Симметрия. Почему визуальное равновесие важно? Построение симметричных точек относительно центра

Симметрия I Симме́трия (от греч. symmetria - соразмерность)

в математике,

1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M" такую, что отрезок MM" перпендикулярен плоскости α (прямой а ) и делится ею пополам. Плоскость α (прямая а ) называется плоскостью (осью) С.

Отражение - пример ортогонального преобразования (См. Ортогональное преобразование), изменяющего ориентацию (См. Ориентация) (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой (См. Группа), называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. (рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n , n - целое число ≥ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники (рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф (рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка (рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2k , является осью С. порядка k (рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток (См. Кристаллическая решётка).

В искусстве С. получила распространение как один из видов гармоничной композиции (См. Композиция). Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и Орнамент ов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6 , 7 ).

Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований (См. Лоренца преобразования). Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

М. И. Войцеховский.

Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M" куба симметричны как относительно осей AB и CD, так и относительно центра О.

II Симметри́я

в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу (См. Группа).

Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

Непрерывные преобразования

1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (См. Инерциальная система отсчёта) (см. Относительности теория).

5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом (См. Электрический заряд), барионным зарядом (См. Барионный заряд), лептонным зарядом (См. Лептонный заряд), Гиперзаряд ом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции (См. Волновая функция) всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

где ψ j - волновая функция частицы j , z j - соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), β - произвольный числовой множитель.

А А + grad f, , (2)

где f (x , у , z, t ) - произвольная функция координат (х , у , z ) и времени (t ), с - скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной β, являющейся произвольной функцией координат и времени: η - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины β являются произвольными функциями координат и времени (и даже операторами (См. Операторы), преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).

Дискретные преобразования

Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

Симметрия и законы сохранения

Согласно Нётер теореме (См. Нётер теорема), каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода - законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности - сохранение изотопического спина (См. Изотопический спин) в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности (См. Чётность), сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть ψ 1 - волновая функция, описывающая какое-либо состояние системы, а ψ 2 - волновая функция системы, получающаяся в результате пространств. инверсии (символически: ψ 2 = Р ψ 1 , где Р - оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии, ψ 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции ψ 1 и ψ 2: симметричная комбинация ψ s = ψ 1 + ψ 2 и антисимметричная ψ а = ψ 1 - ψ 2 . При преобразованиях инверсии состояние ψ 2 не меняется (т. к. P ψ s = P ψ 1 + P ψ 2 = ψ 2 + ψ 1 = ψ s), а состояние ψ a меняет знак (P ψ a = P ψ 1 - P ψ 2 = ψ 2 - ψ 1 = - ψ a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором - отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

Симметрия квантово-механических систем и стационарные состояния. Вырождение

Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (См. Стационарное состояние) (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению (См. Вырождение). Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятор а.

Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.

III Симметри́я

в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (См. Волновая функция) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре (См. Молекулярные спектры), либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спин ом этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс).

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (σ) и антисимметричные (π) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются π-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

Н. Ф. Степанов.

IV Симметри́я

в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные С. растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории С. (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о С. - биосимметрики.

Наиболее интенсивно изучалась структурная С. биообъектов. Исследование С. биоструктур - молекулярных и надмолекулярных - с позиций структурной С. позволяет заранее выявить возможные для них виды С., а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной С. в зоологии, ботанике, молекулярной биологии. Структурная С. проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной С., развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым (См. Фёдоров) и другими, вид С. объекта может быть описан совокупностью элементов его С., т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта (см. Симметрия в математике). Например, вид С. цветка флокса (рис. 1 , в) - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид С. фигуры бабочки (рис. 2 , б) - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид С. радиолярии Lithocubus geometricus (рис. 3 , б), помимо осей вращения и плоскостей отражения содержит ещё и центр С. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра С., - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n ) и актиноморфной (вида n (m ) С . (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n . Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m . В живой природе наиболее распространены С. вида n = 1 и 1․m = m , называется соответственно асимметрией (См. Асимметрия) и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (См. Изомерия) (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

Симметричная (несимметричная) многофазная система электрических токов по ГОСТ Р 52002-2003

В которой равны (не равны) по амплитуде и (или) сдвинуты друг относительно друга по на одинаковые (неодинаковые) углы. Примечания:

  1. У симметричной многофазной системы электрических токов сдвиг электрических токов друг относительно друга по фазе составляет угол, равный 2 p /m, где m - число фаз.
  2. Аналогично определяют симметричные (несимметричные) многофазные системы, и т.д.

