Скорость вращения электрона в атоме водорода. Постулаты Бора и объяснение происхождения линейчатых спектров

Ко времени создания теории Бора об атоме водорода имелись следующие экспериментальные сведения. Атом водорода состоит из ядра (протона), несущего положительный заряд, равный по величине заряду электрона, и одного электрона, который согласно планетарной модели Резерфорда, движется вокруг ядра по круговой или эллиптической орбите. Размеры атома водорода определяются диаметром орбиты электрона и составляют несколько больше 10 -10 м .

Ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного спектра. Выход из создавшегося тупика был найден в 1913 г. датским физиком Нильсом Бором, правда, ценой введения предположений, противоречащих классическим представлениям. Допущения, сделанные Бором, содержатся в двух высказанных им постулатах.

Первый постулат Бора (постулат стационарных состояний ) гласит:

из бесконечного множества электронных орбит, возможных с точки зрения классической механики, осуществляются в действительности только некоторые дискретные орбиты, удовлетворяющие определенным квантовым условиям. Электрон, находящийся на одной из этих орбит, несмотря на то, что он движется с ускорением, не излучает электромагнитных волн (света).

Согласно первому постулату атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию. Стационарным состояниям соответствуют стационарные орбиты, по которым электрон может вращаться вокруг ядра неопределенно долго, не излучая энергию. Энергия атома может измениться лишь при скачкообразном переходе электрона из одного энергетического состояния в другое.

Второй постулат Бора (правило частот ) формулируется следующим образом: излучение испускается или поглощается в виде светового кванта энергии при переходе электрона из одного стационарного (устойчивого) состояния в другое (рис. 4.4). Величина светового кванта равна разности энергий тех стационарных состояний, между которыми совершается квантовый переход электрона:

. (4.3)

Отсюда следует, что изменение энергии атома, связанное с излучением при

поглощении фотона, пропорционально частоте ν:

, (4.4)

т.е. частота излучаемого света может быть представлена в виде разности двух величин, характеризующих энергию излучающей системы.

Второй постулат Бора также противоречит электродинамике Максвелла. По Бору частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона. А согласно Максвеллу (т.е. с точки зрения классической электродинамики) частота излучения зависит от характера движения электрона. Согласно теории Бора энергия электрона в атоме водорода , находящегося на n-м энергетическом уровне, равна:


Важную роль в развитии планетарной модели сыграли эмпирические закономерности, полученные для линейчатого спектра атома водорода.

В 1858 г. швейцарский физик И. Бальмер установил, что частоты девяти линий в видимой области спектра водорода удовлетворяют соотношению

. (4.5)

Здесь – частота световой волны, – постоянная, получившая название постоянной Ридберга, m =3,4, 5, …, 11.

Открытие водородной серии Бальмера (4.5) послужило толчком для обнаружения других серий в спектре атома водорода в начале 20 века.

Из формулы (4.5) видно, что по мере увеличения m частота линий спектра возрастает, при этом интервалы между соседними частотами уменьшаются, так что при частота . Максимальное значение частоты в серии Бальмера, полученное при , называется границей серии Бальмера, за пределами которой находится непрерывный спектр.

В ультрафиолетовой области спектра водорода находится серия Лаймана:

, m =2,3,4… (4.6)

В инфракрасной области расположены еще четыре серии:

Серия Пашена, , m = 4,5,6…

Серия Брэкета , m = 5,6,7… (4.7)

Серия Пфунда , m = 6,7,8…

Серия Хэмфри , m = 7,8,9…

Как уже отмечалось, частоты всех линий спектра атома водорода представляются одной формулой (4.2).

Частота линии в каждой серии стремится к предельному (максимальному) значению , которое называется границейсерии. Спектральные серии Лаймана и Бальмера обособлены, остальные серии частично перекрываются. Например, границы (длины волн) первых трех серий (Лаймана, Бальмера, Пашена) соответственно равны 0,0912 мкм, 0,3648 мкм, 0, 8208 мкм (λ min = c /ν max).

Бором было введено правило квантования орбит , которое гласит: в стационарном состоянии атома электрон, двигаясь по круговой орбите радиуса r , должен иметь дискретные, т.е. квантованные, значения момента импульса, удовлетворяющие условию

n =1, 2, 3…, (4.8)

где n  главное квантовое число.

Рассмотрим электрон (рис. 4.5), движущийся со скоростью V в поле атомного ядра с зарядом Ze. Квантовая система, состоящая из ядра и только одного электрона, называется водородноподобным атомом. Таким образом, термин «водородноподобный атом» применим, помимо атома водорода, у которого Z = 1, к однократно ионизированному атому гелия + , к двукратно ионизированному атому лития Li +2 и т. д.

На электрон, движущийся по круговой стационарной орбите, действует электрическая, т.е. кулоновская сила притяжения со стороны ядра

. (4.9)

В соответствии со вторым законом Ньютона запишем:

, (4.10)

т.е. кулоновская сила притяжения компенсируется центробежной силой.

Подставив в формулу (4.10) выражение для скорости из (4.8) и решив полученное уравнение относительно r n , получим набор дискретных значений радиусов орбит электрона в водородоподобных атомах:

, (4.11)

где n = 1,2,3… .

С помощью формулы (4.11) определяют радиусы разрешенных стационарных орбит в боровской полуквантовой модели атома. Число n = 1 соответствует ближайшей к ядру орбите, поэтому для атома водорода (Z =1) радиус первой орбиты

м , (4.12)

а соответствующая этой орбите скорость электрона

.

Наименьший радиус орбиты называется первым боровским радиусом

(). Из выражения (4.11) видно, что радиусы более далеких от ядра орбит для водородоподобных атомов увеличиваются пропорционально квадрату числа n (рис. 4.6)

(4.13)

Теперь рассчитаем для каждой из разрешенных орбит полную энергию электрона, которая состоит из его кинетической и потенциальной энергий:

. (4.14)

Напомним, что потенциальная энергия электрона в поле положительно заряженного ядра является величиной отрицательной. Подставляя в выражение (4.14) значение скорости v из (4.8), а затем, используя формулу (4.13) для r , получаем ():

, n = 1, 2, 3 … (4.15)

Отрицательный знак в выражении (4.15) для энергии атома обусловлен тем, что за нулевое значение потенциальной энергии электрона принято считать то, которое соответствует удалению электрона на бесконечность от ядра.

Орбита с самым малым радиусом соответствует наименьшему значению энергии и называется К - орбитой, за ней следует L - орбита, М – орбита и т.д. При движении электронов по этим орбитам атом находится в устойчивом состоянии.

Схема энергетических уровней для спектральных серий атома водорода, определяемых уравнением (4.15), изображена на рис. 4.7.

Горизонтальные линии соответствуют энергиям стационарных состояний.

Расстояния между энергетическими уровнями пропорциональны квантам энергий, испускаемых атомом при соответствующих переходах электрона (изображены стрелками). При поглощении атомом квантов энергии направления стрелок следует изменить на противоположные.

Из выражения (4.14) видно, что в планетарной модели Бора энергетические состояния атома водорода характеризуются бесконечной последовательностью энергетических уровней E n . Значения E n обратно пропорциональны квадрату числа n , которое называется главным квантовым числом . Энергетическое состояние атома с n =1 называется основным или нормальным, т.е. невозбужденным состоянием, которое соответствует минимальному значению энергии. Если n > 1 состояние атома является возбужденным ().

Энергия E 1 основного состояния атома водорода из (4.15) равна│

– 13,53 эВ .

Энергия ионизации атома водорода,т.е. E i = │E 1 - E ∞ │= 13,53 эВ, равна работе, совершаемой при перемещении электрона из основного состояния (n =1) в бесконечность без сообщения ему кинетической энергии.

Вернемся в 1911 год. К этому времени дискретность микромира проявилась наиболее ярко в атомных спектрах. Оказалось, что атомы поглощают и испускают свет только определенной длины волны, причем спектральные линии группируются в так называемые серии (рис. 3.1).

Рис. 3.1. Длины волн, излучаемые атомом водорода: спектр состоит из серий (показаны три первые) -
последовательностей линий, сгущающихся к некоторому (своему для каждой серии) предельному минимальному
значению ; только четыре линии серии Бальмера лежат в видимом диапазоне


Рис. 3.2. (a) Линейчатые спектры излучения газообразных водорода, ртути и гелия: (b) спектр поглощения водорода

Рис. 3.3. Непрерывные спектры излучения дают нагретые твёрдые и жидкие вещества, сильно сжатые газы, высокотемпературная плазма

Для спектра водорода, простейшего из атомов, была установлена (не выведена, а угадана!) несложная формула

Здесь - длина волны излучения атома водорода, n и k > n - целые числа, R - так называемая постоянная Ридберга (, где - внесистемная единица энергии «Ридберг», равная половине атомной единице энергии). Оказалось, что серия Лаймана описывается этой формулой при значениях , серия Бальмера - при , серия Пашена - при и т. д. Предельные (минимальные) значения для длин волн получаются из (3.1) при :

Рис. 3.4. Йоханнес Роберт Ридберг (1854–1919)

Рис. 3.5. Теодор Лайман (1874–1954)


Рис. 3.6. Спектральная серия Лаймана

Рис. 3.7. Иоганн Якоб Бальмер (1825–1898)

Рис. 3.8. Видимые линии излучения водорода в серии Бальмера. Hα - красная линия справа, имеющая длину волны 656,3 нм. Самая левая линия - Hε, соответствует излучению уже в ультрафиолетовой области спектра на длине волны 397,0 нм

Рис. 3.9. Луис Карл Генрих Фридрих Пашен (1865–1947)

Рис. 3.10. Все линии серии Пашена расположены в инфракрасном диапазоне

Кроме того, в результате изучения свойств газов к тому времени было известно, что размеры атомов приблизительно
равны . Поэтому теория, объясняющая спектр и размеры атомов, должна была включать в себя какой-то параметр, позволяющий построить величину с размерностью длины (постоянных e и m - заряда и массы электрона - для этого недостаточно). Такого параметра в классической теории не было. Им могла бы стать постоянная Ридберга, но ее происхождение было темно и загадочно.

В 1911 году Э. Резерфорд опубликовал теоретическую работу (Rutherford E., Philosophical Magazine, v. 21, p. 669–688 , 1911), в которой на базе анализа экспериментов, выполненных в 1908–1909 годах его учениками - стажером Гансом Гейгером и аспирантом Эрнстом Марсденом - (Geiger H., Marsden T., Proceedings of the Royal Society of London, Series A, v. 82, p. 495–499 , 1909) утверждал наличие внутри атома положительно заряженного ядра, в котором сосредоточена практически вся масса атома.

Рис. 3.11. Эрне́ст Ре́зерфорд (1871–1937)

Видео 3.2. Немного истории. Черная шляпа и модель рассеяния.

В последствии, в одной из своих лекций сам Э. Резерфорд вспоминал о тех временах следующим образом (цитируется по книге Дж. Тригг, Решающие эксперименты в современной физике, Москва, «МИР», 1974, стр. 77): «…Я помню… ко мне пришел очень взволнованный Гейгер и сказал: «Мы, кажется, получили несколько случаев рассеяния - частиц назад…». Это самое невероятное событие, которое было в моей жизни. Это почти также невероятно, как если бы вы выстрелили 15-дюймовым снарядом в папиросную бумагу и он, отразившись от неё, попал бы в вас. При анализе этого я понял, что такое рассеяние назад должно быть результатом однократного столкновения и, проведя расчеты, увидел, что это никоим образом невозможно, если не предположить, что подавляющая часть массы атома сконцентрирована в крошечном ядре. Именно тогда у меня и зародилась идея об атоме с крошечным массивным центром, в котором сосредоточен заряд». От себя добавим, что слова «рассеяние назад» фактически означали рассеяние на 150 градусов, рассеяние на большие углы не позволяла наблюдать конструкция использованной в тот момент установки.

Принципиальная схема опытов Резерфорда представлена на рис. 3.12. Схему реальной установки можно найти в цитированной выше книге Дж. Тригга.


Рис. 3.12. Схема опыта Резерфорда по рассеянию - частиц

Видео 3.3. Натурный опыт Резерфорда на лабораторной установке. Видео 3.4. Опыт Резерфорда «изнутри» (лабораторная установка). Видео 3.5. Компьютерная модель опыта Резерфорда.

От радиоактивного источника, заключенного в свинцовый контейнер, частицы направлялись на тонкую фольгу Ф из исследуемого металла. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных частиц в опыте Резерфорда можно было проводить под различными углами к первоначальному направлению пучка. Было обнаружено, что большинство частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30° . Очень редкие частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к . Очевидно, что частица может быть отброшена назад, только если положительный заряд атома и его масса сосредоточены в очень малом объеме внутри атома. Таким образом, было открыто атомное ядро - тело малых по сравнению с атомом размеров, в котором сосредоточен весь положительный заряд и практически вся его масса. Размеры ядра были оценены Э. Резерфордом в работе 1911 года, оценка дала меньше или порядка .

Видео 3.6. Прицельный параметр и форма траектории. Видео 3.7. Заряд рассеиваемой частицы и форма траектории. Видео 3.8. Энергия рассеиваемой частицы и форма траектории. Видео 3.9. Заряд ядра и форма траектории.

Рис. 3.13. Схема рассеяния альфа-частиц на ядре атома золота


Рис. 3.14. Схема рассеяния потока альфа-частиц в тонкой золотой фольге

Возникла планетарная модель атома водорода: протон с электроном на орбите. Физики любят единые модели, а здесь так красиво в малом повторялось большое, в атоме - Солнечная система.

Рис. 3.15. Схема ядерной (планетарной) модели атома Резерфорда

Проблема состояла в том, что электрон, совершающий финитное, а следовательно - ускоренное движение около ядра, должен упасть на ядро. Дело в том, что электрон заряжен и при ускоренном движении должен испускать электромагнитное излучение, то есть стационарное движение невозможно. Классическая электродинамика предсказывает, что, быстро потеряв свою энергию и момент импульса орбитального движения, электрон должен упасть на ядро примерно за . Свет за это время проходит около 1.5 см (получается, что мы видим лишь «мертвые» атомы, но это не так!). Резерфорд понимал проблему, но сознательно концентрировался на факте существования ядра, полагая, что вопрос об устойчивости атома будет решен при исследовании поведения атомных электронов. Это суждено было сделать в 1913 г. Н. Бору , предложившему новую теорию атома.

