу

Элементарная работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, равна произведению главного момента внешних сил относительно оси вращения на приращение угла поворота.

Сопротивление качению

В зоне контакта неподвижого цилиндра и плоскости возникает местная деформация контактного сжатия, напряжение распределяются по эллиптическому закону и линия действия равнодействующей N этих напряжений совпадает с линией действия силы нагрузки на цилиндр Q. При перекатывании цилиндра распределение нагрузки становится несимметричным с максимумом, смещенным в сторону движения. Равнодействующая N смещается на величину k - плечо силы трения качения, которая еще назвается коэффициентом трения качения и имеет размерность длины (см)

Теорема об изменении кинетической энергии материальной точки

Изменение кинетической энергии материальной точки на некотором ее перемещении равняется алгебраической сумме робот всех действующих на точку сил на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Изменение кинетической энергии механической системы на некотором перемещении равняется алгебраической сумме робот внутренних и внешних сил, действующих на материальные точки системы на том же перемещении.

Теорема об изменении кинетической энергии твердого тела

Изменение кинетической энергии твердого тела (неизменной системы) на некотором перемещении равняется сумме робот внешних сил, действующих на точки системы на том же перемещении.

КПД

Силы, действующие в механизмах

Силы и пары сил (моменты), которые приложены к механизму или машине, можно разделить на группы:

1.Движущие силы и моменты, совершающие положительную работу (приложенные к ведущим звеньям, например, давление газа на поршень в ДВС).

2. Силы и моменты сопротивления, совершающие отрицательную работу:

  • полезного сопротивления (совершают требуемую от машины работу и приложены к ведомым звеньям, например сопротивление поднимаемого машиной груза),
  • силы сопротивления (например, силы трения, сопротивление воздуха и т.п.).

3. Силы тяжести и силы упругости пружин (как положительная, так и отрицательная работа, при этом работа за полный цикл равна нулю).

4. Силы и моменты, приложенные к корпусу или стойке извне (реакция фундамента и т.п.), которые не совершают работу.

5. Силы взаимодействия между звеньями, действующие в кинематических парах.

6. Силы инерции звеньев, обусловленные массой и движением звеньев с ускорением, могут осуществлять положительную, отрицательную работу и не совершать работы.

Работа сил в механизмах

При установившемся режиме работы машины ее кинетическая энергия не изменяется и сумма работ приложенных к ней движущих сил и сил сопротивления равна нулю.

Работа, затрачиваемая на приведение машины в движение, расходуется на преодоление полезных и вредных сопротивлений.

КПД механизмов

Механический коэффициент полезного действия при установившемся движении равен отношению полезной работы машины к работе, затраченной на приведение машины в движение:

Элементы машины могут соединяться последовательно, параллельно и смешанно.

КПД при последовательном соединении

При последовательном соединении механизмов общий КПД меньше с наименьшего КПД отдельного механизма.

КПД при параллельном соединении

При параллельном соединении механизмов общий КПД больше наименьшего и меньше наибольшего КПД отдельного механизма.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Если рассмотреть какую-нибудь точку системы с мас­сой , имеющую скорость , то для этой точки будет

,

где и - элементарные работы действующих на точку внеш­них и внутренних сил. Составляя такие уравнения для каждой из точек системы и складывая их почленно, получим

,

. (2)

Равенство выражает теорему об изменении кине­тической энергии системы в дифференциальной форме.

Если полученное выражение отнести к элементарному промежутку времени, в течение которого произошло рассматриваемое перемещение, можно получить вторую формулировку для дифференциальной формы теоремы: производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних () и внутренних () сил, т.е.

Дифференциальными формами теоремы об изменении кинетической энергии можно воспользоваться для составления дифференциальных уравнений движения, но это делается достаточно редко, потому что есть более удобные приемы.

Проинтегрировав обе части равенства (2) в пределах, соответствующих перемещению системы из некоторого начального положения, где кинетическая энергия равна , в положение, где значение кинетической энергии становится равным , будемиметь

Полученное уравнение выражает теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее перемещении равно сумме работ на этом пере­мещении всех приложенных к системе внешних и внутренних сил.

