Сила упругости векторная или скалярная. Векторные и скалярные величины

В физике существует несколько категорий величин: векторные и скалярные.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль . Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора . Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Если проанализировать все вышесказанное, то можно сделать вывод, что все направленные отрезки определяют вектора. Два отрезка будут определять один вектор только в том случае, если они являются равными. При сравнении векторов действует тоже правило, что и при сравнении скалярных величин. Равенство означает полное совпадение по всем параметрам.

Что такое скалярная величина?

В отличие от вектора, скалярная величина обладает только лишь одним параметром – это ее численное значение . Стоит отметить, что анализируемая величина может иметь как положительное численное значение, так и отрицательное.

В качестве примера можно привести массу, напряжение, частоту или температуру. С такими величинами можно выполнять различные арифметические действия: сложение, деление, вычитание, умножение. Для скалярной величины такая характеристика, как направление, не свойственна.

Скалярная величина измеряется числовым значением, поэтому ее можно отображать на координатной оси. Например, очень часто строят ось пройденного пути, температуры или времени.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках . У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология . Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.

Величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.

В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырехмерном пространстве-времени в современной физикепоследнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).

Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.

Энциклопедичный YouTube

    1 / 3

    Урок 8. Векторные величины. Действия над векторами.

    ВЕКТОР - что это такое и зачем он нужен, объяснение

    ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН 7 класс | Романов

    Субтитры

Употребление терминов вектор и векторная величина в физике

В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

В математике, произнося «вектор» понимают скорее вектор вообще, то есть любой вектор любого сколько угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно («вектор такого-то и такого-то пространства»), или иметь в виду подразумеваемое явно описанным контекстом.

В физике же практически всегда речь идет не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определенной их конкретной («физической») привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удается достичь несколькими простыми «приемами». Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, связанный с «обычным физическим пространством» (трехмерным пространством классической физики или четырехмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определенно охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».

Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае еще жестче подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).

В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:

Примеры векторных физических величин: скорость , сила , поток тепла.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснен выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трехмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяженностью, тем не менее имеет вполне определенное направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трехмерного случая классической физики и для четырехмерной пространственно-временной формулировки, обычной для современной физики.

Классический трехмерный случай

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться.

В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда дает новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объему).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr , мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как

Из скорости и ускорения, умножением на скаляр (массу), появляются

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • с помощью формулы силы Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).

Современный четырехмерный случай

Ту же процедуру можно проделать исходя из четырехмерного перемещения. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.

Виды векторов применительно к физике

  • Полярный или истинный вектор - обычный вектор.
  • Аксиальный вектор (псевдовектор) - на самом деле не является настоящим вектором, однако формально почти не отличается от последнего, за исключением того, что меняет направление на противоположное при изменении ориентации системы координат (например, при зеркальном отражении системы координат). Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов.
  • Для сил выделяется несколько различных

Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве.

Примеры векторных величин: скорость (), сила (), ускорение () и т.д.

Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе – модуль вектора.

Ра́диус-ве́ктор (обычно обозначается или просто ) - вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Для произвольной точки в пространстве, радиус-вектор - это вектор, идущий из начала координат в эту точку.

Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

линия, вдоль которой движется тело, называется траекторией движения. В зависимости от формы траектории все движения можно разделить на прямолинейные и криволинейные.

Описание движения начинается с ответа на вопрос: как изменилось положение тела в пространстве за некоторый промежуток времени? Как же определяют изменение положения тела в пространстве?

Перемещение - направленный отрезок (вектор), соединяющий начальное и конечное положение тела.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse ) - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

В науке используется также скорость в широком смысле, как быстрота изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще изменения во времени, но также в пространстве или любой другой). Так, например, говорят о скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения, угловой скорости и т. д. Математически характеризуется производной функции.

Ускоре́ние (обычно обозначается , в теоретической механике ), производная скорости по времени - векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Раздел механики, изучающий движение в трёхмерном евклидовом пространстве, его запись, а также запись скоростей и ускорений в различных системах отсчёта, называется кинематикой.

Единицей ускорения служит метр в секунду за секунду (m/s 2 , м/с 2 ), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с 2 .