[из п. 162 ГОСТ Р 52002-2003]

Симметричная система обратной последовательности (токов) по ГОСТ Р 52002-2003

Порядок следования которых обратен основному. Примечания:

  1. При обратном порядке следования фаз сдвиги по фазе каждой из фаз симметричной многофазной системы электрических токов относительно фазы, принятой за первую, уменьшаются или увеличиваются на одинаковую величину, равную 2 p (1-k)/m, где m - число фаз; k= 1, 2, ..., m - номер фазы.
  2. Аналогично определяют симметричные системы обратных последовательностей, и т.д.

[из п. 165 ГОСТ Р 52002-2003]

Симметричная система прямой последовательности (токов) по ГОСТ Р 52002-2003

Порядок следования которых принят в качестве основного. Примечания:

  1. При основном порядке следования фаз сдвиги по фазе каждой из фаз симметричной многофазной системы электрических токов относительно фазы, принятой за первую, увеличиваются или уменьшаются на одинаковую величину, равную 2 p (1-k)/m, где m - число фаз; k= 1, 2, ..., m - номер фазы.
  2. Аналогично определяют симметричные системы прямой последовательности, и т.д.

[из п. 164 ГОСТ Р 52002-2003]

Симметричные составляющие (несимметричной -фазной системы электрических токов) по ГОСТ Р 52002-2003

Симметричные m-фазные последовательности, на которые данная несимметричная m-фазная система электрических токов может быть разложена, а именно последовательностей с индексами n=0, 1, …, m-1, фазные сдвиги в каждой из которых относительно первой фазы равны 2 p (1-k)n/m, где k= 1, 2, ... , m- номер фазы. Примечания:

  1. Для обозначениям фаз А, В и С соответствуют значения k=1, 2 и 3, а названиям последовательностей как нулевой, прямой и обратной - значения n= 0, 1 и 2.
  2. Аналогично определяют симметричные составляющие несимметричных m-фазных систем, и т.д.

[из п. 166 ГОСТ Р 52002-2003]

Сбалансированная композиция кажется правильной. Она смотрится устойчиво и эстетически привлекательно. Хотя какие-то из ее элементов могут особенно выделяться, являясь фокальными точками — ни одна часть не притягивает взгляд настолько, чтобы подавлять остальные. Все элементы сочетаются друг с другом, плавно соединяясь между собой и образуя единое целое.

Несбалансированная композиция вызывает напряжение. Когда дизайн дисгармоничен, отдельные его элементы доминируют над целым, и композиция становится меньше, чем сумма ее частей. Иногда подобная дисгармония может иметь смысл, но чаще всего баланс, упорядоченность и ритм — это лучшее решение.

Несложно понять, что такое баланс с точки зрения физики — мы ощущаем его постоянно: если что-то не сбалансировано, оно неустойчиво. Наверняка в детстве вы качались на качелях-доске — вы на одном конце, ваш друг — на другом. Если вы весили примерно одинаково, вам было легко на них балансировать.

Нижеследующая картинка иллюстрирует баланс: два человека одинакового веса находятся на равном расстоянии от точки опоры, на которой балансируют качели.

Качели в симметричном равновесии

Человек на правом конце доски раскачивает ее по часовой стрелке, а человек на левом — против. Они прикладывают одинаковую силу в противоположных направлениях, так что сумма равна нулю.

Но если бы один человек был намного тяжелее, равновесие бы исчезло.

Отсутствие равновесия

Эта картинка кажется неправильной, потому что мы знаем, что фигура слева слишком мала, чтобы уравновесить фигуру справа, и правый конец доски должен касаться земли.

Но если передвинуть более крупную фигуру в центр доски, картинка приобретет более правдоподобный вид:

Качели в асимметричном равновесии

Вес более крупной фигуры нивелируется тем, что она расположена ближе к точке опоры, на которой балансируют качели. Если вы когда-нибудь качались на таких качелях или, по крайней мере, видели, как это делают другие, то понимаете, что происходит.