Рис. 3.16. Неустойчивость модели атома Резерфорда

Постулаты Бора

Первый постулат Бора

Здесь прослеживается «насильственное» введение дискретности (разрешены не все орбиты), а также типичное для физики «заметание проблемы под ковер»: если чему-то не находится объяснений, принимают это как данность и изучают следствия в надежде, что когда-нибудь поймут и причину.

Рис. 3.17. Иллюстрация первому постулату Бора

Второй постулат Бора

Этот постулат отражает сохранение энергии и соотношение Планка – Эйнштейна .

Рис. 3.18. Иллюстрация ко второму постулату Бора

Третий постулат Бора

Неизбежное следствие: так как остальные орбиты для электрона запрещены, переход осуществляется скачком; о пути и энергии электрона между орбитами говорить не имеет смысла: законы механики там не применимы.

Четвертый постулат Бора

Постоянная Планка ħ имеет размерность момента количества движения и вместе с зарядом электрона е и его массой m позволяет образовать параметр размерности длины. Это приводит к возможности вычислить размеры атома.

Рис. 3.19. Нильс Хе́нрик Дави́д Бор (1885–1962)

Применение постулатов Бора

Классическая механика для электрона, вращающегося по круговой орбите радиусом R со скоростью v вокруг ядра с зарядом Ze , дает уравнение движения

Поэтому энергия Е и момент импульса L электрона выражаются через радиус орбиты R :

Если к последнему выражению применение условие квантования Бора L=nħ (n=1, 2, 3, … ), то получатся следующие результаты.

Рис. 3.20. Модель атома Бора

Характеристики водородоподобного атома

Радиусы разрешенных орбит

Энергия электрона на стационарной орбите

Константа а В , имеющая размерность длины, называется радиусом Бора: . Смысл числа - номер разрешенной орбиты. Радиус Бора - радиус низшей орбиты в атоме водорода .

Формула (3.3) определяет дискретные значения энергии, которые может иметь электрон в атоме водорода, или, как говорят, энергетические уровни. Отрицательные значения соответствуют связанным состояниям электрона в атоме, то есть движениям в ограниченной области пространства (аналог в классической физике - движение планет по эллипсам в отличие от гиперболических и параболических траекторий, уходящих на бесконечность).

При решении задач о поведении электрона в атоме обычно возникают выражения, включающие квадрат электрического заряда электрона в комбинации с электрической постоянной . Весьма полезно ввести безразмерную комбинацию фундаментальных мировых постоянных - так называемую постоянную тонкой структуры :

которая, совместно с атомным номером и номером орбиты , определяет масштаб релятивистских эффектов в атоме. Для того, чтобы это было лучше видно, перепишем формулу (3.3) так, чтобы в её правую часть входила постоянная тонкой структуры:

Из-за множителя характерные для атома энергии оказываются на четыре порядка меньше энергии покоя электрона. Это проявление нерелятивизма достаточно легких атомных систем. Как видно из последнего выражения в приведенной выше формуле, релятивистские эффекты перестают быть малыми поправками для ближних к ядру электронов в тяжелых атомах.

Пример 1. Определим скорость электрона на n -й орбите атома Бора. Радиус n-й орбиты определяется формулой

где а В - радиус Бора. Скорость электрона v можно выразить через момент импульса L=nħ:

Выражение для радиуса Бора упростим, используя введенную постоянную тонкой структуры:

Подставляя это выражение в полученную выше формулу для скорости электрона, получаем для n орбиты

Рис. 3.21. Схема энергетических уровней и переходов в атоме водорода по теории Бора:
сплошные линии (переходы сверху вниз) - излучение, пунктирные линии (переходы снизу вверх) - поглощение.
Показаны границы (пределы) серий , которым соответствуют переходы с уровня с
- границы между континуумом и дискретным спектром

Экспериментальное подтверждение утверждение Бора о дискретности энергетического спектра атомов нашло в опытах Франка - Герца, которые заключались в бомбардировке паров ртути электронами в вакуумной трубке и измерении зависимости анодного тока от ускоряющей разности потенциалов. Схема опыта приведена на рис. 3.22.


Рис. 3.22. Схема опыта Франка - Герца

В трубке, заполненной парами ртути под небольшим давлением (около 1 мм. рт. ст.), имеются три электрода: анод, катод и сетка. Электроны, вылетающие с поверхности подогретого катода вследствие термоэлектронной эмиссии, ускоряются напряжением U , приложенным между катодом и сеткой. Это напряжение можно менять с помощью потенциометра П . Между анодом и сеткой приложено слабое обратное поле с разностью потенциалов порядка 0,5ВВ , тормозящее движение электронов к аноду. Определялась зависимость тока I в цепи анода от приложенного напряжения U . Полученные результаты приведены на рис. 3.23.


Рис. 3.23. Зависимость тока I в цепи анода от приложенного напряжения U в опыте Франка - Герца

Сила тока сначала монотонно возрастает, достигает максимума при напряжении 4,9 В , после чего с ростом U резко падает, достигает минимума и снова начинает расти. Максимумы силы тока повторяются при напряжениях 9,8 В , 14,7 В и т. д. Чередование максимумов на равном расстоянии друг от друга доказало дискретность изменения энергии атома.

Видео 3.10. Опыт Франка и Герца. Демонстрационная установка. Видео 3.11. Опыт Франка и Герца. Сравнение ВАХ для неона и гелия. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 1. Видео 3.12. Опыт Франка и Герца. Лабораторная установка 2.

Атомный номер элемента - целое число, так что после округления получаем Z = 2 , что соответствует гелию.

Как отмечалось выше, еще до появления теории Бора был изучен спектр водородного атома и эмпирически установлена формула (3.1). Но при наблюдении спектра Солнца были замечены линии, казалось бы, нарушающие эту формулу, так как они соответствовали полуцелым значениям n и k . После появления теории Бора стало ясно, что квантовые числа n и k все-таки должны быть целыми, а кажущиеся полуцелые значения можно объяснить по-другому. Действительно, из формулы (3.6) для частот, испускаемых водородоподобным атомом,следует, что

то есть наблюдавшиеся линии принадлежат иону элемента с Z = 2 . Как известно, этот элемент носит «солнечное» имя - гелий.

Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса

где n - квантовые числа, т – масса электрона, - его скорость, r - радиус орбиты. (Рассуждения, которые привели Бора к этому предположению мы опустим.)

С помощью этого правила квантования можно найти радиусы круговых стационарных орбит водорода и водородоподобных систем: ионов атомов с одним оставшимся электроном (Н, Не + , Li + + , …) и соответствующие им энергии. Пусть заряд ядра водородоподобной системы равен e . Масса ядра значительно больше массы электрона, поэтому ядро при движении электрона можно считать неподвижным. Следуя Бору, будем предполагать, что электрон движется вокруг ядра по окружности радиуса r .

Согласно 2-му закону Ньютона

(3.12.9)

Решая совместно (3.12.8) и (3.12.9), можно найти радиусы электронных орбит и их скорости на этих орбитах:

. (3.12.10)

Таким образом, радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода (его обозначают обычно и называют первым Боровским радиусом )

нм (3.12.11)

Внутренняя энергия атома складывается из кинетической энергии электрона (ядро полагают неподвижным) и потенциальной энергии взаимодействия электрона с ядром. С учетом (3.12.10) получим:

. (3.12.12)

При переходе атома водорода (Z =1) из состояния в состояние излучается фотон

. (3.12.13)

Тогда частота испущенного света равна

, (3.12.14)

Что соответствует обобщенной формуле Бальмера, если постоянная Ридберга определяется . (3.12.15)

Расчет по этой формуле хорошо согласуется с экспериментально определенным значением.

Схема энергетических уровней (разрешенных значений энергии) атома водорода приведена на рис.3.12.4. Там же показаны возможные переходы, сопровождающиеся излучением фотонов определенной частоты.



Лекция 3.13.

Волновые свойства частиц вещества.

Гипотеза де-Бройля. Волны де-Бройля.

Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.

Если с такой частицей связана какая-то волна, можно ожидать, что она распространяется в направлении скорости υ частицы. О природе этой волны ничего определенного де-Бройлем не было высказало. Не будем и мы пока выяснять их природу, хотя сразу же подчеркнем, что эти волны не электромагнитные. Они имеют, как мы увидим далее, специфическую природу, для которой нет аналога в классической физике.

Итак, де-Бройль высказал гипотезу, что соотношение для импульса p=ћω/c , относящееся к фотонам, имеет универсальный характер, т. е. частицам можно сопоставить волну, длина которой

Эта формула получила название формулы де-Бройля , а λ – дебройлевской длины волны частицы с импульсом р .

Де-Бройль также предположил, что пучок частиц, падающих на двойную щель, должен за ними интерферировать.

Вторым, независимым от формулы (3.13.1), соотношением является связь между энергией Е частицы и частотой ω дебройлевской волны:

В принципе энергия Е определена всегда с точностью до прибавления произвольной постоянной (в отличие от ΔЕ ), следовательно, частота ω является принципиально ненаблюдаемой величиной (в отличие от дебройлевской длины волны).

С частотой ω и волновым числом k связаны две скорости - фазовая υ ф и групповая u :

(3.13.3)

Умножив числитель и знаменатель обоих выражений на ћ с учетом (3.13.1) и (3.13.2), получим, ограничившись рассмотрением только нерелятивистского случая, т.е. полагая E = p 2 /2m (кинетическая энергия):

(3.13.4)

Отсюда видно, что групповая скорость равна скорости частицы, т. е. является принципиально наблюдаемой величиной, в отличие от υ ф ‑ из-за неоднозначности Е .

Из первой формулы (3.13.4) следует, что фазовая скорость дебройлевских волн

(3.13.5)

т. е. зависит от частоты ω, а значит дебройлевские волны обладают дисперсией даже в вакууме. Далее будет показано, что в соответствии с современной физической интерпретацией фазовая скорость дебройлевских волн имеет чисто символическое значение, поскольку эта интерпретация относит их к числу принципиально ненаблюдаемых величин. Впрочем, сказанное видно и сразу, так как Е в (3.13.5) определена, как уже говорилось, с точностью до прибавления произвольной постоянной.

Установление того факта, что согласно (3.13.4) групповая скорость дебройлевских волн равна скорости частицы, сыграло в свое время важную роль в развитии принципиальных основ квантовой физики, и в первую очередь в физической интерпретации дебройлевских волн. Сначала была сделана попытка рассматривать частицы как волновые пакеты весьма малой протяженности и таким образом решить парадокс двойственности свойств частиц. Однако подобная интерпретация оказалась ошибочной, так как все составляющие пакет гармонические волны распространяются с разными фазовыми скоростями. При наличии большой дисперсии, свойственной дебройлевским волнам даже в вакууме, волновой пакет «расплывается». Для частиц с массой порядка массы электрона пакет расплывается практически мгновенно, в то время как частица является стабильным образованием.

Таким образом, представление частицы в виде волнового пакета оказалось несостоятельным. Проблема двойственности свойств частиц требовала иного подхода к своему решению.

Вернемся к гипотезе де-Бройля. Выясним, в каких явлениях могут проявиться волновые свойства частиц, если они, эти свойства, действительно существуют. Мы знаем, что независимо от физической природы волн - это интерференция и дифракция. Непосредственно наблюдаемой величиной в них является длина волны. Во всех случаях дебройлевская длина волны определяется формулой (3.13.1). Проведем с помощью нее некоторые оценки.

Прежде всего, убедимся, что гипотеза де-Бройля не противоречит понятиям макроскопической физики. Возьмем в качестве макроскопического объекта, например, пылинку, считая, что ее масса m = 1мг и скорость V = 1 мкм/с. Соответствующая ей дебройлевская длина волны

(3.13.6)

Т. е. даже у такого небольшого макроскопического объекта как пылинка дебройлевская длина волны оказывается неизмеримо меньше размеров самого объекта. В таких условиях никакие волновые свойства, конечно, проявить себя не могут в условиях доступных измерению размеров.

Иначе обстоит дело, например, у электрона с кинетической энергией K и импульсом . Его дебройлевская длина волны

(3.13.7)

где K должно быть измерено в электрон-вольтах (эВ). При K = 150 эВ дебройлевская длина волны электрона равна согласно (3.13.7) λ = 0,1нм. Такой же порядок величины имеет постоянная кристаллической решетки. Поэтому, аналогично тому, как в случае рентгеновских лучей, кристаллическая структура может быть подходящей решеткой для получения дифракции дебройлевских волн электронов. Однако гипотеза де-Бройля представлялась настолько нереальной, что довольно долго не подвергалась экспериментальной проверке.

Экспериментально гипотеза де-Бройля была подтверждена в опытах Дэвиссона и Джермера (1927г.). Идея их опытов заключалась в следующем. Если пучок электронов обладает волновыми свойствами, то можно ожидать, даже не зная механизма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентгеновских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаружения дифракционных максимумов (если таковые есть) измерялись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опыте использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.3.13. Если его повернуть вокруг вертикальной оси в Рис.3.13.1

положение, соответствующее рисунку, то в этом положении

сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215нм. Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50 0 и ускоряющем напряжении V = 54B наблюдался особенно отчётливый максимум отраженных Рис.3.13.2.

электронов, полярная диаграмма которых показала на рис.3.13.2.Этот максимум можно истолковать как интерференционный максимум первого порядка от плоской дифракционной решетки с указанным выше периодом в соответствии с формулой

что видно из рис.3.13.3. На этом рисунке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Период d может быть измерен независимо, например, по дифракции рентгеновских лучей. Рис.3.13.3.

Вычисленная по формуле (3.13.7) дебройлевская длина волны для V = 54B равна 0,167нм. Соответствующая же длина волны, найденная из формулы (3.13.8), равна 0,165нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным подтверждением гипотезы де-Бройля.

Другими опытами, подтверждающим гипотезу де-Бройля, были опыты Томсона и Тартаковского. В этих опытах пучок электронов пропускался через поликристаллическую фольгу (по методу Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, расположенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате падения электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести постоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная картина сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (десятки кэВ), П.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проделаны и также полностью подтвердили гипотезу де-Бройля в применении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что волновые свойства являются универсальным свойством всех частиц. Они не обусловлены какими-то особенностями внутреннего строения той или иной частицы, а отражают их общий закон движения.

Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возникает естественный вопрос: наблюдаемые волновые свойства выражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке, и каждый рассеянный электрон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны попадали в различные точки фотопластинки совершенно беспорядочным на первый взгляд образом (рис.3.13.4а ). Между тем при достаточно длительной экспозиции на фотопластинке возникала дифракционная картина (рис.3.13.4б ), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойствами обладают и отдельные частицы.