В отличие от предыдущих теорем, внутренние силы в уравнениях не исключаются. В самом деле, если и - силы взаимодействия между точками и системы (см. рис.51), то . Но при этом точка , может перемещаться по направ­лению к , а точка - по направлению к . Работа каждой из сил бу­дет тогда положительной и сумма работ нулем не будет. Примером мо­жет служить явление отката. Внутренние силы (силы давления), действующие и на снаряд и на откатывающиеся части, совершают здесь положительную работу. Сумма этих работ, не равная нулю, и изменяет кинетическую энергию системы от вели­чины в начале выстрела до величины конце.

Другой пример: две точки, соединенные пружиной. При изменении расстояния между точками упругие силы, приложенные к точкам, будут совершать работу. Но если система состоит из абсолютно твердых тел и связи между ними неизменяемые, не упругие, идеальные, то работа внутренних сил будет равна нулю и их можно не учитывать и вообще не показывать на расчетной схеме.

Рассмотрим два важных частных случая.

1) Неизменяемая система . Неизменяемой будем называть систему, в которой расстояния между точками приложения внутрен­них сил при движении системы не изменяются. В частности, такой системой является абсолютно твердое тело или нерастяжимая нить.

Рис.51

Пусть две точки и неизменяе­мой системы (pис.51), действующие друг на друга с силами и () имеют в данный момент скорости и . Тогда за промежу­ток времени dt эти точки совершат элементарные перемещения и , направленные вдоль векторов и . Но таккак отрезок является неизменяемым, то по известной теореме кинематики про­екции векторов и , а, следовательно, и перемещений и на направление отрезка будут равны друг другу, т.е. . Тогда элементарные работы сил и будут одинаковы по мо­дулю и противоположны по знаку и в сумме дадут нуль. Этот резуль­тат справедлив для всех внутренних сил при любом перемещении системы.

Отсюда заключаем, что для неизменяемой системы сумма работ всех внутренних сил равна нулю и уравнения принимают вид

2) Система с идеальными связями . Рассмотрим систему, на которую наложены связи, не изменяющиеся со временем. Разделим все действующие на точки системы внешние и внутренние силы на активные и реакции связей. Тогда

,

где - элементарная работа действующих на k- ю точку системы внешних и внутренних активных сил, a - элементарная работа реакций наложенных на ту же точку внешних и внутренних связей.

Как видим, изменение кинетической энергии системы зависит от работы и активных сил и реакций связей. Однако можно ввести по­нятие о таких «идеальных» механических системах, у которых нали­чие связей не влияет на изменение кинетической энергии системы при ее движении. Для таких связей должно, очевидно, выполняться условие:

Если для связей, не изменяющихся со временем, сумма работ всех реакций при элементарном перемещении системы равна нулю, то такие связи назы­вают идеальными. Для механической системы, на которую наложены только не изменяющиеся со временем идеальные связи, будем, очевидно, иметь

Таким образом, изменение кинетической энергии системы с идеальными, не изменяющимися со временем связями при любом ее перемещении равно сумме работ на этом перемещении, приложенных к системе внешних и внутренних активных сил.

Механическая система называется консервативной (энергия ее как бы законсервирована, не изменяется), если для нее имеет место интеграл энергии

или (3)

Это есть закон сохранения механической энергии: при движении системы в потенциальном поле механическая энергия ее (сумма потенциальной и кинетической) все время остается неизменной, постоянной.

Механическая система будет консервативной, если действующие на нее силы потенциальны, например сила тяжести, силы упругости. В консервативных механических системах с помощью интеграла энергии можно проводить проверку правильности составления дифференциальных уравнений движения. Если система консервативна, а условие (3) не выполняется, значит при составлении уравнений движения допущена ошибка.

Интегралом энергии можно воспользоваться для проверки правильности составления уравнений и другим способом, без вычисления производной. Для этого следует после проведения численного интегрирования уравнений движения вычислить значение полной механической энергии для двух различных моментов времени, например, начального и конечного. Если разница значений окажется сопоставимой с погрешностями вычислений, это будет свидетельствовать о правильности используемых уравнений.

Все предыдущие теоремы позволяли исключить из уравнений движения внутренние силы, но все внешние силы, в том числе и наперед неизвестные реакции внешних связей, в уравнениях сохранялись. Практическая ценность теоремы об изменении кинетической энергии состоит в том, что при не изменяющихся со временем идеальных связях она позволит исключить из уравнений движения все наперед неизвестные реакции связей.