Композиционное равновесие в дизайне основано на тех же принципах. Физическая масса заменяется визуальной, и направление, в котором на нее действует сила притяжения, заменяется визуальным направлением:

1. Визуальная масса — это воспринимаемая масса визуального элемента, мера того, насколько данный элемент страницы привлекает внимание.

2. Визуальное направление — это воспринимаемое направление визуальной силы, в котором, как нам кажется, двигался бы объект, если бы он мог двигаться под влиянием физических сил, действующих на него.

Для измерения этих сил нет инструментов и для расчета зрительного баланса нет формул: чтобы определить, сбалансирована ли композиция, вы ориентируетесь только на свои глаза.

Почему визуальное равновесие важно?

Визуальное равновесие так же значимо, как и физическое: несбалансированная композиция вызывает у зрителя дискомфорт. Посмотрите на вторую иллюстрацию с качелями: она кажется неправильной, потому что мы знаем, что качели должны касаться земли.

С точки зрения маркетинга, визуальная масса — это мера визуального интереса, который вызывает какая-либо область или элемент страницы. Когда лендинг визуально сбалансирован, каждая его часть вызывает некоторый интерес, а сбалансированный дизайн удерживает внимание зрителя.

При отсутствии визуального равновесия посетитель может не увидеть некоторые элементы дизайна — скорее всего, он не станет рассматривать области, уступающие другим по визуальному интересу, так что информация, связанная с ними, останется незамеченной.

Если вы хотите, чтобы пользователи узнали все, что вы намерены им сообщить — подумайте о разработке сбалансированного дизайна.

Четыре типа равновесия

Есть несколько способов добиться композиционного равновесия. Картинки из раздела выше иллюстрируют два из них: первая — пример симметричного баланса, а вторая — асимметричного. Два других типа — радиальный и мозаичный.

Симметричное равновесие достигается, когда объекты, равные по визуальной массе, размещаются на равном расстоянии от точки опоры или оси в центре. Симметричное равновесие вызывает ощущение формальности (поэтому иногда оно называется формальным равновесием) и элегантности. Приглашение на свадьбу — пример композиции, которую вы, скорее всего, захотите сделать симметричной.

Недостаток симметричного равновесия в том, что оно статично и иногда кажется скучным: если половина композиции — это зеркальное отражение другой половины, то как минимум одна половина будет достаточно предсказуема.

2. Асимметричное равновесие

Асимметричное равновесие достигается, когда объекты по разные стороны от центра имеют одинаковую визуальную массу. При этом на одной половине может находиться доминирующий элемент, уравновешенный несколькими менее важными фокальными точками на другой половине. Так, визуально тяжелый элемент (красный круг) на одной стороне уравновешен рядом более легких элементов на другой (синие полосы).

Асимметричное равновесие более динамично и интересно. Оно вызывает ощущение современности, движения, жизни и энергии. Асимметричного равновесия сложнее достичь, потому что отношения между элементами более сложны, но, с другой стороны, оно оставляет больше простора для творчества.

Радиальное равновесие достигается, когда элементы расходятся лучами из общего центра. Лучи солнца или круги на воде после того, как в нее упал камень — это примеры радиального равновесия. Удерживать фокальную точку (точка опоры) легко, поскольку она всегда в центре.

Лучи расходятся из центра и ведут к нему же, делая его самой заметной частью композиции.

Мозаичное равновесие (или кристаллографический баланс) — это сбалансированный хаос, как на картинах Джексона Поллока. У такой композиции нет выраженных фокальных точек, и все элементы одинаково важны. Отсутствие иерархии, на первый взгляд, создает визуальный шум, но, тем не менее, каким-то образом все элементы сочетаются и образуют единое целое.

Симметрия и асимметрия

И симметрия, и асимметрия может применяться в композиции вне зависимости от того, каков тип ее равновесия: вы можете использовать объекты симметричной формы для создания асимметричной композиции, и наоборот.