Таким образом, мы имеем дело с микрообъектами, которые обладают одновременно как корпускулярными, так и волно-

выми свойствами. Это позволяет нам в дальнейшем говорить

об электронах, но выводы, к которым мы придем, имеют Рис.3.13.4.

общий смысл и в равной степени применимы к любым частицам.

Парадоксальное поведение микрочастиц.

Рассмотренные в предыдущем параграфе эксперименты вынуждают констатировать, что перед нами один из загадочнейших парадоксов: что означает утверждение «электрон - это одновременно частица и волна »?

Попытаемся разобраться в этом вопросе с помощью мысленного эксперимента, аналогичного опыту Юнга по изучению интерференции света (фотонов) от двух щелей. После прохождения пучка электронов через две щели на экране образуется система максимумов и минимумов, положение которых можно рассчитать по формулам волновой оптики, если каждому электрону сопоставить дебройлевскую волну.

В явлении интерференции от двух щелей таятся сама суть квантовой теории, поэтому уделим этому вопросу особое внимание.

Если мы имеем дело с фотонами, то парадокс (частица - волна) можно устранить, предположив, что фотон в силу своей специфичности расщепляется на две части (на щелях), которые затем интерферируют.

А электроны? Они ведь никогда не расщепляются - это установлено совершенно достоверно. Электрон может пройти либо через щель 1, либо через щель 2 (рис.3.13.5). Следовательно, распределение их на экране Э должно быть суммой распределений 1 и 2 (рис.3.13.5а ) - оно показано пунктирной кривой. Рис.13.13.5.

Хотя логика в этих рассуждениях безупречна, такое распределение не осуществляется. Вместо этого мы наблюдаем совершенно иное распределение (рис.3.13.5б ).

Не есть ли это крушение чистой логики и здравого смысла? Ведь все выглядит так, как если бы 100 + 100 = 0 (в точке P). В самом деле, когда открыта или щель 1 или щель 2, то в точку P приходит, скажем, по 100 электронов в секунду, а если открыты обе щели, то ни одного!..

Более того, если сначала открыть щель 1, а потом постепенно открывать щель 2, увеличивая ее ширину, то по здравому смыслу число электронов, приходящих в точку P ежесекундно, должно расти от 100 до 200. В действительности же - от 100 до нуля.

Если подобную процедуру повторить, регистрируя частицы, например, в точке O (см. рис.3.13.5б ), то возникает не менее парадоксальный результат. По мере открывания щели 2 (при открытой щели 1) число частиц в точке O растет не до 200 в секунду, как следовало бы ожидать, а до 400!

Как открывание щели 2 может повлиять на электроны, которые, казалось бы, проходят через щель 1? Т. е. дело обстоит так, что каждый электрон, проходя через какую-то щель, «чувствует» и соседнюю щель, корректируя свое поведение. Или подобно волне проходит сразу через обе щели (!?). Ведь иначе интерференционная картина не может возникнуть. Попытка все же определить, через какую щель проходит тот или иной электрон, приводит к разрушению интерференционной картины, но это уже совсем другой вопрос.

Какой же вывод? Единственный способ «объяснения», этих парадоксальных результатов заключается в создании математического формализма, совместимого с полученными результатами и всегда правильно предсказывающего наблюдаемые явления. Причем, разумеется, этот формализм должен быть внутренне непротиворечивым.

И такой формализм был создан. Он ставит в соответствие каждой частице некоторую комплексную пси-функцию Ψ(r , t ). Формально она обладает свойствами классических волн, поэтому ее часто называют волновой функцией . Поведение свободной равномерно движущейся в определенном направлении частицы описывает плоская волна де-Бройля

Но более подробно об этой функции, ее физическом смысле и уравнении, которое управляет ее поведением в пространстве и времени, речь пойдет в следующей лекции.

Возвращаясь к поведению электронов при прохождении через две щели, мы должны признать: тот факт, что в принципе нельзя ответить на вопрос, через какую щель проходит электрон (не разрушая интерференционной картины), несовместим с представлением о траектории. Таким образом, электронам, вообще говоря, нельзя приписать траектории .

Однако при определенных условиях, а именно когда дебройлевская длина волны микрочастицы становится очень малой и может оказаться много меньше, например, расстояния между щелями или атомных размеров, понятие траектории снова приобретает смысл. Рассмотрим этот вопрос более подробно и сформулируем более корректно условия, при которых можно пользоваться классической теорией.

Принцип неопределенности

В классической физике исчерпывающее описание состояния частицы определяется динамическими параметрами, такими как координаты, импульс, момент импульса, энергия и др. Однако реальное поведение микрочастиц показывает, что существует принципиальный предел точности, с которой подобные переменные могут быть указаны и измерены.

Глубокий анализ причин существования этого предела, который называют принципом неопределенности , провел В. Гейзенберг (1927г.). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей .

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Существуют пары величин, которые не могут быть одновременно определены точно.

Наиболее важными являются два соотношения неопределенностей.

Первое из них ограничивает точности одновременного измерения координат и соответствующих проекций импульса частицы. Для проекции, например, на ось х оно выглядит так:

Второе соотношение устанавливает неопределенность измерения энергии, ΔE , за данный промежуток времени Δt :

Поясним смысл этих двух соотношений. Первое из них утверждает, что если положение частицы, например, по оси х известно с неопределенностью Δx , то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью Δp= ћ x . Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса - по другой: величины x и p y , y и p x и т. д. могут иметь одновременно точные значения.

Согласно второму соотношению (3.13.11) для измерения энергии с погрешностью ΔЕ необходимо время, не меньшее, чем Δt =ћ E . Примером может служить «размытие» энергетических уровней водородоподобных систем (кроме основного состояния). Это связано с тем, что время жизни во всех возбужденных состояниях этих систем порядка 10 -8 с. Размытие же уровней приводит к уширению спектральных линий (естественное уширение), которое действительно наблюдается. Сказанное относится и к любой нестабильной системе. Если время жизни ее до распада порядка τ, то из-за конечности этого времени энергия системы имеет неустранимую неопределенность, не меньшую, чем ΔE≈ ћ /τ.

Укажем еще пары величин, которые не могут быть одновременно точно определены. Это любые две проекции момента импульса частицы. Поэтому не существует состояния, в котором бы все три и даже какие-либо две из трех проекций момента импульса имели определенные значения.

Обсудим более подробно смысл и возможности соотношения Δx ·Δp x ≥ћ . Прежде всего, обратим внимание на то, что оно определяет принципиальный предел неопределенностей Δx и Δp x , с которыми состояние частицы можно характеризовать классически, т.е. координатой x и проекцией импульса p x . Чем точнее x , тем с меньшей точностью, возможно установить p x , и наоборот.

Подчеркнем, что истинный смысл соотношения (3.13.10) отражает тот факт, что в природе объективно не существует состояний частицы с точно определенными значениями обеих переменных, x и p х. Вместе с тем мы вынуждены, поскольку измерения проводятся с помощью макроскопических приборов, приписывать частицам не свойственные им классические переменные. Издержки такого подхода и выражают соотношения неопределенностей.

После того, как выяснилась необходимость описывать поведение частиц волновыми функциями, соотношения неопределенностей возникают естественным образом - как математическое следствие теории.

Считая соотношение неопределенностей (3.13.10) универсальным, оценим, как бы оно сказалось на движении макроскопического тела. Возьмем очень маленький шарик массы m = 1мг. Определим, например, с помощью микроскопа его положение с погрешностью Δx≈ 10 -5 см (она обусловлена разрешающей способностью микроскопа). Тогда неопределенность скорости шарика Δυ = Δp /m≈ (ћ x )/m ~ 10 -19 см/с. Такая величина недоступна никакому измерению, а потому и отступление от классического описания совершенно несущественно. Другими словами, даже для такого маленького (но макроскопического) шарика понятие траектории применимо с высокой степенью точности.

Иначе ведет себя электрон в атоме. Грубая оценка показывает, что неопределенность скорости электрона, движущегося по боровской орбите атома водорода, сравнима с самой скоростью: Δυ ≈ υ. При таком положении представление о движении электрона по классической орбите теряет всякий смысл. И вообще, при движении микрочастиц в очень малых областях пространства понятие траектории оказывается несостоятельным .

Вместе с тем, при определенных условиях движение даже микрочастиц может рассматриваться классически, т. е. как движение по траектории. Так происходит, например, при движении заряженных частиц в электромагнитных полях (в электронно-лучевых трубках, ускорителях и др.). Эти движения можно рассматривать классически, поскольку для них ограничения, обусловленные соотношением неопределенностей, пренебрежимо малы по сравнению с самими величинами (координатами и импульсом).

Опыт со щелью . Соотношение неопределенностей (3.13.10) проявляет себя при любой попытке точного измерения положения или импульса микрочастицы. И каждый раз мы приходим к «неутешительному» результату: уточнение положения частицы приводит к увеличению неопределенности импульса, и наоборот. В качестве иллюстрации такой ситуации рассмотрим следующий пример.

Попытаемся определить координату x свободно движущейся с импульсом p частицы, поставив на ее пути перпендикулярно направлению движения экран со щелью шириной b (рис.3.13.6). До прохождения частицы через щель ее проекция импульса p х имеет точное значение: p x = 0. Это значит, что Δ p x = 0, но

координата x частицы является совершенно неопреде ленной согласно (3.13.10): мы не можем сказать, Рис.3.13.6.

пройдет ли данная частица через щель.

Если частица пройдет сквозь щель, то в плоскости щели координата x будет зарегистрирована с неопределенностью Δx ≈ b . При этом вследствие дифракции с наибольшей вероятностью частица будет двигаться в пределах угла 2θ, где θ - угол, соответствующий первому дифракционному минимуму. Он определяется условием, при котором разность хода волн от обоих краев щели будет равна λ (это доказывается в волновой оптике):

В результате дифракции возникает неопределенность значения p х - проекции импульса, разброс которого

Учитывая, что b ≈ Δх и p = 2πћ /λ., получим из двух предыдущих выражений:

что согласуется по порядку величины с (3.13.10).

Таким образом, попытка определить координату x частицы, действительно, привела к появлению неопределенности Δp в импульсе частицы.

Анализ многих ситуаций, связанных с измерениями, показывает, что измерения в квантовой области принципиально отличаются от классических измерений. В отличие от последних, в квантовой физике существует естественный предел точности измерений. Он в самой природе квантовых объектов и не может быть преодолен никаким совершенствованием приборов и методов измерений. Соотношение (3.13.10) и устанавливает один из таких пределов. Взаимодействие между микрочастицей и макроскопическим измерительным прибором нельзя сделать сколь угодно малым. Измерение, например координаты частицы, неизбежно приводит к принципиально неустранимому и неконтролируемому искажению состояния микрочастицы, а значит и к неопределенности в значении импульса.

Некоторые выводы .

Соотношение неопределенностей (3.13.10) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

1. Невозможно состояние, в котором частица находилась бы в состоянии покоя.

2. При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

3. Часто теряет смысл деление полной энергии E частицы (как квантового объекта) на потенциальную U и кинетическую K . В самом деле, первая, т. е. U , зависит от координат, а вторая - от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Лекция 3.14.

Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водорода.

Волновая функция. Уравнение Шрёдингера.

В развитие идеи де-Бройля о волновых свойствах вещества Э.Шрёдингер получил в 1926г. свое знаменитое уравнение. Он сопоставил движению микрочастицы комплексную функцию координат и времени, которую назвал волновой функцией и обозначил греческой буквой . Поэтому ее называют также пси-функцией. Она характеризует состояние микрочастицы. Физический смысл водновой функции состоит в следующем: квадрат ее модуля определяет вероятность нахождения частицы в промежутке между точками х и х+dх в момент времени t. Точнее величина является плотностью вероятности или плотностью распределения координат частицы.

Из такого определения следуют свойства волновой функции. Она должна быть однозначной, непрерывной, гладкой (производная не терпит разрыва), конечной. Кроме того, она должна подчиняться условию нормировки .

Основная задача физики микрочастиц (волновой или квантовой механики) как раз и состоит в нахождении волновых функций и связанных с ними физических следствий в самых разнообразных условиях. Для ее решения служит волновое уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. (Заметим, что одним из решений этого уравнения в свободном пространстве должна быть плоская волна де-Бройля (3.13.9).)

Особое значение в квантовой механике имеют стационарные состояния. Это такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Оказывается, что в стационарных состояниях

, (3.14.1)

где частота постоянна, а функция не зависит от времени. Эта независящая от времени часть волновой функции может быть найдена из уравнения Шрёдингера для стационарных состояний

, (3.14.2)

где т - масса частицы, Е – ее энергия, - функция, которая в случае стационарных состояний имеет смысл потенциальной энергии частицы.

Энергия частицы Е входит в уравнение в качестве параметра. В теории дифференциальных уравнений доказывается, что уравнения вида (3.14.2) имеют решения, удовлетворяющие стандартным условиям, не при любых значениях параметра Е, а лишь при некоторых избранных значениях. Эти избранные значения называются собственными значениями энергии. Решения (значения волновой функции), соответствующие собственным значениям Е , называются собственными функциями. Совокупность собственных значений называется спектром величины (энергии). Если эта совокупность образует дискретную последовательность, спектр называется дискретным, если же – непрерывную последовательность, спектр непрерывный или сплошной.

Таким образом, из основных положений квантовой механики без каких-либо дополнительных предположений следует квантование (дискретность) энергии .

Частица в бесконечно глубокой потенциальной яме.

Рассмотрим квантование энергии на простейшем примере движения частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Пусть частица может двигаться только вдоль оси х, где движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l. Потенциальная энергия рана нулю при 0≤ х ≤ l и обращается в бесконечность при х < 0 и x > l .

Поскольку волновая функция в этом случае будет зависеть только от х , уравнение Шрёдингера будет иметь вид

. (3.14.3)

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружить там частицу, а, следовательно, и волновая функция в этих областях равна нулю. Из условия непрерывности следует, что и на границах ямы она равна нулю

. (3.14.4)

В области, где не равна тождественно нулю, уравнение (3.14.3) примет вид . (3.14.5)

Введя обозначение , (3.14.6)

получим уравнение , (3.14.7)

решение которого будет иметь вид

Из первой части условия (3.14.4) следует . Вторая часть этого условия

Будет выполнена лишь в случае, если

(n= 1,2,3,…), (3.14.9)

откуда, приняв во внимание (3.14.6), найдем собственные значения энергии частицы (п= 1,2,3,…). (3.14.10)

Спектр энергии оказался дискретным.