Производная ускорения по времени т.е. величина, характеризующая быстроту изменения ускорения по времени называется рывок.

Наиболее простое движение тела - такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным . Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. При поступательном движении траектории могут быть как прямыми (рис. 7, а), так и кривыми (рис. 7, б) линиями.
Можно доказать, что при поступательном движении любая прямая, проведенная в теле, остается параллельной самой себе. Этим характерным признаком удобно пользоваться, чтобы ответить на вопрос, является ли данное движение тела поступательным. Например, при качении цилиндра по плоскости прямые, пересекающие ось, не остаются параллельными самим себе: качение - это не поступательное движение. При движении рейсшины и угольника по чертежной доске любая прямая, проведенная в них, остается параллельной самой себе, значит, они движутся поступательно (рис. 8). Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения (прямая 00" на рис.9). Окружности лежат в парал-лельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси OO". Показаны траектории остаются параллельными только прямые, параллельные оси вращения.

Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой.

Существует несколько определений:

1. Абсолютно твердое тело - модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.

2. Абсолютно твердое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

3. Абсолютно твёрдое тело - тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.

В трёхмерном пространстве и в случае отсутствия связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.

Конец работы -

Эта тема принадлежит разделу:

Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы.. тео рия греч рассмотрение.. стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины однако часто..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности. Преобразования Галилея. Инварианты преобразования. Абсолютные и относительные скорости и ускорения. Постулаты специальной т

Вращательное движение материальной точки.
Вращательное движение материальной точки - движение материальной точки по окружности. Враща́тельное движе́ние - вид механического движения. При

Связь между векторами линейной и угловой скоростей, линейного и углового ускорений.
Мера вращательного движения: угол φ, на который поверн.тся радиус-вектор точки в плоскости, нормальной к оси вращения. Равномерное вращательное движен

Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и

Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор

Уравнение движения Ньютона
(1) где сила F в общем случа

Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами

Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс: dP/dt = M∙dVc/dt = ΣFi Центр масс системы движется так же, как дв

Галилея принцип относительности
· Инерциальная система отсчёта Инерциальная система отсчёта Галилея

Пластическая деформация
Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос

Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости

Кинетическая энергия.
Кинетическая энергия - энергия движущегося тела.(От греческого слова kinema - движение). По определению кинетическая энергия покоящегося в данной системе отсчета

Величина, равная половине произведения массы тела на квадрат его скорости.
=Дж. Кинетическая энергия - величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. Т.о.

Момент силы
· Момент силы. Рис. Момент силы. Рис. Момент силы, величин

Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль

Работа и мощность при вращении твердого тела.
Работа и мощность при вращении твердого тела. Найдем выражение для работы при вра

Основное уравнение динамики вращательного движения
Согласно уравнению (5.8) второй закон Ньютона для вращательного движения П

Величины называются скалярными (скалярами), если они после выбора единицы измерения полностью характеризуются одним числом. Примерами скалярных величин являются угол, поверхность, объем, масса, плотность, электрический заряд, сопротивление, температура.

Следует различать два типа скалярных величин: чистые скаляры и псевдоскаляры.

3.1.1. Чистые скаляры.

Чистые скаляры полностью определяются одним числом, не зависящим от выбора осей отсчета. Примером чистых скаляров могут служить температура и масса.

3.1.2. Псевдоскаляры.

Как и чистые скаляры, псевдоскаляры определяются с помощью одного числа, абсолютная величина которого не зависит от выбора осей отсчета. Однако знак этого числа зависит от выбора положительных направлений на осях координат.

Рассмотрим, например, прямоугольный параллелепипед, проекции ребер которого на прямоугольные оси координат соответственно равны Объем этого параллелепипеда определяется с помощью определителя

абсолютная величина которого не зависит от выбора прямоугольных осей координат. Однако, если переменить положительное направление на одной из осей координат, то определитель изменит знак. Объем - это псевдоскаляр. Псевдоскалярами являются также угол, площадь, поверхность. Ниже (п. 5.1.8) мы увидим, что псевдоскаляр представляет собой в действительности тензор особого рода.