Симметрия, как правило, считается красивой и гармоничной. Впрочем, она также может показаться статичной и скучной. Асимметрия обычно представляется более интересной и динамичной, хотя и не всегда красивой.

Симметрия

Зеркальная симметрия (или двусторонняя симметрия) возникает, когда две половины композиции, расположенные по разные стороны от центральной оси, являются зеркальными отражениями друг друга. Скорее всего, услышав слово «симметрия», вы представляете себе именно это.

Направление и ориентация оси могут быть какими угодно, хотя зачастую она или вертикальная, или горизонтальная. Многие естественные формы, растущие или движущиеся параллельно поверхности земли, отличаются зеркальной симметрией. Ее примеры — крылья бабочки и человеческие лица.

Если две половины композиции отражают друг друга абсолютно точно, такая симметрия называется чистой. В большинстве случаев отражения не полностью идентичны, и половины немного отличаются друг от друга. Это неполная симметрия — в жизни она встречается гораздо чаще, чем чистая симметрия.

Круговая симметрия (или радиальная симметрия) возникает, когда объекты располагаются вокруг общего центра. Их количество и угол, под которым они расположены относительно центра, могут быть любыми — симметрия сохраняется, пока присутствует общий центр. Естественные формы, растущие или движущиеся перпендикулярно поверхности земли, отличаются круговой симметрией — например, лепестки подсолнуха. Чередование без отражения может быть использовано, чтобы продемонстрировать мотивацию, скорость или динамичное действие: представьте крутящиеся колеса движущегося автомобиля.

Трансляционная симметрия (или кристаллографическая симметрия) возникает, когда элементы повторяются через определенные промежутки. Пример такой симметрии — повторяющиеся планки забора. Трансляционная симметрия может возникнуть в любом направлении и на любом расстоянии, если направление совпадает. Естественные формы обретают такую симметрию через репродукцию. При помощи трансляционной симметрии вы можете создать ритм, движение, скорость или динамичное действие.

Бабочка — пример зеркальной симметрии, планки забора — трансляционной, подсолнух — круговой.

Симметричные формы чаще всего воспринимаются как фигуры на фоне. Визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы. Симметрия создает баланс сама по себе, но она может оказаться слишком стабильной и слишком спокойной, неинтересной.

У асимметричных форм нет такой сбалансированности, как у симметричных, но вы можете и асимметрично уравновесить всю композицию. Асимметрия часто встречается в естественных формах: вы правша или левша, ветки деревьев растут в разных направлениях, облака принимают случайные формы.

Асимметрия приводит к более сложным отношениям между элементами пространства и поэтому считается более интересной, чем симметрия, а значит — ее можно использовать, чтобы привлечь внимание.

Пространство вокруг асимметричных форм более активно: узоры часто непредсказуемы, и в целом у вас больше свободы самовыражения. Обратная сторона асимметрии в том, что ее сложнее сделать сбалансированной.

Вы можете совмещать симметрию и асимметрию и добиваться хороших результатов — создавайте симметричное равновесие асимметричных форм и наоборот, разбивайте симметричную форму случайной меткой, чтобы сделать ее интереснее. Сталкивайте симметрию и асимметрию в композиции, чтобы ее элементы привлекали больше внимания.

Принципы гештальт-психологии

Принципы дизайна не возникают из ничего: они следуют из психологии нашего восприятия визуальной среды. Многие принципы дизайна вырастают из принципов гештальт-психологии, а также основываются друг на друге.

Так, один из принципов гештальт-психологии касается именно симметрии и порядка и может применяться к композиционному равновесию. Впрочем, это едва ли не единственный принцип, применимый к нему.

Другие принципы гештальт-психологии, такие как фокальные точки и простота — складываются в визуальную массу, а фактор хорошего продолжения, фактор общей судьбы и параллелизм, задают визуальное направление. Симметричные формы чаще всего воспринимаются как фигуры на фоне.

Примеры различных подходов к веб-дизайну

Настало время реальных примеров. Лендинги, представленные ниже, сгруппированы по четырем типам равновесия. Возможно, вы воспримите дизайн этих страниц по-другому, и это хорошо: критическое мышление важнее, чем безоговорочное принятие.