Оценим «расстояния» между соседними уровнями. Разность энергий между двумя соседними уровнями равна

Если оценить эту величину для молекулы газа в сосуде (т ~ 10 кг, l ~ 10cм), получим Дж эВ. Столь густо расположенные энергетические уровни будут практически восприниматься как сплошной спектр энергии, так что, хотя квантование энергии в принципе будет иметь место, на характере движения молекул это сказываться не будет. Аналогичный результат получим, если рассмотреть поведение свободных электронов в металле (те же размеры ямы, т ~ 10 кг, Дж эВ). Однако, совсем другой результат получится для электрона, если область, в пределах которой он может двигаться, будет порядка атомных размеров (~ 10 м). В этом случае

так что дискретность энергетических уровней будет весьма заметна.

Атом водорода.

Рассмотрим систему, называемую водородоподобным атомом, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона (при Z=1 – это атом водорода). Потенциальная энергия электрона представляет собой в этом случае сферически симметричную функцию

Такой случай не предусматривался теорией Бора. В ней движение электрона вокруг ядра происходило по плоским орбитам. Но в квантовой механике, в которой нет представления о движении электронов по орбитам, нет препятствий для реализации сферически симметричных состояний атома. Поэтому уравнение Шрёдингера целесообразно записать в сферической системе координат: r, . Решая это уравнение, получим, что собственные значения энергии могут принимать 1)любые положительные значения 2) дискретные отрицательные значения, равные (п= 1,2,3,…). (3.14.13)

Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся на бесконечность. Случай Е < 0 - электрону, связанному с ядром. Заметим, что полученное выражение (3.14.13) совпадает с соответствующей формулой теории Бора (3.12.12). Однако в квантовой механике эти значения получаются из решения основного уравнения без введения каких-либо дополнительных предположений.

Собственные функции уравнения Шрёдингера оказываются от трех целочисленных параметров, которые принято обозначать п, l, т , и распадаются на два множителя, один из которых зависит только от r , другой – от углов

Параметры п, т называются квантовыми числами. Параметр п называется главным квантовым числом и совпадает с номером уровня энергии в (3.14.13). Параметр l называется азимутальным (или орбитальным) квантовым числом и может при заданном п принимать значения

Сокол-Кутыловский О.Л.

Энергетическое строение атома водорода

Современная теоретическая физика, использующая весь арсенал абстрактной математики, строит многочисленные «единые теории поля», решает созданные ей же актуальнейшие проблемы «черных дыр» и «темного вещества» во Вселенной, исследует «кривизну» четырех и более мерного пространства и «обратимость времени». Поэтому до земных дел у теоретиков неклассической физики времени и нет. Как в начале прошлого века «сляпали» атом водорода, добавили к нему несколько «постоянных» и несколько постулатов-правил, так и живем с тех пор с таким веществом. И ничего, за сто лет не рассыпалось. Авось и еще продержится. А если появляется где-нибудь когда-нибудь дотошный студент, так на него всегда управа есть, — ну что он сможет противопоставить «принципу неопределенности»? То-то же!

Была, правда, классическая натурфилософская физика, основанная когда-то Ньютоном, Галилеем, Фарадеем и Максвеллом, которая позволяла достаточно строго и доступно для понимания любого умеющего думать человека получить ответ на многие вопросы. Только все это осталось в прошлом. Теперь стало жить проще: выучил, как молитву, весь набор правил, постулатов и констант, спихнул все это на экзаменах, и спокойно забыл, — все равно эта абракадабра больше никогда не понадобится.

А если все-таки кто-то случайно захочет узнать, как же на самом деле устроен атом водорода, он может это сделать здесь, прочитав эту статью.

  1. Динамическое силовое равновесие в атоме водорода

Чтобы получить соотношение между орбитальной угловой скоростью и радиусом первой орбиты электрона, рассмотрим схематическое изображение атома водорода (Рис. 1):

Рис. 1. На стационарной круговой орбите электрическая сила притяжения электрона к ядру атома, F э, компенсируется центробежной силой, F ц, действующей на электрон при его вращении вокруг ядра. R – радиус орбиты электрона.

В стационарном состоянии в атоме водорода имеет место баланс сил, действующих на электрон, движущийся по круговой орбите вокруг положительно заряженного ядра. В этом случае электрон и ядро могут рассматриваться, как точечные объекты. Силы электрического и гравитационного притяжения уравновешиваются центробежной силой:

Из выражения (2) выразим угловую скорость электрона на стационарной (первой) орбите через радиус его стационарной орбиты:

. (3)
  1. Первое основное энергетическое состояние атома водорода

Рассмотрим основные виды энергии, определяющие баланс силового взаимодействия – электрическую энергию притяжения электрона к ядру и энергию вращательного механического движения электрона, движущегося по орбите. Именно эти две энергии определяют основное устойчивое энергетическое состояние электрона в атоме водорода на первой орбите (вне зависимости от того, вращается электрон вокруг своей оси, или нет), а их сумма должна быть примерно равна энергии связи, которая в атоме водорода равна энергии его ионизации, W iH:

Из уравнения (5) можно найти радиус стационарной (первой) орбиты электрона в атоме водорода:

. (6)

Подставляя численное значение энергии ионизации атома водорода (W iH ≈-13.595 эВ ) получаем ориентировочную величину радиуса первой орбиты электрона:

R 1 ≈0.529598·10 -10 [м].

Полученная величина радиуса первой орбиты электрона близка к боровскому радиусу атома водорода, a 0 =0.52917706·10 -10 м , но в четвертом знаке все же отличается от него.

При найденном радиусе первой орбиты величина орбитального момента импульса электрона в первом основном энергетическом состоянии атома водорода, в соответствии с определением момента импульса, будет равна:

≈1.055·10 -34 [Дж·с].

Угловая частота вращения электрона на первой (стационарной) орбите атома водорода в первом основном энергетическом состоянии может быть найдена из формулы (3):

ω о1.1 ≈4.12921·10 16 [радиан/c].

Полученные величины радиуса первой орбиты электрона, орбитального момента импульса электрона и угловую частоту вращения электрона на первой орбите атома водорода здесь пока не пронумерованы, так как все эти значения далее будут уточнены.

  1. Собственные моменты импульса электрона и ядра (протона) в атоме водорода

Рассмотрим возможные величины моментов импульса электрона и протона в атоме водорода. Энергия первого основного энергетического состояния, в качестве которой была взята энергия ионизации, – известна (W 1 и W 3 в Таблице 1). Ориентировочная величина орбитального момента импульса электрона на первой орбите в первом основном энергетическом состоянии атома водорода также найдена. Наиболее простые соотношения моментов импульса в первом основном энергетическом состоянии представлены в Таблице 1 для энергий W 1 и W 3 . Полагая, что момент импульса ядра при электронных переходах остается неизменным, можно найти момент импульса ядра и сумму моментов импульса электрона, которые совпадают в состояниях W 1 , W 2 и в состояниях W 3 , W 4 , соответственно. Определив из данных спектроскопии возможную величину энергии ионизации водорода, когда электрон находится во втором основном энергетическом состоянии (W 2 ≈ -16.6+10.2=-3.4 [эВ]), она же – энергия второго энергетического состояния, W 2 или W 4 , можно найти все моменты импульса, представленные в Таблице 1.

Таблица 1. Вероятные моменты импульса электрона и ядра в различных предполагаемых энергетических состояниях на первой орбите атома водорода (в скобках указаны значения в единицах орбитального момента импульса первого энергетического состояния)

При этом необходимо сделать некий разумный выбор в соотношении орбитального и собственного моментов импульса электрона. В Таблице 1. показаны два простейших варианта: первый, − когда собственный момент импульса электрона равен половине орбитального (W 1 , W 2 ), и второй, − когда собственный момент импульса электрона равен орбитальному моменту импульса (W 3 , W 4 ). Поскольку любая энергетическая система стремится занять состояние с наименьшей энергией, то в качестве наиболее вероятных основных энергетических состояний атома водорода приняты состояния W 1 и W 2 , как состояния с наименьшей суммой моментов электрона. В соответствии с законом сохранения импульса, определим остальные моменты импульса электрона и протона и поместим их в Таблицу 1. Так как угловая скорость собственного вращения электрона пока не известна, а значение собственного момента импульса электрона было выбрано исходя из простых соотношений, кратных половине орбитального момента импульса, то необходимо оценить допустимость сделанного выбора. Ведь не очевидно, что закон сохранения момента импульса не будет выполняться при других, более сложных соотношениях моментов импульса электрона в атоме.

Собственный момент импульса электрона может быть найден по формуле для гиромагнитного отношения электрона через его собственный магнитный момент, ориентировочную величину которого можно взять из экспериментов по электронному магнитному резонансу (μ e ≈928.47701∙10 -26 Дж/Тл ):

≈0.527902∙10 -34 Дж∙с.

Эта величина собственного магнитного момента электрона очень близка к выбранному в Таблице 1 значению, что говорит о разумности сделанного предварительного выбора. В пользу такого простого (кратного) соотношения моментов говорит и отношение энергий первого и второго энергетических состояний.

Теперь, когда известна величина орбитального момента импульса и ориентировочная величина собственного момента импульса электрона, можно найти величину угловой скорости вращения электрона вокруг собственной оси в первом основном энергетическом состоянии, а также оценить параметры протона: его угловую скорость вращения вокруг собственной оси, его радиус и его магнитный момент. Полученную таким образом величину собственного магнитного момента протона в атоме водорода можно сравнить с имеющимися экспериментальными данными, полученными в экспериментах по магнитному резонансу на ядрах водорода (протонах).

Составим уравнение моментов импульса для атома водорода на его первой орбите:

Где m p − масса протона, Ω p − угловая скорость протона и r p − радиус протона.

В этом уравнении остаются пока неизвестными две величины: угловая скорость вращения протона вокруг собственной оси и радиус протона.

Радиус ядра атома водорода (протона) можно оценить из следующих соображений. Плотность вещества в электроне известна. Протон также как и электрон является стабильной элементарной частицей вещества и также должен иметь максимально возможную плотность, так как вследствие своей элементарности и неделимости по всей вероятности внутри себя не имеет промежутков объема, свободных от вещества. Поэтому можно предположить, что радиус протона равен:

.

Так как величина момента импульса протона в первом основном энергетическом состоянии атома водорода равна сумме орбитального и собственного моментов импульса электрона, M p ≈1.58251·10 -34 Дж·с, масса протона m p =1.6736485·10 -27 кг , масса электрона m e =9.109534·10 -31 кг , а радиус электрона r e =2.817938·10 -15 м, то:

≈1.01173·10 20 [радиан/с].

Теперь можно найти магнитный момент протона в атоме водорода :

≈1.51588·10 -26 Дж/Тл.

Полученная величина магнитного момента протона не намного отличается от известного значения магнитного момента протона (на ~7% больше).

Возможное различие можно попытаться объяснить незнанием точной формы протона и точной величины его радиуса и плотности, недостаточно точными величинами моментов электрона, но, как показано в , − это результат взаимодействия магнитного поля электрона с магнитным полем протона.

Таким образом, выбранное в Таблице 1 соотношение величин моментов импульса электрона и ядра в атоме водорода для энергетических состояний W 1 и W 2 не противоречит экспериментальным результатам, полученным независимым способом.

  1. Второе основное энергетическое состояние атома водорода

4.1. В атоме водорода существует еще одно основное энергетическое состояние электрона с отрицательной суммарной энергией, возникающее при других величинах орбитального и собственного моментов импульса электрона на первой орбите:

. (7)

В соответствии с Таблицей 1 орбитальный момент импульса электрона во втором основном энергетическом состоянии:

≈1.84625·10 -34 [Дж·с],

тогда орбитальная скорость электрона во втором энергетическом состоянии:

ω 1.2 ≈3.314948·10 16 радиан/c.

Так как орбитальная скорость электрона на первой орбите во втором энергетическом состоянии не соответствует уравнению (3), то второе основное энергетическое состояние не является устойчивым.

То есть при различии энергии состояний в 4 раза во втором энергетическом состоянии орбитальный момент электрона в 1.75 раза больше, а орбитальная скорость вращения электрона несколько меньше, чем в первом основном энергетическом состоянии.

Переход электрона между основными энергетическими состояниями на первой орбите вызван изменением моментов импульса электрона и соответствует разности энергий:
1.63363 10 -18 Дж.

(8)

Эта разность энергий, W 2.1 W 1.1 , соответствует энергии спектральной линии с длиной волны λ≈1215.99·10 -10 м . В спектре атома водорода имеется близкая спектральная линия – это самая яркая линия в спектре водорода (длина волны λ≈1215.67·10 -10 м , яркость В=3500 ).

4.2. Именно по этой спектральной линии можно определить энергию второго энергетического состояния на первой орбите. Разность между энергией ионизации W 1 ≈13.6 эВ (которая определяет энергию первого основного энергетического состояния на первой орбите) и уровнем энергии самой яркой спектральной линии λ≈1215.99·10 -10 м (10.2 эВ) равна энергии второго основного энергетического состояния на первой орбите, W 2 ≈3.4 эВ. В результате и было получено, что энергия второго основного энергетического состояния на первой орбите в четыре раза меньше, чем энергия первого основного энергетического состояния на первой орбите.

4.3. Состояния W 1.1 и W 2.1 соответствуют одной и той же первой орбите электрона с радиусом R 1 и отличаются друг от друга величиной орбитального и направлением и величиной собственного момента импульса электрона.

Зная величину собственного момента импульса электрона во втором основном энергетическом состоянии (Таблица 1), можно найти угловую скорость электрона на первой орбите во втором энергетическом состоянии:

ω s2.1 ≈4.707·10 24 [радиан/с].

Несоответствие орбитальной скорости электрона во втором основном энергетическом состоянии уравнению (3) обуславливает неустойчивость этого энергетического состояния, что приводит к обязательному и незамедлительному возврату в первое основное энергетическое состояние.

  1. Первая спектральная серия атома водорода

5.1. Между энергетическим состоянием W 1 электрона на первой орбите радиуса R 1 и до отрыва электрона от атома могут существовать еще множество энергетических состояний (или энергетических уровней) с другими радиусами орбит и, но с моментом импульса, равным моменту импульса электрона на первой орбите. Причем эти уровни энергии соответствуют отрицательной энергии электрона, то есть соответствуют связанному состоянию электрона с ядром.