Векторные величины

3.1.3. Ось.

Ось - это бесконечная прямая, на которой выбрано положительное направление. Пусть такая прямая, а направление от

считается положительным. Рассмотрим отрезок на этой прямой и положим, что число, измеряющее длину равно а (рис. 3.1). Тогда алгебраическая длина отрезка равна а, алгебраическая длина отрезка равна - а.

Если взять несколько параллельных прямых, то, определив положительное направление на одной из них, мы тем самым определяем его на остальных. Иначе обстоит дело, если прямые не параллельны; тогда нужно специально уславливаться относительно выбора положительного направления для каждой прямой.

3.1.4. Направление вращения.

Пусть ось. Вращение относительно оси назовем положительным или прямым, если оно осуществляется для наблюдателя, стоящего вдоль положительного направления оси, справа и налево (рис. 3.2). В противном случае оно называется отрицательным или обратным.

3.1.5. Прямые и обратные трехгранники.

Пусть некоторый трехгранник (прямоугольный или непрямоугольный). Положительные направления выбраны на осях соответственно от О к х, от О к у и от О к z.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами. НО! Одна и та же физическая величина может иметь несколько буквенных обозначенийразной литературе). В физике существует два вида физических величин: векторные и скалярные. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления.


Скалярная величина (от - ступлат.matuercızylarенчатый) в физике - величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической.

Этот вектор может иметь в принципе любую размерность, а как правило - бесконечномерен. Всё это позволило термину «векторный» сохранить в качестве, пожалуй, основного смысла - смысл 4-вектора. Именно этот смысл вкладывается в термины векторное поле, векторная частица (векторный бозон, векторный мезон); сопряженный смысл в подобных терминах имеет и слово скалярный.

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться. В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Обозначение векторных величин

То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами, поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Масса и плотность

Это можно сказать дальше и о производных всех высших порядков. Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов. В принципе, такая формулировка используется и для квантовых теорий, и для не-квантовых.

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Два вектора называются равными, если они имеют одинаковую длину и направлены в одну сторону. При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе.

То, какие эти предметы, что с ними происходит, или будет происходить, если что-нибудь сделать: кинуть, разогнуть, засунуть в печь. То, почему с ними происходит что-либо и как именно происходит? Перед покупкой нового холодильника можно ознакомиться еще с рядом физических величин, которые позволяют судить о том, какой он, лучше или хуже, и почему он стоит дороже.

Второй и третий законы Ньютона

Все физические величины принято обозначать буквами, чаще греческого алфавита. Несмотря на то, что с такой буквой вы могли не сталкиваться, смысл физической величины, участие ее в формулах остается прежним. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Согласно тому, как в математике обозначают вектор!

Два вектора равны, если совпадают их модули и направления. Проекции вектора a на оси Ox и Oy прямоугольной системы координат. Скалярными называют величины, имеющие численное значение, но не имеющие направления. Сила, действующая на материальную точку, есть векторная величина, вектор, так как она обладает направлением.

МЕЖДУ МОЛОТОМ И НАКОВАЛЬНЕЙ.

Температура тела - скалярная величина, скаляр, так как с этой величиной не связано никакое направление. Число полученное в результате измерения характеризует скалярную величину полностью, а векторную частично. Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются.

Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени. Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче».

Изображение вектора

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно.

В чем сила измеряется?

Это векторное уравнение, т.е. фактически три уравнения - по одному для каждого из трех направлений. Масса - фундаментальная физическая величина. Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Дело в том, что варианты эти не равноценны. И это правда. Но не вся…. И применение этого знания на практике. В рассматриваемой нами системе есть 3 объекта: тягач $(T)$, полуприцеп ${\large ({p.p.})}$ и груз ${\large (gr)}$.

Эта статья о физическом понятии. В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

Однако она не входит с последней в явное противоречие. Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Каким образом физические «векторные величины» привязаны к пространству? Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Масса, длина, температура — это и есть физическая величина. Основное их отличие в том, что векторные физические величины имеют направление. Рисуют стрелку только над буквами векторных физических величин. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение. Векторные величины лучше запомнить.