Примеры симметричного равновесия

Дизайн сайта Helen & Hard симметричен. Страница «О нас» на скриншоте снизу и все остальные страницы этого сайта сбалансированы похожим образом:

Скриншот страницы «О нас» сайта Helen & Hard

Все элементы, находящиеся по разные стороны вертикальной оси, расположенной в центре страницы, зеркально отражают друг друга. Логотип, навигационная панель, круглые фотографии, заголовок, три колонки текста — центрированы.

Впрочем, симметрия не идеальна: например, колонки содержат разное количество текста. Кстати, обратите внимание на верх страницы. И логотип, и навигационная панель расположены по центру, но визуально они не кажутся центрированными. Возможно, логотип стоило центрировать по амперсанду или, по крайней мере, по области рядом с ним.

В трех текстовых ссылках меню, расположенных в правой части навигационной панели, больше букв, чем в ссылках левой части — кажется, что центр должен располагаться между About и People. Может быть, если расположить эти элементы в действительности не по центру, но так, чтобы визуально они казались центрированными, композиция в целом выглядела бы более сбалансированной.

Домашняя страница Tilde — еще один пример дизайна с симметричным равновесием. Как и на Helen & Hard, все располагается вокруг вертикальной оси, проходящей по центру страницы: навигация, текст, люди на фотографиях.

Скриншот домашней страницы Tilde

Как и в случае с Helen & Hard, симметрия не идеальна: во-первых, центрированные строчки текста не могут быть отражением фотографии снизу, а во-вторых, пара элементов выбивается из общего ряда — стрелка «Meet the Team» указывает вправо, и текст внизу страницы заканчивается еще одной стрелкой вправо. Обе стрелки являются призывами к действию и обе нарушают симметрию, привлекая к себе дополнительное внимание. Кроме того, по цвету обе стрелки контрастируют с фоном, что тоже притягивает взгляд.

Примеры асимметричного равновесия

Домашняя страница Carrie Voldengen демонстрирует асимметричное равновесие вокруг доминирующей симметричной формы. Глядя на композицию в целом, можно увидеть несколько отдельных друг от друга форм:

Скриншот веб-сайта Carrie Voldengen

Большую часть страницы занимает прямоугольник, состоящий из решетки меньших прямоугольных изображений. Сама по себе решетка симметрична и по вертикальной, и по горизонтальной оси и выглядит очень прочной и стабильной — можно даже сказать, что она слишком сбалансирована и выглядит неподвижной.

Блок текста справа нарушает симметрию. Решетке противопоставлен текст и круглый логотип в левом верхнем углу страницы. Эти два элемента имеют примерно равную визуальную массу, воздействующую на решетку с разных сторон. Расстояние до воображаемой точки опоры примерно такое же, как и масса. Блок текста справа больше и темнее, но круглый голубой логотип добавляет веса своей области и даже совпадает с верхним левым углом решетки по цвету. Текст внизу решетки, кажется, свисает с нее, но он достаточно легкий, чтобы не нарушать композиционного равновесия.

Обратите внимание, что пустое пространство тоже кажется сбалансированным. Пустоты слева, сверху и снизу, а также справа под текстом — уравновешивают друг друга. В левой части страницы больше пустого пространства, чем справа, но в правой части есть дополнительное пространство вверху и внизу.

Изображения в шапке страницы Hirondelle USA сменяют друг друга. Скриншот, представленный ниже, был сделан специально для того, чтобы продемонстрировать асимметричное композиционное равновесие.

Скриншот Hirondelle USA

Колонна на фотографии смещена чуть вправо от центра и создает заметную вертикальную линию, поскольку мы знаем, что колонна — это очень тяжелый объект. Перила слева создают прочную связь с левым краем экрана и тоже представляются достаточно надежными.

Текст над перилами как будто опирается на них; к тому же, справа он визуально сбалансирован фотографией мальчика. Может показаться, что перила как бы свисают с колонны, нарушая баланс, но наличие мальчика и более темный фон за ним уравновешивают композицию, а светлый текст восстанавливает баланс в целом.

Примеры радиального равновесия

Домашняя страница Vlog.it демонстрирует радиальное равновесие, что заметно на скриншоте. Все, кроме объекта в правом верхнем углу, организовано вокруг центра, и три кольца изображений вращаются вокруг центрального круга.