Согласно закону сохранения момента импульса, на всех орбитах электрона в первом основном энергетическом состоянии с порядковым номером орбиты n =2, 3, … электрон должен иметь тот же самый орбитальный момент импульса, что и на первой орбите:

Почему в формуле (10) следует брать только половину орбитального момента импульса? Изменение энергии атома или иона осуществляется посредством поглощения или излучения электромагнитных волн. Но электромагнитная волна не несет механический момент импульса, через который выражена разность угловых скоростей или угловых частот орбитального вращения электрона . Поэтому при применении понятия механического момента к электромагнитной волне необходимо пользоваться энергетическими характеристиками. Это возможно потому, что энергия вращательного движения пропорциональна моменту импульса. Если перейти к энергетической характеристике момента импульса, то и электромагнитную волну следует рассматривать с тех же энергетических позиций. Поскольку элементарная электромагнитная волна состоит из двух одновременных электромагнитных колебаний электрического и магнитного полей, взаимно преобразующихся друг в друга , то каждое составляющее электромагнитное колебание несет половину энергии всей электромагнитной волны и, соответственно, эта энергия пропорциональна произведению половины орбитального момента импульса электрона на разность частот. То есть когда речь идет о разности энергий электрона в атоме, то его орбитальный момент импульса в основном состоянии равен M о, а энергия − 0.5M о ∙Δω, но когда речь идет о длине волны или частоте электромагнитной волны, которые определяются в каждом из двух одновременных колебаний электромагнитного поля, то при выражении длины волны или частоты через момент импульса электрона необходимо использовать только половину величины момента M о, а эквивалентная энергия этой половины электромагнитной волны − 0.25M о ∙Δω. Связь же величин в электромагнитной волне (λ=2π· с/ω ) одинакова в любом из двух составляющих волну электромагнитных колебаний.

Именно поэтому в соответствии с определением момента импульса и структурой элементарной электромагнитной волны в формулу (10) входит половина орбитального момента импульса электрона.

Преобразуем разность частот (10) в соответствующую этой разности частот величину обратной длины волны:

Эта величина в формуле (12) соответствует так называемой «постоянной Ридберга», R ∞ , которая в современной физике выражается через несколько другое соотношение некоторых других известных констант :

Рассмотрим возможную длину электромагнитных волн соответствующих изменению энергетических уровней электрона в пределах основного энергетического состояния W 1 .

Для того чтобы не изменился момент импульса электрона, допустимые длины волн излучаемого или поглощаемого электромагнитного излучения должны быть кратны длине окружности первой орбиты, то есть, кратны целому числу радиусов первой орбиты электрона:

где n= 2, 3, … – это номера орбит и соответствующих им спектральных линий в первой основной серии атома водорода, называемой серией Лаймона.

5.2. Излучение и поглощение атомом электромагнитных волн с изменением энергетических уровней в пределах одного основного энергетического состояния является дипольным электрическим излучением .

  1. 6. Вторая спектральная серия атома водорода

Энергия электрона во втором основном энергетическом состоянии в четыре раза меньше, чем в первом основном энергетическом состоянии, поэтому во втором основном энергетическом состоянии электрона в атоме водорода орбитальный момент импульса электрона в 4 раза меньше:

, (15)

а на электромагнитную волну, представленную только одним составляющим колебанием электрического и магнитного полей, приходится только половина орбитального момента импульса M о2 , то есть 0.125M о. Равный этой величине момент импульса будет у электрона и на любой другой орбите электрона во втором основном энергетическом состоянии.

Выразим разность между угловой скоростью на первой орбите и угловой скоростью электрона на орбите с номером n через орбитальный момент импульса электрона, который для всех радиусов орбит второго основного энергетического состояния равен M о /8:
absmiddle" src="http://trinitas.ru/rus/doc/0016/001b/pic/1313/1313-1010.gif" width="207" height="48">,

(18)

где n= 3, 4, …

Спектральная серия второго основного энергетического состояния в атоме водорода (18) составляет известную серию Бальмера.

  1. Переходы между основными энергетическими состояниями

Формулы (14) и (18) описывают две основные серии спектральных линий в атоме водорода, которые различаются величиной моментов импульса электрона. Электромагнитная волна, излучаемая или поглощаемая атомом при изменении энергетического состояния электрона в пределах каждой из этих основных спектральных серий в отдельности, происходит без изменения состояния моментов импульса электрона. Изменяется только радиус орбиты электрона.

Если же энергетическое состояние электрона изменяется между уровнями энергии двух основных состояний электрона, то электромагнитные волны излучаются и поглощаются атомом с изменением состояния моментов импульса электрона, радиус же орбиты при этом может измениться, но может остаться и неизменным.

Таким образом, следует, что атом водорода имеет всего два основных энергетических состояния, каждое из которых, в соответствии с законом сохранения импульса, подразделяется на дискретную серию вторичных энергетических уровней, различающихся радиусом орбиты электрона. Изменение энергетического состояния атома водорода в пределах каждого из основных состояний создает свою собственную основную серию спектральных линий (поглощения и испускания) электромагнитной энергии. В пределах первого основного энергетического состояния – это спектральная серия Лаймона, а в пределах второго основного энергетического состояния – это спектральная серия Бальмера. Все другие возможные изменения энергетического состояния атома водорода осуществляются за счет переходов между уровнями основных энергетических состояний атома водорода. При этом переход между энергетическими состояниями электрона может осуществляться как между различными орбитами электрона, так и на одной и той же орбите, так как половина орбит второго основного энергетического состояния электрона совпадает с орбитами первого основного энергетического состояния. То есть на одних и тех же орбитах электрон в атоме может находиться в одном из двух энергетических состояний, отличающихся энергией и величиной моментов импульса.

Переход электрона в пределах каждого из основных энергетических состояний соответствует электрическому дипольному излучению, переход электрона между основными энергетическими состояниями на одной орбите соответствует магнитному дипольному излучению, а переход электрона между основными энергетическими состояниями различных орбит соответствует, по-видимому, комбинированному электромагнитному излучению.

Спектральная линия с длиной волны λ=1215.67·10 -10 м имеет самую высокую яркость и соответствует переходу между двумя основными энергетическими состояниями электрона в спектре атома водорода. В то же время спектральная линия с аналогичной длиной волны является первой линией серии Лаймона.

«Постоянная Ридберга» в каждом из основных энергетических состояний атома имеет свое собственное значение. Более точная величина этих значений для атома водорода будет рассмотрена ниже.

В Таблице 2 приведены наиболее точные экспериментальные значения длин волн первой спектральной серии атома водорода в вакууме и длины волн, вычисленные по формуле (14) при различных значениях «постоянной Ридберга», а также разность измеренной и вычисленной по формуле (14) длин волн до n= 20.

Спектральные линии, длины волн которых обозначены звездочкой, определены с наивысшей точностью, причем каждая состоит из двух близко расположенных спектральных линий (дублетов), то есть имеет тонкую структуру. В Таблице 2 указаны «центры тяжести» этих дублетов .

Среди этих наиболее точных спектральных линий этой серии в спектральной линии с длиной волны λ=937.8035·10 -10 м расстояние между линиями тонкой структуры минимально, поэтому «центр тяжести» этой линии имеет наиболее точное значение. Именно по этой причине в Таблице 12.2 спектральная линия с длиной волны λ=937.8035·10 -10 м принята за эталон, и все уточненные расчеты велись по отношению именно к этой спектральной линии.

Максимальное отклонение величины длин волн, вычисленных по отношению к «эталонной» линии и измеренных величин длин волн спектральных линий серии Лаймона, (кроме первого дублета) при R ∞1 =10967878 составляет ~0.0005·10 -10 м, причем это отклонение имеет различные знаки, то есть представляет собой случайную погрешность.

В то же время значения длин волн в спектральной серии Лаймона, вычисленные с принятой в физике в настоящее время постоянной Ридберга, R ∞ =10973731.77 , имеют более чем в тысячу раз большее отклонение от измеренных значений длин волн, и это отклонение представляет собой однозначную систематическую погрешность.

Таблица 12.2.

λ×10 -10 м
измеренное
λ×10 -10 м
вычисленное
R ∞ =10973731,77
Δλ×10 -10 м
λ ×10 -10 м
вычисленное
R ∞1 =10967878
Δλ ×10 -10 м
2
1215.6701*
1215.02
0.65
1215.6712
-0.0011
3
1025.7223*
1025.18
0.54
1025.7226
-0.0003
4
972.5368*
972.02
0.52
972.5370
-0.0002
5
949.7431*
949.24
0.50
949.74313
-0.0003
6
937.8035*
937.30
0.50
937.8035
0.0000
7
930.748
930.25
0.50
930.7483
0.0003
8
926.226
925.73
0.47
926.2257
0.0003
9
923.150
922.66
0.49
923.1503
0.0003
10
920.963
920.47
0.49
920.9630
0.0000
11
919.351
918.86
0.49
919.3513
0.0003
12
918.129
917.64
0.49
918.1293
0.0003
13
917.181
916.69
0.49
917.1805
-0.0005
14
916.429
915.94
0.49
916.4291
0.0001
15
915.824
915.34
0.48
915.8237
-0.0003
16
915.329
914.84
0.49
915.3289
-0.0001
17
914.919
914.43
0.49
914.9192
0.0002
18
914.576
914.09
0.49
914.5762
0.0002
19
914.286
913.80
0.49
914.2860
0.0000
20
914.039
913.55
0.49
914.0385
-0.0005

Установленная таким образом величина постоянной R ∞1 =10967878 для первого основного энергетического состояния электрона в атоме водорода позволяет уточнить значение радиуса первой орбиты электрона в этом атоме, угловую скорость электрона на первой орбите и орбитальный момент импульса электрона в первом основном энергетическом состоянии.

Из уравнений (12) и из определения момента импульса электрона получаем:

Из уравнения (3) получаем:

С использованием более точного значения радиуса первой орбиты (20) и угловой скорости электрона на первой орбите в первом основном энергетическом состоянии (19), получаем более точное значение орбитального момента импульса электрона в первом основном энергетическом состоянии:

Энергия ионизации атома водорода с электроном, находящимся в первом основном энергетическом состоянии, в соответствии с уточненными значениями величин (19) – (21):

а энергия ионизации атома водорода с электроном, находящимся во втором основном энергетическом состоянии:

В Таблице 3 приведены значения длин волн для второй спектральной серии атома водорода в воздухе и длин волн, вычисленных по формуле (18) при различных значениях «постоянной Ридберга», а также разность измеренной и вычисленной длин волн до n= 36.

Таблица 3.


n
λ×10 -10 м
измеренное,
по
λ×10 -10 м
вычисленное
по (18) при
R ∞ =10973731.77
Δλ×10 -10 м
λ ×10 -10 м
вычисленное по (18) при
R ∞1 =10967878
Δλ ×10 -10 м
3
6562.817
6561.12
1.7
6564.620
-1.803
4
4861.332
4860.09
1.24
4862.681
-1.349
5
4340.468
4339.37
1.10
4341.680
-1.212
6
4101.737
4100.70
1.04
4102.887
-1.150
7
3970.072
3069.07
1.0
3971.190
-1.118
8
3889.049
3888.07
0.98
3890.145
-1.096
9
3835.384
3834.42
0.96
3836.466
-1.082
10
3797.898
3796.95
0.95
3798.970
-1.072
11
3770.630
3769.69
0.94
3771.695
-1.065
12
3750.152
3749.21
0.94
3751.211
-1.059
13
3734.368
3733.43
0.94
3735.423
-1.055
14
3721.938
3721.01
0.93
3722.990
-1.052
15
3711.971
3711.04
0.93
3713.020
-1.049
16
3703.853
3702.93
0.92
3704.900
-1.047
17
3697.152
3696.23
0.92
3698.197
-1.045
18
3691.555
3690.63
0.93
3692.599
-1.044
19
3686.831
3685.91
0.92
3687.874
-1.043
20
3682.808
3681.89
0.91
3683.849
-1.041
21
3679.352
3678.43
0.92
3680.393
-1.041
22
3676.363
3675.44
0.92
3677.403
-1.040
23
3673.758
3672.84
0.92
3674.798
-1.040
24
3671.476
3670.56
0.92
3672.515
-1.039
25
3669.464
3668.55
0.91
3670.502
-1.038
26
3667.682
3666.76
0.92
3668.719
-1.037
27
3666.10
3665.18
0.92
3667.132
-1.03
28
3664.68
3663.76
0.92
3665.714
-1.03
29
3663.41
3662.49
0.92
3.664.440
-1.03
30
3662.26
3661.34
0.92
3663.292
-1.03
31
3661.22
3660.30
0.92
3662.254
-1.03
32
3660.28
3659.36
0.92
3661.313
-1.03
33
3659.42
3658.51
0.91
3.660.456
-1.04
34
3657.93
3657.72
0.21
3659.674
-1.74
35
3657.27
3657.01
0.26
3.658.959
-1.69
36
3656.67
3656.35
0.32
3658.302
-1.63

В Таблице 3 даны длины волн, измеренные в воздухе, а эти значения отличается от длин волн в вакууме. На Рис. 2 приведена зависимость изменения длины волны в воздухе в диапазоне от 2000 Е до 15000Е, построенная по данным, опубликованным в . Если учесть поправку, представленную графиком на Рис. 2, то величины вычисленных по формуле (18) длин волн при R ∞1 = 10967878 отличается от измеренных не более чем на 0.01Е. В то же время длины волн, вычисленные по той же формуле с принятой в физике «постоянной Ридберга», отличаются от измеренных на ~2Е.

Рис. 2. Поправка на изменение длины волны электромагнитных волн в воздухе в диапазоне от 2000Е до 15000Е.

Из всего этого можно утверждать, что длины волн серии Бальмера, вычисленные по формуле (18) при R ∞1 = 10967878, имеют, по крайней мере, в 200 раз меньшую величину погрешности, чем длины волн, вычисленные по традиционной формуле с «постоянной Ридберга», полученной в квантовой механике. В показано, чем ограничена точность вычисления длин волн спектральных линий серии Бальмера и как довести ее до точности, полученной при вычислении длин волн серии Лаймона.

Следует отметить, что известны попытки изменения «постоянной Ридберга», предпринятые для более точного согласования расчетных и экспериментальных значений длин волн атома водорода. В частности, в работе в качестве «постоянной Ридберга» была использована нетрадиционная величина – 10967757.6 м -1 , которая намного ближе к величине R ∞1 =10967878 , предложенной автором здесь в Таблицах 2 и 3 в качестве первого приближения. Еще более точное значение постоянных R ∞1 и R ∞2 в атоме водорода может быть при необходимости определено после подробного изучения тонкой структуры энергетического состояния электрона в этом атоме.

  1. Энергетическое строение атома водорода

В Таблице 4 представлены номера орбит, их радиусы и соответствующие им уровни энергии электрона в атоме водорода в двух основных энергетических состояниях, что составляет основу энергетического строения этого атома. В данную таблицу включены 19 орбит первого основного энергетического состояния и 37 первых орбит второго основного энергетического состояния. При этом все нечетные орбиты второго основного энергетического состояния совпадают с орбитами первого основного энергетического состояния. Кроме того, некоторые уровни энергии в обоих энергетических состояниях электрона совпадают. Такое совпадение энергетических состояний приводит к возникновению близких и практически совпадающих спектральных линий, дублетов.

В Таблице 5 представлена угловая скорость электрона на каждой из возможных орбит в обоих энергетических состояниях. Угловая скорость на n -ной орбите для первого энергетического состояния электрона определялась по формуле:

В Таблице 6 представлены возможные переходы электрона в пределах первого основного энергетического состояния, величины разности энергии и соответствующая им длина волны электромагнитного излучения для первых 18 спектральных линий вакуумной области спектра, известных, как уже упоминалось, под названием спектральной серии Лаймона.

Таблица 4. Радиусы орбит и уровни энергии электрона в атоме водорода

№ орбиты, n

Радиус орбиты,

Энергия электрона на данной орбите в состоянии W 1.n
№ орбиты, 2n-1
Радиус орбиты,
Энергия электрона на данной орбите в состоянии W 2.2n-1
1
W 1.1 13.60097
1
0.529365
W 2.1 3.40025
2
1.191071
W 2.2 1.51122
2
W 1.2 3.40025
3
2.117458
W 2.3 0.850062
4
3.308531
W 2.4 0.544039
3
W 1.3 1.51122
5
4.764281
W 2.5 0.377805
6
6.484721
W 2.6 0.277571
4
W 1.4 0.850062
7
8.469834
W 2.7 0.212515
8
10.71964
W 2.8 0.167913
5
W 1.5 0.54404
9
13.23413
W 2.9 0.13601
10
16.01329
W 2.10 0.112405
6
W 1.6 0.377806
11
19.05714
W 2.11 0.0944511
12
22.36567
W 2.12 0.0804791
7
W 1.7 0.277571
13
25.93889
W 2.13 0.0693927
14
29.77678
W 2.14 0.0604488
8
W 1.8 0.212516
15
33.87936
W 2.15 0.0531288
16
38.24662
W 2.16 0.0470622
9
W 1.9 0.167914
17
42.87857
W 2.17 0.0419783
18
47.77519
W 2.18 0.0376758
10
W 1.10 0.13601
19
52.93646
W 2.19 0.0340025
20
58.36249
W 2.20 0.0308412
11
W 1.11 0.112405
21
64.05317
W 2.21 0.0281012
22
70.00852
W 2.22 0.0257107
12
W 1.12 0.0944514
23
76.22856
W 2.23 0.0236128
24
82.71328
W 2.24 0.0217616
13
W 1.13 0.0804793
25
89.46269
W 2.25 0.0201198
26
96.47677
W 2.26 0.018657
14
W 1.14 0.0693929
27
103.7555
W 2.27 0.0173482
28
111.2990
W 2.28 0.01611724
15
W 1.15 0.0604489
29
119.1071
W 2.29 0.0151122
30
127.1799
W 2.30 0.0141529
16
W 1.16 0.0531289
31
135.5174
W 2.31 0.0132822
32
144.1196
W 2.32 0.0124894
17
W 1.17 0.0470623
33
152.9865
W 2.33 0.0117655
34
162.1180
W 2.34 0.0111028
18
W 1.18 0.0419784
35
171.5143
W 2.35 0.0104946
36
181.1752
W 2.36 0.0093497
19
W 1.19 0.0376759
37
191.1008
W 2.37 0.0094190

Таблица 5. Радиусы орбит и угловая скорость электрона в атоме водорода

1-е основное энергетическое состояние электрона

2-е основное энергетическое состояние электрона

№ орбиты, n

Радиус орбиты,

Угловая скорость
электрона,

×10 15 рад/с

№ орбиты, 2n-1
Радиус орбиты,

Угловая скорость
электрона,

×10 15 рад/с

1
41.3193
1
0.529365
20.6597
2
1.191071
9.18209
2
10.3299
3
2.117458
5.16493
4
3.308531
3.30555
3
4.59105
5
4.764281
2.29552
6
6.484721
1.68651
4
2.58246
7
8.469834
1.29123
8
10.71964
1.02023
5
1.65278
9
13.23413
0.826388
10
16.01329
0.62965
6
1.14776
11
19.05714
0.573881
12
22.36567
0.488987
7
0.843253
13
25.93889
0.421626
14
29.77678
0.367284
8
0.645616
15
33.87936
0.322808
16
38.24662
0.285947
9
0.510116
17
42.87857
0.255058
18
47.77519
0.228916
10
0.413194
19
52.93646
0.206597
20
58.36249
0.18739
11
0.341483
21
64.05317
0.170741
22
70.00852
0.156217
12
0.28694
23
76.22856
0.14347
24
82.71328
0.132222
13
0.244493
25
89.46269
0.122247
26
96.47677
0.113359
14
0.210813
27
103.7555
0.105407
28
111.2990
0.0982625
15
0.183642
29
119.1071
0.0918209
30
127.1799
0.0859925
16
0.161404
31
135.5174
0.080702
32
144.1196
0.0774983
17
0.142974
33
152.9865
0.0714868
34
162.1180
0.0674603
18
0.127529
35
171.5143
0.0637645
36
181.1752
0.0603643
19
0.114458
37
191.1008
0.0572291

Длина волны в спектральной серии Лаймона определялась по формуле, связывающей энергию электрона с его моментом импульса:

, (26)

В этой формуле введен пересчетный коэффициент 2, учитывающий то, что разность механической энергии состояния электрона в атоме распределяется в электромагнитной волне на две равных составляющих, в соответствии со структурой электромагнитной волны.

Так как во втором энергетическом состоянии и момент импульса, и энергия состояния в четыре раза меньше, то определить длину волны и во второй спектральной серии атома водорода (Таблица 7) можно по этой же формуле (26).

Если брать из Таблицы 5 значения угловых скоростей электрона, то также можно найти длины волн соответствующих спектральных линий по формуле, связывающей длину волны с частотой электромагнитной волны. Однако здесь надо обратить внимание на то, что разность угловых скоростей вращения электрона на орбите может не совпадать с частотой электромагнитной волны. При простом соотношении энергии состояний угловые скорости и частоты могут быть кратны. Поэтому в формулу для нахождения длины электромагнитной волны по разности угловой скорости электрона, переходящего на различные орбиты в пределах одного и того же основного энергетического состояния, необходимо ввести коэффициент кратности, k :

. (27)

В первом энергетическом состоянии k =2, а во втором энергетическом состоянии k =4.

Причина несоответствия разности угловых скоростей вращения электрона и частоты электромагнитной волны при энергетическом подходе понятна и заключается в перераспределении механической энергии на две составляющие электромагнитные волны, каждая из которых в результате имеет в два раза более низкую частоту колебаний.

Той же самой причиной объясняется появление коэффициента k =2 при расчете длины волны в первом основном энергетическом состоянии по формуле (27).

Почему же при применении формулы (27) во втором энергетическом состоянии коэффициент кратности необходимо еще раз удвоить? Причина этого связана с соотношением радиусов орбит электрона, удовлетворяющим равенству момента импульса электрона во втором основном энергетическом состоянии. Проще говоря, угловая частота вращения электрона во втором энергетическом состоянии, при одном и том же моменте импульса электрона, в два раза ниже. Поэтому эквивалентная частота электромагнитной волны, излучаемой во втором энергетическом состоянии, также будет в два раза ниже, что удваивает коэффициент кратности, k . В первом основном энергетическом состоянии такого удвоения нет, так как момент импульса электрона кратен целому числу оборотов электрона вокруг ядра.

Таблица 6. Переходы в пределах первого основного энергетического состояния электрона и соответствующая им длина волны электромагнитного излучения первых 18 спектральных линий (серия Лаймона).



Переход между
энергетическими
состояниями
Величина разности
энергии состояний (эВ)
Длина волны,
×10 -10 м
1
W 1.1 - W 1.2
10.20072
1215.672
2
W 1.1 - W 1.3
12.08975
1025.722
3
W 1.1 - W 1.4
12.750908
972.537
4
W 1.1 - W 1.5
13.05693
949.743
5
W 1.1 - W 1.6
13.223164
937.803
6
W 1.1 - W 1.7
13.323399
930.748
7
W 1.1 - W 1.8
13.388454
926.225
8
W 1.1 - W 1.9
13.433056
923.150
9
W 1.1 - W 1.10
13.46496
920.963
10
W 1.1 - W 1.11
13.488565
919.351
11
W 1.1 - W 1.12
13.5065186
918.129
12
W 1.1 - W 1.13
13.5204907
917.180
13
W 1.1 - W 1.14
13.5315771
916.429
14
W 1.1 - W 1.15
13.5405211
915.823
15
W 1.1 - W 1.16
13.5478411
915.329
16
W 1.1 - W 1.17
13.5539077
914.919
17
W 1.1 - W 1.18
13.5589916
914.576
18
W 1.1 - W 1.19
13.5632941
914.286

Все длины волн спектральных линий из Таблицы 6, построенной на основе энергетического спектра электрона, данного в Таблице 4 для первого основного энергетического состояния, точно соответствуют длинам волн спектральной серии Лаймона и могут быть получены из выведенной ранее формулы (14) для первого основного энергетического состояния электрона в атоме водорода.

Формула (14) позволяет вычислить и другие возможные спектральные линии этой серии, но эти потенциальные спектральные линии отсутствуют в имеющихся справочниках. В отличие от первого основного энергетического состояния, во всех остальных энергетических состояниях электрон не может быть сколь угодно долго. Электрон всегда стремится перейти из этих состояний в одно из двух основных своих энергетических состояний, W 1 и W 2 , а из W 2 – в состояние с наименьшей энергией W 1 .

Все длины волн спектральных линий, помещенные в Таблице 7, построенной на основе энергетического спектра электрона для второго основного энергетического состояния электрона по данным Таблицы 4, соответствуют длинам волн спектральной серии Бальмера и могут быть получены из выведенной ранее формулы (18) для второго основного энергетического состояния электрона в атоме водорода.

Таблица 7. Переходы в пределах второго основного энергетического состояния электрона и соответствующая им длина волны электромагнитного излучения первых 30 спектральных линий (серия Бальмера).



пп
Переход между
энергетическими состояниями
W 2.1 - W 2.(n+1)
Разность энергии состояний (эВ)
Длина волны,
λ вак ×10 -10 м
(вакуум)
Попр.
(Рис.)
Δλ×10 -10 м
λ вычис-
ленное,
×10 -10 м
(воздух)
λ изме-
ренное,
×10 -10 м
(воздух)
δλ
1
W 2.1 - W 2.2
1.88903
6564.60
-1.82
6562.78
6562.82*
-0.04
2
W 2.1 - W 2.3
2.550188
4862.67
-1.35
4861.32
4861.33
-0.01
3
W 2.1 - W 2.4
2.856211
4341.67
-1.22
4340.45
4340.47
-0.02
4
W 2.1 - W 2.5
3.022445
4102.88
-1.16
4101.72
4101.74
-0.02
5
W 2.1 - W 2.6
3.122679
3971.18
-1.12
3970.06
3970.07
-0.01
6
W 2.1 - W 2.7
3.187735
3890.14
-1.10
3889.04
3889.05
-0.01
7
W 2.1 - W 2.8
3.232337
3836.46
-1.08
3835.38
3835.39
-0.01
8
W 2.1 - W 2.9
3.26424
3798.96
-1.07
3797.89
3797.90
-0.01
9
W 2.1 - W 2.10
3.287845
3771.69
-1.06
3770.63
3770.63
0
10
W 2.1 - W 2.11
3.3057989
3751.20
-1.06
3750.14
3750.15
-0.01
11
W 2.1 - W 2.12
3.3197709
3735.42
-1.06
3734.36
3734.37
-0.01
12
W 2.1 - W 2.13
3.3308573
3722.98
-1.05
3721.94
3721.94
0
13
W 2.1 - W 2.14
3.3398012
3713.01
-1.05
3711.96
3711.97
-0.01
14
W 2.1 - W 2.15
3.3471212
3704.89
-1.04
3703.85
3703.86
-0.01
15
W 2.1 - W 2.16
3.3531878
3698.19
-1.04
3697.15
3697.15
0
16
W 2.1 - W 2.17
3.3582717
3692.59
-1.04
3691.55
3691.56
-0.01
17
W 2.1 - W 2.18
3.3625742
3687.87
-1.04
3686.83
3686.83
0
18
W 2.1 - W 2.19
3.3662475
3683.84
-1.04
3682.80
3682.81
-0.01
19
W 2.1 - W 2.20
3.3694088
3680.39
-1.04
3679.35
3679.36
-0.01
20
W 2.1 - W 2.21
3.3721488
3677.40
-1.04
3676.36
3676.36
0
21
W 2.1 - W 2.22
3.3745393
3674.79
-1.04
3673.75
3673.76
-0.01
22
W 2.1 - W 2.23
3.3766372
3672.51
-1.04
3671.47
3671.48
-0.01
23
W 2.1 - W 2.24
3.3784884
3670.50
-1.04
3669.46
3669.47
-0.01
24
W 2.1 - W 2.25
3.3801302
3668.71
-1.04
3667.67
3667.68
-0.01
25
W 2.1 - W 2.26
3.381593
3667.13
-1.03
3666.10
3666.10
0
26
W 2.1 - W 2.27
3.3829018
3665.71
-1.03
3664.68
3664.68
0
27
W 2.1 - W 2.28
3.38413276
3664.37
-1.03
3663.34
3663.41
-0.07
28
W 2.1 - W 2.29
3.3851378
3663.29
-1.03
3662.26
3662.26
0
29
W 2.1 - W 2.30
3.3860971
3662.25
-1.03
3661.22
3661.22
0
30
W 2.1 - W 2.31
3.3869678
3661.31
-1.03
3660.28
-
-

Таблица 8. Переходы между основными состояниями электрона и соответствующая им длина волны электромагнитного излучения.