Скриншот домашней страницы Vlog.it

Впрочем, на скриншоте не видно, как страница загружается: линия рисуется из нижнего левого угла экрана к его центру — и с этого момента все, что появляется на странице, вращается вокруг центра или расходится из него лучами, как круги по воде.

Маленький круг в правом верхнем углу добавляет трансляционной симметрии и асимметрии, повышая визуальный интерес к композиции.

На домашней странице Opera’s Shiny Demos нет кругов, но все текстовые ссылки расходятся из общего центра, и легко представить, как вся эта конструкция вращается вокруг одного из центральных квадратов или, может быть, одного из углов:

Скриншот домашней страницы Opera’s Shiny Demos

Название Shiny Demos в левом верхнем углу и логотип Opera в правом нижнем — уравновешивают друг друга и тоже как будто исходят из того же центра, что и текстовые ссылки.

Это хороший пример того, что для достижения радиального равновесия не обязательно использовать круги.

Примеры мозаичного равновесия

Вы можете подумать, что мозаичный баланс используется на сайтах реже всего, особенно после того, как в качестве примера были названы картины Джексона Поллока. Но мозаичное равновесие встречается гораздо чаще, чем кажется.

Яркий пример — домашняя страница Rabbit’s Tale. Разбросанные по экрану буквы определенно создают ощущение хаоса, но композиционное равновесие присутствует.

Скриншот домашней страницы Rabbit’s Tale

Почти равные по величине области цвета и пространства, расположенные с двух сторон, справа и слева — уравновешивают друг друга. Кролик в центре служит точкой опоры. Каждый элемент не привлекает внимания сам по себе.

Сложно разобраться, какие конкретные элементы уравновешивают друг друга, но в целом баланс присутствует. Может быть, визуальная масса правой стороны немного больше, но не настолько, чтобы нарушить равновесие.

Сайты с большим количеством контента, например, новостные порталы или сайты журналов, тоже демонстрируют мозаичное равновесие. Вот скриншот домашней страницы The Onion:

Скриншот домашней страницы The Onion

Здесь множество элементов, их расположение не симметрично, размер текстовых колонок не одинаков, и сложно понять, что уравновешивает что. Блоки содержат разное количество контента, и, следовательно, их размеры различаются. Объекты не располагаются вокруг какого-нибудь общего центра.

Блоки разных размеров и плотности создают некоторое ощущение беспорядка. Поскольку сайт обновляется каждый день, структура этого хаоса постоянно меняется. Но в целом равновесие сохраняется.

Заключение

Принципы дизайна во многом берут начало из гештальт-психологии и теории восприятия и опираются на то, как мы воспринимаем и интерпретируем окружающую визуальную среду. Например, одна из причин, по которым мы замечаем фокальные точки, заключается в том, что они контрастируют с элементами вокруг них.

Понятие движения

Разберем сначала такое понятие как движение.

Определение 1

Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.

Существуют несколько теорем, связанных с этим понятием.

Теорема 2

Треугольник, при движении, переходит в равный ему треугольник.

Теорема 3

Любая фигура, при движении, переходит в равную ей фигуру.

Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.

Осевая симметрия

Определение 2

Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку ${AA}_1$ и проходит через его центр (рис. 1).

Рисунок 1.

Рассмотрим осевую симметрию на примере задачи.

Пример 1

Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: ${AA}_1\bot BC$, ${AH=HA}_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).

Рисунок 2.

Определение 3

Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).

Рисунок 3.

На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.

Центральная симметрия

Определение 4

Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка ${XX}_1$ (рис. 4).

Рисунок 4.

Рассмотрим центральную симметрию на примере задачи.

Пример 2

Построить симметричный треугольник для данного треугольника какой-либо его вершины.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом ${BA=AB}_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: ${CA=AC}_1$. Треугольник $ABC$ перейдет в треугольник ${AB}_1C_1$ (Рис. 5).

Рисунок 5.

Определение 5

Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).

Рисунок 6.

На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.

Пример задачи.

Пример 3

Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.

Решение.

Изобразим схематически условие задачи.

Рисунок 7.

Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A"B"$. Для его построение сделаем следующее: проведем через точки $A\ и\ B$ прямые $m\ и\ n$, перпендикулярно прямой $l$. Пусть $m\cap l=X,\ n\cap l=Y$. Далее проведем отрезки $A"X=AX$ и $B"Y=BY$.

Рисунок 8.

Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A""B""$. Для его построения сделаем следующее: проведем прямые $AC\ и\ BC$. Далее проведем отрезки $A^{""}C=AC$ и $B^{""}C=BC$.

Рисунок 9.

I . Симметрия в математике :

    Основные понятия и определения.

    Осевая симметрия (определения, план построения, примеры)

    Центральная симметрия (определения, план построения, при ­меры)

    Обобщающая таблица (все свойства, особенности)

II . Применения симметрии:

1) в математике

2) в химии

3) в биологии, ботанике и зоологии

4) в искусстве, литературе и архитектуре

    /dict/bse/article/00071/07200.htm

    /html/simmetr/index.html

    /sim/sim.ht

    /index.html

1. Основные понятия симметрии и ее виды.

Понятие симметрии пр оходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого ор­ганизма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие ве­ликие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия по­нятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любо­вался симметричностью творений природы: листьями, цветами, птицами, живот­ными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симмет­рия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким обра­зом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное. Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.

2. Осевая симметрия.

2.1 Основные определения

Определение. Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендику­лярна к нему. Каждая точка прямой а считается симметричной самой себе.

Определение. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симмет­рии фигуры. Говорят также, что фигура обладает осевой симметрией.

2.2 План построения

И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же рас­стояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и по­лучаем симметричную фигуру данной относительной оси.

2.3 Примеры фигур, обладающих осевой симметрией.


3. Центральная симметрия

3.1 Основные определения

Определение . Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 . Точка О считается симметричной са­мой себе.

Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

3.2 План построения

Построение треугольника симметричного данному относительно цен­тра О.

Чтобы построить точку, симметричную точке А относи­тельно точки О , достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О от­ложить отрезок, равный отрезку ОА . Иными словами, точки А и ; В и ; С и симметричны относительно некоторой точки О. На рис. 46 по­строен треугольник, симметричный треуголь­нику ABC относительно точки О. Эти треугольники равны.

Построение симметричных точек относительно центра.

На рисунке точки М и М 1 , N и N 1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.

Вообще фигуры, симметричные относительно некоторой точки, равны.

3.3 Примеры

Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и паралле­лограмм.

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диаго­налей.

Прямая также обладает центральной симметрией, однако в отличие от окруж­ности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.

На рисунках показан угол симметричный относительно вершины, отрезок сим­метричный другому отрезку относительно центра А и четырехугольник симметрич­ный относительно своей вершины М.

Примером фигуры, не имеющей центра симметрии, является треугольник.

4. Итог урока

Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основ­ными видами симметрии: центральная и осевая. Посмотрим на экран и системати­зируем полученные знания.

Обобщающая таблица

Осевая симметрия

Центральная симметрия

Особенность

Все точки фигуры должны быть симметричны относительно какой-нибудь прямой.

Все точки фигуры должны, сим­метричны относительно точки, вы­бранной в качестве центра симмет­рии.

Свойства

    1. Симметричные точки лежат на перпендикулярах к прямой.

    3. Прямые переходят в прямые, углы в равные углы.

    4. Сохраняются размеры и формы фигур.

    1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры.

    2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.

3. Сохраняются размеры и формы фигур.

II. Применение симметрии

Математика

На уроках алгебры мы изу­чили графики функций y=x и y=x

На рисунках представлены различные картинки, изо­браженные с помощью вет­вей парабол.

(а) Октаэдр,

(б) ромбический додекаэдр, (в) гексагональной октаэдр.

Русский язык

Печатные буквы русского алфавита тоже обладают различными видами сим­метрий.

В русском языке есть «сим­метричные» слова - палин­дромы , которые можно чи­тать одинаково в двух на­правлениях.

А Д Л М П Т Ф Ш – вертикальная ось

В Е З К С Э Ю - горизонтальная ось

Ж Н О Х - и вертикальная и горизонтальная

Б Г И Й Р У Ц Ч Щ Я – ни какой оси

Радар шалаш Алла Анна

Литература

Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром.

Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести ли­нию после второй строчки мы можем заметить эле­менты осевой симметрии

А роза упала на лапу Азора.

Я иду с мечем судия. (Державин)

«Искать такси»

«Аргентина манит негра»,

«Ценит негра аргентинец»,

«Леша на полке клопа нашел».

В гранит оделася Нева;

Мосты повисли над водами;

Темно-зелеными садами

Ее покрылись острова…

Биология

Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в дейст­вительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответст­вии с общей симметрией тела человека каждое по­лушарие представляет со­бой почти точное зеркаль­ное отображение другого

Управление основными движениями тела человека и его сенсорными функ­циями равномерно распре­делено между двумя полу­шариями мозга. Левое по­лушарие контролирует пра­вую сторону мозга, а правое - левую сторону.

Ботаника

Цветок считается симмет­ричным, когда каждый око­лоцветник состоит из рав­ного числа частей. Цветки, имея парные части, счита­ются цветками с двойной симметрией и т.д. Тройная симметрия обычна для од­нодольных растений, пя­терная - для двудольных Характерной чертой строе­ния растений и их развития является спиральность.

Обратите внимание на по­беги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявле­нием самой сокровенной сущности жизни. Спи­рально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спи­рали расположены семечки в подсолнечнике, спираль­ные движения наблюда­ются при росте корней и побегов.

Характерной чертой строения растений и их раз­вития является спиральность.

Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.


Зоология

Под симметрией у живот­ных понимают соответствие в размерах, форме и очерта­ниях, а также относительное расположение частей тела, находящихся на противопо­ложных сторонах разде­ляющей линии. При ради­альной или лучистой сим­метрии тело имеет форму короткого или длинного ци­линдра либо сосуда с цен­тральной осью, от которого отходят в радиальном по­рядке части тела. Это ки­шечнополостные, иглоко­жие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Осевая симметрия


Различные виды симметрии физических явлений: сим­метрия электрического и магнитного полей (рис. 1)

Во взаимно перпендику­лярных плоскостях симмет­рично распространение электромагнитных волн (рис. 2)


рис.1 рис.2

Искусство

В произведениях искусства часто можно наблюдать зеркальную симметрию. Зеркальная" симметрия ши­роко встречается в произве­дениях искусства прими­тивных цивилизаций и в древней живописи. Средне­вековые религиозные кар­тины также характеризу­ются этим видом симмет­рии.

Одно из лучших ранних произведений Рафаэля – «Обручение Марии» - соз­дано в 1504 году. Под сол­нечным голубым небом раскинулась долина, увен­чанная белокаменным хра­мом. На первом плане – об­ряд обручения. Первосвя­щенник сближает руки Ма­рии и Иосифа. За Марией – группа девушек, за Иоси­фом – юношей. Обе части симметричной композиции скреплены встречным дви­жением персонажей. На со­временный вкус компози­ция такой картины скучна, поскольку симметрия слишком очевидна.



Химия

Молекула воды имеет плос­кость симметрии (прямая вертикальная линия).Ис­ключительно важную роль в мире живой природы иг­рают молекулы ДНК (де­зоксирибонуклеиновая ки­слота). Это двуцепочечный высокомолекулярный по­лимер, мономером которого являются нуклеотиды. Мо­лекулы ДНК имеют струк­туру двойной спирали, по­строенной по принципу комплементарности.

Архите ктура

Издавна человек использо­вал симметрию в архитек­туре. Особенно блиста­тельно использовали сим­метрию в архитектурных сооружениях древние зод­чие. Причем древнегрече­ские архитекторы были убеждены, что в своих про­изведениях они руково­дствуются законами, кото­рые управляют природой. Выбирая симметричные формы, художник тем са­мым выражал свое понима­ние природной гармонии как устойчивости и равно­весия.

В городе Осло, столице Норвегии, есть выразитель­ный ансамбль природы и художественных произве­дений. Это Фрогнер – парк – комплекс садово-парко­вой скульптуры, который создавался в течение 40 лет.


Дом Пашкова Лувр (Париж)


© Сухачева Елена Владимировна, 2008-2009гг.