пп
Переход между энергетическими уровнями:
Величина разности энергетических состояний (эВ)
Длина волны в вакууме,
λ×10 -10 м
Поправка на изменение λ в воздухе, Δλ (×10 -10 м)
Длина волны в воздухе,
λ×10 -10 м
1
W 1.1 - W 2.1
10.20075
1215.67*
2
W 1.1 - W 2.2
12.08978
1025.72*
3
W 1.1 - W 2.3
12.75094
972.534*
4
W 1.1 - W 2.4
13.05698
949.739*
5
W 1.1 - W 2.5
13.223194
937.80*
6
W 1.1 - W 2.6
13.323429
930.735*
7
W 1.1 - W 2.7
13.388484
926.223*
8
W 1.1 - W 2.8
13.433086
923.147*
9
W 1.1 - W 2.9
13.46499
920.96*
10
W 1.1 - W 2.10
13.488595
919.348*
11
W 1.1 - W 2.11
13.5065486
918.126*
12
W 1.1 - W 2.12
13.520521
917.177*
13
W 1.1 - W 2.13
13.5316071
916.426*
14
W 1.1 - W 2.14
13.5405511
915.821*
15
W 1.1 - W 2.15
13.5478711
915.326*
16
W 1.1 - W 2.16
13.5539377
914.916*
17
W 1.1 - W 2.17
13.5590216
914.573*
18
W 1.1 - W 2.18
13.5633241
914.283**
19
W 1.2 - W 2.2
1.88903
6564.6 *
-1.81
6562.79
20
W 1.2 - W 2.3
2.550188
4862.67*
21
W 1.2 - W 2.4
2.85621
4341.67*
22
W 1.2 - W 2.5
6.022444
2059.08**
23
W 1.3 - W 2.3
0.661158
18756.1
(-5)
18751.1
24
W 1.3 - W 2.4
0.96718
12821.5
-3.5
12818
25
W 1.3 - W 2.5
1.133414
10941.0
-2
10939
26
W 1.3 - W 2.6
1.233649
10052.1
-2.75
10049.25
27
W 1.3 - W 2.7
1.298704
9548.53
-2.63
9545.9
28
W 1.3 - W 2.8
1.343306
9231.49
-2.5
9228.99
29
W 1.3 - W 2.9
1.37521
9017.33
-2.47
9014.86
30
W 1.3 - W 2.10
1.398815
8865.16
-2.43
8862.73
31
W 1.3 - W 2.11
1.4167686
8752.82**
32
W 1.4 - W 2.4
0.306022
40522.3
(-10.9)
40511.4
33
W 1.4 - W 2.5
0.472256
26258.5
(-7.2)
26251.3
34
W 1.4 - W 2.6
0.572491
21661.0**
35
W 1.5 - W 2.5
0.166234
74598.0
74578
36
W 1.5 - W 2.6
0.266469
46537.2**
37
W 1.6 - W 2.6
0.100235
123716
(-32)
123684
38
W 1.6 - W 2.7
0.16529
75024
(-20)
75004
39
W 1.6 - W 2.8
0.209892
59081.4**
40
W 1.7 - W 2.7
0.065055
190519
(-50)
190569
41
W 1.7 - W 2.8
0.109657
113086
(-29)

*) – данная спектральная линия имеется в 1-й или 2-й основной серии;

**) – спектральная линия с такой длиной волны отсутствует в справочниках .

Восемнадцать первых спектральных линий в Таблице 8 совпадают с соответствующими спектральными линиями серии Лаймона в Таблице 6.

Спектральные линии под номерами 19 – 21 в Таблице 8 совпадают с первыми тремя спектральными линиями серии Бальмера (Таблица 7).

Восемь спектральных линий под номерами 23 – 30 в Таблице 8 составляют третью спектральную серию, называемую серией Пашена.

Спектральные линии под номерами 32 и 33 в Таблице 8 составляют четвертую «спектральную серию» атома водорода.

Спектральная линия под номером 35 в Таблице 8 представляет пятую «спектральную серию» атома водорода.

Спектральные линии под номерами 37 и 38 в Таблице 8 составляют шестую «спектральную серию» атома водорода.

Спектральные линии под номерами 40 и 41 в Таблице 8 составляют седьмую, заключительную «серию» известных спектральных линий атома водорода.

Все спектральные линии, входящие в серию Лаймона, могут быть получены двумя способами:

а) при переходе электрона с любой орбиты на первую в первом основном энергетическом состоянии (без изменения состояния собственного момента импульса электрона);

б) при переходе электрона с любой орбиты второго основного состояния на первую орбиту первого основного энергетического состояния (с изменением величины и направления собственного момента импульса электрона).

Аналогично спектральным линиям, входящие в серию Лаймона, первые три спектральные линии серии Бальмера могут быть получены этими же двумя способами (без изменения собственного момента импульса электрона и с изменением собственного момента импульса электрона). На языке «квантовой физики» такие состояния называются «дважды вырожденными», хотя никакого «вырождения» здесь нет, – просто электрон может перейти из одних энергетических состояний в другие, получив или отдав при этом практически равную порцию электромагнитной энергии. Небольшая разница в энергии состояний определяет тонкую структуру этих линий.

То есть все спектральные линии серии Лаймона и три первые спектральные линии серии Бальмера принципиально являются двойными спектральными линиями, дублетами, даже если тонкая структура некоторых из этих спектральных линий до сих пор не обнаружена.

Спектральные линии, входящие в 3-ю – 7-ю «серии», получаются только при переходах с изменением состояния собственного момента импульса, то есть при переходах между двумя основными энергетическими состояниями электрона.

На Рис. 3. показана вычисленная поправка на изменение длины волны в воздухе, полученная из расчетной и измеренной длин волн для той части спектра, где автор не нашел экспериментальных данных для сопоставления, как это было сделано для спектральных линий серии Бальмера и других спектральных линий, входящих в диапазон длин волн, показанный на Рис. 2. Вычисленная поправка, в отличие от поправки, взятой из эксперимента, в Таблице 8 дана в круглых скобках.

На Рис. 4 графически показана энергетическая структура атома водорода, соответствующая данным Таблицы 4, и допустимые энергетические переходы в этом атоме, соответствующие данным, помещенным в Таблицы 6 – 8.


Рис. 3. Поправка на изменение длины волны в воздухе, вычисленная по данным Таблицы 7 (эти расчетные данные в Таблице 7 приведены в скобках).

Энергетические переходы внутри первого основного энергетического состояния, W 1.1 – W 1.n , составляют спектральную серию Лаймона (Таблица 6).

Энергетические переходы внутри второго основного энергетического состояния, W 2.1 – W 2.n , составляют спектральную серию Бальмера (Таблица 7). Энергетические переходы между первой орбитой первого основного энергетического состояния и всеми орбитами второго основного энергетического состояния, W 1.1 – W 2.n , полностью дублируют все известные линии спектральной серии Лаймона (Таблица 8).

Из Рис. 4. следует, что электрон в атоме на первой орбите и на половине последующих орбит может находиться в двух различных энергетических состояниях, отличающихся как величиной энергии, так и величиной и направлением собственного момента импульса.

Рис. 4. Структура энергетических переходов атома водорода.

Условное расположение орбит атома водорода на Рис. 4 показано без соблюдения масштаба, причем представлены не все, а только ближайшие к ядру атома орбиты электрона в обоих основных энергетических состояниях. Одностороннее направление стрелок при энергетических переходах показано условно, так как переходы могут осуществляться в обоих направлениях (поглощение и излучение электромагнитной энергии).

Энергетические переходы между второй орбитой первого основного энергетического состояния (обозначено кружком) и второй, третьей и четвертой орбитами второго основного энергетического состояния, W 1.2 – W 2.2 , W 1.2 – W 2.3 и W 1.2 – W 2.4 дублируют три первые линии спектральной серии Бальмера. Энергетические переходы между третьей орбитой первого основного энергетического состояния (обозначено квадратом) и третьей – десятой орбитами второго основного энергетического состояния, от W 1.3 – W 2.3 до W 1.3 – W 2.10 составляют так называемую спектральную серию Пашена.

С четвертой орбиты первого основного энергетического состояния (обозначена ромбом) возможен переход только на четвертую и пятую орбиты второго основного энергетического состояния, W 1.4 – W 2.4 и W 1.4 – W 2.5 . С пятой орбиты первого основного энергетического состояния (обозначена треугольником) возможен переход только на пятую орбиту второго основного энергетического состояния, W 1.5 – W 2.5 . С шестой (обозначена двойным кружком) и с седьмой (обозначена крестом) орбит первого основного энергетического состояния возможны переходы только на шестую – седьмую (W 1.6 – W 2.6 и W 1.6 – W 2.7) и седьмую – восьмую (W 1.7 – W 2.7 и W 1.7 – W 2.8) орбиты второго основного энергетического состояния, соответственно.

Итак, не обращая внимания на заклинания современных шаманов, подчинивших себе физику экспериментальную и погрузивших мир теоретической физики в пучину средневековой религиозной тьмы, можно на основе доступной пониманию классической физики построить теоретическую модель простейшего атома, − атома водорода, наиболее полно соответствующую физической реальности. И нет в этой модели ни «магнетонов Бора», ни «постоянной Планка», ни «постоянной Ридберга», ни «спинов» Гаудсмита и Уленбека, ни «соотношения неопределенностей» Гейзенберга, ни «волновых свойств вещества» де Бройля, ни гипотетических «фотонов» Эйнштейна и т.п.

Все, что оказалось необходимым, − это законы сохранения энергии, импульса и момента импульса, законы классической механики и классической электродинамики, экспериментальное значение энергии ионизации. Ну и, разумеется, атомные спектры, которые необходимы не только для проверки правильности модели, но и для ее корректировки из-за недостаточной точности экспериментального определения энергии ионизации.

Это далеко не все, что можно рассказать об атоме водорода и его энергетическом строении. С более полной информацией о строении атома водорода (и не только водорода) можно ознакомиться в книге .

Литература

1. Стриганов А.Р., Одинцова Г.А. Таблицы спектральных линий атомов и ионов. Справочник. М., «Энергоиздат», 1982, 312 с.

2. Физический энциклопедический словарь. — М.: Советская энциклопедия, 1984.

3. Eidelman S. and al. (Particle Data Group), Phys. Lett. B 592, 1(2004) and 2005 (URL: http://pdg.lbl.gov).

4. Сокол-Кутыловский О.Л. Русская физика, Часть 1. Екатеринбург, 2006, 172 с.

5. Зайдель А.Н., Прокофьев В.К., Райский С.М., Славный В.А., Шрейдер Е.Я. Таблицы спектральных линий. М., «Наука», 1977, 800 с.

6. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Электродинамика, Том 6, М., «Мир», 1977, 347 с.

7. Garcia J.D., Mack J.E. J. Opt. Soc. Amer., 1965, V. 55, N6, P.654.

Сокол-Кутыловский О.Л., Энергетическое строение атома водорода // «Академия Тринитаризма», М., Эл № 77-6567, публ.13942, 27.10.2006


Атом водорода. Радиус и энергия электронных орбит в атоме водорода. Серии атома водорода. Постоянная Ритберга.

Теория Бора водородоподобных атомов.

Нильс Бор создал теорию строения атома, способную объяснить опыты Резерфорда и спектр излучения паров водорода.

Спектр характеризует распределение интенсивности излучения по шкале частот (или по шкале длин волн).

Постулаты Бора.

1-й постулат:

электрон в атоме может двигаться только по определенным стационарным орбитам, находясь на которых, он не излучает и не поглощает энергию. Момент импульса электрона на этих орбитах кратен постоянной Планка:

m e – масса электрона, - скорость электрона на орбите с номеромn , r n – радиус орбиты с номером n , n =1,2,3,….

Дж·с – постоянная Планка.

2-й постулат:

при переходе электрона с одной стационарной орбиты на другую излучается или поглощается фотон, энергия которого

E n1 иE n2 - энергия электрона в состоянии 1 и 2 (т.е. на орбитах 1 и 2), - частота электромагнитных волн, - постоянная Планка.

Радиус орбиты электрона в атоме водорода .

1-й постулат Бора, .

Выразим скорость электрона:

Рассмотрим круговые электронные орбиты. На электрон с зарядом -e со стороны ядра с зарядом +e действует сила Кулона F , сообщая электрону нормальное ускорение,

По 2-му закону Ньютона,

. (4)

Сократим и подставим скорость из (3):

.

.

Радиус первой орбиты электрона (n = 1), называется радиусом Бора ,

= 0.53·10 -10 м.

Радиус орбиты электрона в атоме водорода

, n =1,2,3,…. – номер орбиты.

Энергия электрона в атоме водорода.

Энергия электрона представляет собой сумму кинетической энергии и потенциальной .

И .

Потенциальная энергия – это энергия электрона с зарядом в электрическом поле ядра. Из уравнения (4) видно, что

Тогда на n –ой орбите энергия электрона равна

Т.е. кинетическая энергия электрона равна полной энергии, взятой со знаком «-».

Также полную энергию можно записать через потенциальную:

= , или

.

Подставим . Тогда

Энергия на первой орбите (на первом энергетическом уровне) равна

13,6 эВ.

Величину = 13,6 эВ = 2,18∙10 -18 Дж называютэнергией ионизации (эта энергия необходима, чтобы перевести электрон, находящийся на первом уровне, в свободное состояние, т.е. чтобы ионизовать атом). Окончательно, энергия электрона на n –ом энергетическом уровне (на n –ой орбите) записывается как

Спектр излучения водорода.

Энергия излучаемого или поглощаемого кванта:



Частота , длина волны, - скорость света в вакууме.

= + = ,

Формула Бальмера,

определяет длины волн в спектре атома водорода.

1,1∙10 7 м -1 - постоянная Ридберга.

И - номера энергетических состояний (номера орбит) электрона.

Переходы электрона с возбужденных энергетических состояний на основной энергетический уровень ( = 1) сопровождаются излучением вУФ области спектра (серия линий Лаймана),

переходы на уровень с = 2 приводят к линиямв видимой области (серия Бальмера),

переходы на уровень с = 3, 4, 5, … приводят излучению вИК области.

Теория Бора не смогла объяснить строение сложных атомов. Для объяснения поведения микрочастиц была развита квантовая механика.

Она основана на том, что любая микрочастица, наряду с корпускулярными, обладает также волновыми свойствами (гипотеза де Бройля).

Для фотона, импульс

По аналогии с фотоном, любую микрочастицу можно рассматривать как волну с длиной волны

Длина волны де Бройля.

Гипотеза де Бройля подтверждена экспериментально наблюдением дифракции электронов, а затем и протонов.

Принцип неопределенностей.

Первая попытка создания на основе накопленных экспериментальных данных модели атома принадлежит Дж. Дж. Томсону (1903). Согласно этой модели, атом представляет собой непрерывно заряженный положительным зарядом шар радиусом порядка 10 -10 м, внутри которого около своих положений равновесия колеблются электроны; суммарный отрицательный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Через несколько лет было доказано, что представление о непрерывно распределенном внутри атома положительном заряде ошибочно.

В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда (1871 -1937) по рассеянию a-частиц в веществе. Альфа-частицы возникают при радиоактивных превращениях; они являются положительно заряженными частицами с зарядом 2е и массой, примерно в 7300 раз большей массы электрона. Резерфорд, исследуя прохождение a-частиц в веществе, показал, что основная их часть испытывает незначительные отклонения, но некоторые a-частицы (примерно одна из 20 000) резко отклоняются от первоначального направления (углы отклонения достигали даже 180°). Резерфордом был сделан вывод, что значительное отклонение a-частиц обусловлено их взаимодействием с положительным зарядом большой массы, которая сосредоточен в объеме, очень малом по сравнению с объемом атома.



На основании своих исследований Резерфорд в 1911 г. предложил ядерную (планетарную) модель атома. Согласно этой модели, вокруг положительного ядра, имеющего заряд Ze (Z - порядковый номер элемента в системе Менделеева, е - элементарный заряд), размер 10 -15 - 10 -14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10 -10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

Однако электрон, движущийся ускоренно по окружности под действием кулоновской силы, согласно электродинамике, должен излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электрон будет приближаться к ядру и в конце концов упадет на него. Атом Резерфорда, с точки зрения классической физики, оказывается неустойчивой системой, что противоречит действительности.

Первая попытка построить качественно новую - квантовую - теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света.

Чтобы объяснить устойчивость атома датский физик Нильс Бор постулировал основные положения (постулаты Бора ), которые явили собой первую квантовую модель атома.

Постулаты Бора :

1. Электроны в атоме движутся по некоторым стационарным орбитам. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.

2. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие условию квантования момента импульса электрона

n = 1,2,3…– главное квантовое число (номер орбиты-уровня), m e - масса элетрона, v - его скорость на n -ой орбите радиуса r n , , h = 6,62·10 -34 Дж·с – постоянная Планка;

3. При переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией:

(3.5.2)

равной разности энергий соответствующих стационарных состояний (Е n и Е m - соответственно энергии стационарных состояний атома до и после излучения (поглощения). При Е n >Е m происходит излучение фотона (переход атома из состояния с большей энергией в состояние меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Е n <Е m - его поглощение (переход атома в состояние большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот

(3.5.3)

квантовых переходов определяет линейчатый спектр атома. Излучение атома представляет не непрерывный спектр, а спектр, состоящий из отдельных линий, соответствующих определенным частотам.

Используя постулаты Бора, закон Кулона и вращение электрона по круговой орбите, можно рассчитать величину радиуса орбиты r n и скорость электрона на ней v n:

n=1,2,3… (3.5.4)

где m – масса электрона;

ε 0 – электрическая постоянная:

z – порядковый номер элемента;

е – заряд ядра.

Полная энергия Е орбитального электрона равна сумме его кинетической и потенциальной энергий:

Е n = Е кинn + Е потn

(3.5.6)

Для атома водорода (Z=1 ) радиус первой орбиты электрона при n=1 , называемый первым боровским радиусом, равен r 1 = 0,528 10 -10 м. Энергия электрона в водородоподобном атоме может принимать следующие дискретные значения:

n=1,2,3… (3.5.7)

Полная энергия электрона в атоме – величина отрицательная (Е n <0), т.е. электроны в атоме движутся как в потенциальной яме.

Электроны, находясь на стационарных орбитах, обладают потенциальной энергией, максимальная величина которой будет ¥, то есть будет соответствовать ионизованному атому. Там она будет равна нулю, следовательно, потенциальная энергия электрона в атоме отрицательна.

Целое число n в выражении, определяющее энергетические уровни атома, называется главным квантовым числом. Энергетический уровень с n = 1 является основным (нормальным); состояния с n>1 являются возбужденными.

Из представленных выше формул можно получить выражение для частоты излучения при переходе электрона с одного энергетического уровня на другой

(3.5.8)

R – постоянная Ридберга, для атома водорода R=3.29 10 15 c -1 .

При переходе электрона с произвольного возбужденного уровня на уровень с фиксированным значением m получим набор частот (группу линий в спектре атома) который называется серией. Так в атоме водорода переход на основной уровень (m=1) c произвольного возбужденного уровня (n=2,3,4…) определяет серию Лаймана; переход на уровень с m=2 c уровня n=3,4,5… определяет серию Бальмера; переход на уровень с m=3 c уровня n=4,5,6… определяет серию Пашена и т.д.

Переход с более удаленной орбиты на более близкую связан с испусканием одного фотона – такова причина возникновения линейчатого спектра испускания , а переход электрона на более дальнюю орбиту при поглощении фотона соответствует возникновению линейчатогоспектра поглощения .

Атомные спектры обладают ярко выраженной индивидуальностью, причем их вид определяется не только атомом данного элемента, но и его строением, внешними факторами: температурой, давлением, электрическими и магнитными полями и др.

Получение и анализ спектров играют огромную роль в теоретической и прикладной физике и технике. Изучение спектров испускания и поглощения веществ позволяет установить энергетические уровни и тончайшие детали строения атомов. Знание же спектров атомов и молекул различных химических соединений позволяет проводить спектральный анализ , т.е. устанавливать состав исследуемых тел.

План решения задач по теме «Теория атома водорода по Бору»

1. Следует обратить внимание, что созданная Бором теория атома водорода – первая квантовая теория атома , согласно которой электрон в атоме может находиться только в определенных стационарных состояниях. Параметры электрона в атоме: радиус круговой орбиты, скорость и его момент импульса, период обращения, энергия электрона, – имеют в этих состояниях дискретные значения, которые определяются главным квантовым числом (номер орбиты). Эта зависимость отражается индексом величин: .

2. По мере увеличения номера орбиты ее радиус увеличивается , а скорость электрона уменьшается ; в результате период обращения растет , возрастает момент импульса электрона и увеличивается его энергия .

3. Порядок величин параметров электрона в атоме водорода можно оценить по указанным зависимостям и значениям величин для основного состояния . В этом состоянии радиус орбиты , скорость электрона , период обращения , момент импульса , и полная энергия электрона

Задача 30. Для электрона, находящегося на первой орбите () атома водорода, определите радиус орбиты , момент импульса электрона и его скорость .

Здесь – масса и скорость электрона; – заряд электрона и ядра (); – коэффициент пропорциональности в законе Кулона.

В уравнении (1) две неизвестные величины: . Другое уравнение, которое также содержит эти величины, – первый постулат Бора, определяющий условие квантования момента импульса электрона:

Здесь – радиус -ой стационарной орбиты; – главное квантовое число; – постоянная Планка.

Выразим из уравнения (2) скорость электрона:

Подставим это значение скорости в уравнение (1) и определим из него радиус -ой орбиты электрона:

Полученную формулу представим в следующем виде:

где – первый боровский радиус.

Вычисляем величину радиуса первой орбиты электрона в атоме водорода:

Момент импульса электрона вычисляем по уравнению (2) первого постулата Бора:

Скорость электрона на первой орбите в атоме водорода определим по величине момента импульса электрона (согласно уравнению (3)):

Вычисляем скорость электрона на первой орбите в атоме водорода:

Задача 31. Для электрона, находящегося на третьей орбите () атома водорода, определите радиус орбиты , скорость электрона на этой орбите и период его обращения .

Дано Электрон в атоме : . Решение Запишем второй закон Ньютона для движения электрона по окружности радиусом вокруг ядра атома водорода, заряд которого (рис. 51). Сила Кулона направлена по радиусу окружности к ее центру и является центростремительной, поэтому уравнение закона Ньютона запишем в проекции на нормаль к траектории:

Здесь – масса и скорость электрона; – заряд электрона и ядра; – кулоновская постоянная в системе единиц СИ.

Формулу (3) представим в следующем виде:

Здесь – первый боровский радиус (согласно формуле (4) ). Вычисляем радиус третьей боровской орбиты электрона в атоме водорода:

Вычисляем скорость электрона на третьей орбите, используя первый постулат Бора, по формуле (3):

Период обращения электрона на -ной орбите: время одного оборота, – определим по формуле пути для равномерного движения электрона со скорость :

Формулу (5) представим в следующем виде:

, – период обращения электрона на первой орбите.

Вычисляем период обращения электрона на третьей боровской орбите атома водорода по формуле (6):

Полученная величина периода обращения показывает, что число оборотов в одну секунду, которое совершает электрон при движении в поле ядра атома водорода: .

Задача 32. Для атома водорода определите 1) полную энергию электрона на орбитах с главным квантовым числом и 2) длину волны λ фотона, излучаемого при переходе электрона с шестого энергетического уровня на первый – в серии Лаймана (ультрафиолетовой).

Дано Электрон в атоме : ; . Решение Полная энергия электрона в атоме водорода (и в любом другом атоме) равна сумме кинетической энергии электрона и потенциальной энергии его взаимодействия с зарядом ядра : . Таким образом, величина полной энергии атома водорода в состоянии с главным квантовым числом

Здесь – масса электрона и его скорость на -ной орбите; – кулоновская постоянная в системе единиц СИ; – заряд электрона и ядра ; – радиус орбиты с номером .

Скорость электрона определим из закона динамики движения по круговой орбите (из второго закона Ньютона, записанного в проекции на нормаль):

Подставим найденное значение в формулу энергии электрона (1):

(3)

Сравнивая уравнения (1) и (3), отметим соотношение энергий электрона, движущегося в атоме водорода:

1) потенциальная энергия ;

2) кинетическая энергия .

Полная энергия электрона в атоме отрицательна; это означает, что электрон находится в связанном состоянии благодаря электростатическому взаимодействию с заряженным ядром атома.

Для получения расчетной формулы полной энергии электрона в формулу (3) подставим значение радиуса орбиты ; при этом энергия электрона в состоянии с главным квантовым числом

где – энергия электрона в состоянии с квантовым числом (одна из искомых величин). Величина является минимальной энергией, которой обладает атом водорода в основном состоянии (). Максимальная энергия (согласно формуле (4) ) соответствует ионизации атома путем отрыва электрона от ядра.

Вычислим по формуле (4) энергию атома в возбужденном состоянии, соответствующем движению электрона по шестой стационарной орбите:

Чтобы определить длину волны фотона, испускаемого при переходе электрона с 6-го энергетического уровня на 1-й, используем второй постулат Бора: при переходе электрона с одной стационарной орбиты на другую излучается фотон с энергией, равной разности энергий электрона на этих орбитах :

Уравнение (5) дает следующую расчетную формулу длины волны излучаемого фотона:

Вычисляем по этой формуле длину волны спектральной линии, соответствующей переходу электрона в атоме водорода с 6-й стационарной орбиты на 1-ю (в основное состояние):

Это длина волны ультрафиолетового (УФ) излучения, так как величина .

План решения задач по теме «Элементы квантовой механики»

1. Длина волны де Бройля для частиц вычисляется по формуле , где импульс частицы . Если известна кинетическая энергия частицы , то импульс выражают через энергию:

Если заряженная частица (электрон, протон, -частица) ускорена электрическим полем, совершившим работу , то кинетическая энергия определяется величиной ускоряющей разности потенциалов . Привычную формулу классической механики можно использовать для частиц, кинетическая энергия которых мала по сравнению с их энергией покоя : . Приведем значения энергии покоя некоторых частиц: для электрона ; для протона ; для -частицы .

2. Длину волны де Бройля можно определить из дифракционного эксперимента, используя для параллельного пучка частиц такие же условия максимумов и минимумов дифракции, как и для потока фотонов видимого или рентгеновского излучения. Приведем эти формулы:

1) для дифракции на щели: а) условие – ;

б) условие – ;

2) для дифракции на кристалле – формула Вульфа – Брэггов:

.

3. Для микрочастиц, находящихся в ограниченной области пространства (в атоме, в ядре, в узкой потенциальной яме), характерна ненулевая минимальная кинетическая энергия: и ненулевое значение минимального импульса: , так как такая частица, согласно соотношению неопределенностей, не может иметь точные нулевые значения. Поскольку неопределенность координаты частицы , – определяется характерным размером области, то, используя соотношение , можно получить формулу, связывающую минимальную кинетическую энергию частицы с размером области: .

Задача 33. Электрон движется со скоростью . Определите длину волны де Бройля электрона, учитывая зависимость его массы от скорости.

Дано Электрон: ; ; . Решение Длина волны де Бройля свободно движущейся частицы определяется формулой: , (1) где – постоянная Планка; – импульс частицы; – ее масса и скорость. При скоростях, сравнимых со скоростью света ,

масса частиц зависит от их скорости. Увеличение массы частицы в зависимости от ее скорости описывается формулой специальной теории относительности:

где – масса покоя электрона; – скорость света в вакууме.

Подстановкой выражения (2) для массы электрона в формулу (1) получаем следующую расчетную формулу длины волны де Бройля релятивистского электрона:

Вычисляем величину :

Задача 34. Электрон прошел в электростатическом поле (ЭСП) ускоряющую разность потенциалов: 1) ; 2) . Определите длины волн де Бройля электрона при .

Пройдя в ЭСП ускоряющую разность потенциалов , электрон приобрел кинетическую энергию , равную работе электрического поля:

Величина работы, совершенной полем, .

Приравнивая две последние формулы, определяем кинетическую энергию:

Вычисляем кинетическую энергию электрона для обоих случаев:

Сравним найденные величины энергии с энергией покоя электрона

Отмечаем, что . Следовательно, электрон не является релятивистским и для его импульса и кинетической энергии справедливы формулы классической механики:

Проверим, что это так, вычислив скорость электрона при из равенства . Релятивистская поправка (множитель) в этом случае равна .

Используя для кинетической энергии формулу (2), определяем по формуле (3) импульс электрона:

Подстановкой полученной величины импульса электрона в формулу (1) получаем следующую расчетную формулу длины волны электрона:

Вычисляем по формуле (5):

Вычислим величину следующим путем: согласно формуле (5)

Задача 35. Параллельный пучок атомов водорода, падающий под углом скольжения к поверхности монокристалла, дает дифракционный максимум 1-го порядк