Словесное задание последовательности. Примеры последовательностей, сходящихся к конечному числу

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

На этом уроке мы начнем изучение прогрессий. Здесь мы познакомимся с числовой последовательностью и способами ее задания.

Вначале напомним определение и свойства функций числовых аргументов и рассмотрим частный случай функции, когда х принадлежит множеству натуральных чисел. Дадим определение числовой последовательности и приведем несколько примеров. Покажем аналитический способ задания последовательности через формулу ее n-го члена и рассмотрим несколько примеров на задание и определение последовательности. Далее рассмотрим словесное и рекуррентное задание последовательности.

Тема: Прогрессии

Урок: Числовая последовательность и способы ее задания

1. Повторение

Числовая последовательность , как мы увидим, это частный случай функции, поэтому вспомним определение функции.

Функцией называется закон, по которому каждому допустимому значению аргумента ставится в соответствие единственное значение функции.

Вот примеры известных функций.

Рис. 1. График функции

Допустимы все значения, кроме 0. Графиком этой функции является гипербола (см. Рис.1).

2.. Допустимы все значения, .

Рис. 2. График функции

График квадратичной функции - парабола, характерные точки тоже отмечены (см. Рис.2).

3..

Рис. 3. График функции

Допустимы все значения х. График линейной функции - прямая (см. Рис.3).

2. Определение числовой последовательности

Если х принимает только натуральные значения (), то имеем частный случай, а именно числовую последовательность.

Напомним, что натуральными являются числа 1, 2, 3, …, n, …

Функцию , где , называют функцией натурального аргумента, или числовой последовательностью, и обозначают следующим образом: или , или .

Поясним, что обозначает, например, запись .

Это значение функции, когда n=1, т. е. .

Это значение функции, когда n=2, т. е. и т. д. …

Это значение функции, когда аргумент равен n, т. е. .

3. Примеры последовательностей

1. - это формула общего члена. Задаем различные значения n, получаем различные значения у - членов последовательности.

Когда n=1; , когда n=2 и т. д., .

Числа являются членами заданной последовательности, а точки лежат на гиперболе - графике функции (см. Рис.4).

Рис. 4. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на параболе - графике функции (см. Рис.5).

Рис. 5. График функции

Рис. 6. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на прямой - графике функции (см. Рис.6).

4. Аналитический способ задания последовательности

Существует три способа задания последовательностей: аналитический, словесный и рекуррентный. Рассмотрим каждый из них подробно.

Последовательность задана аналитически, если указана формула ее n-го члена .

Рассмотрим несколько примеров.

1. Найти несколько членов последовательности, которая задана формулой n-го члена: (аналитический способ задания последовательности).

Решение. Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Для заданной последовательности найдем и .

.

.

2. Рассмотрим последовательность, заданную формулой n-го члена: (аналитический способ задания последовательности).

Найдем несколько членов этой последовательности.

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Вообще нетрудно понять, что членами этой последовательности являются те числа, которые при делении на 4 дают в остатке 1.

а. Для заданной последовательности найти .

Решение: . Ответ: .

б. Даны два числа: 821, 1282. Являются ли эти числа членами заданной последовательности?

Для того чтобы число 821 было членом последовательности, необходимо, чтобы выполнялось равенство: или . Последнее равенство является уравнением относительно n. Если решением данного уравнения является натуральное число, то ответ положительный.

В данном случае это так. .

Ответ: да, 821 - член заданной последовательности, .

Переходим ко второму числу. Аналогичные рассуждения приводят нас к решению уравнения: .

Ответ: поскольку n не является натуральным числом, то число 1282 не является членом заданной последовательности.

Формулы, которые аналитически задают последовательность, могут быть самыми разными: простыми, сложными и т. д. Требование к ним одно: каждому значению n должно соответствовать единственное число.

3. Дано: последовательность задана следующей формулой .

Найти три первых члена последовательности.

, , .

Ответ: , , .

4. Являются ли числа членами последовательности ?

а. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: первое заданное число является членом данной последовательности, а именно пятым ее членом.

б. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: второе заданное число тоже является членом данной последовательности, а именно девяносто девятым ее членом.

5. Словесный способ задания последовательности

Мы рассмотрели аналитический способ задания числовой последовательности. Он удобный, распространенный, но не единственный.

Следующий способ - это словесное задание последовательности.

Последовательность, каждый ее член, возможность вычисления каждого ее члена можно задать словами, не обязательно формулами.

Пример 1. Последовательность простых чисел.

Напомним, что простое число - это такое натуральное число, которое имеет ровно два различных делителя: 1 и само это число. Простыми являются числа 2, 3, 5, 7, 11, 13, 17, 19, 23 и т. д.

Их бесчисленное множество. Еще Евклид доказал, что последовательность этих чисел бесконечна, т. е. не существует самого большого простого числа. Последовательность задана, каждый член можно вычислить, утомительно, но можно вычислить. Эта последовательность задана словесно. Формулы, увы, не удается подобрать.

Пример 2. Рассмотрим число =1,41421…

Это иррациональное число, десятичная его запись предусматривает бесконечное число цифр. Рассмотрим последовательность десятичных приближений числа по недостатку: 1; 1,4; 1,41; 1,414; 1,4142; и т. д.

Членов этой последовательности бесконечное множество, каждое из них можно вычислить. Задать эту последовательность формулой нельзя, поэтому описываем ее словесно.

6. Рекуррентный способ задания последовательности

Мы рассмотрели два способа задания числовой последовательности:

1. Аналитический способ, когда задается формула n-го члена.

2. Словесное задание последовательности.

И, наконец, существует рекуррентное задание последовательности, когда задаются правила вычисления n-го члена по предыдущим членам.

Рассмотрим

Пример 1. Последовательность Фибоначчи (13 век).

Историческая справка:

Леона́рдо Пиза́нский (около 1170 года, Пиза — около 1250 года) — первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибона́ччи (Fibonacci).

Значительную часть усвоенных им знаний он изложил в своей выдающейся «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII—XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения. По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления.

Задаются первые два члена и каждый последующий член - это сумма двух предыдущих

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; … - первые несколько членов последовательности Фибоначчи.

Это последовательность задана рекуррентно, n-й член зависит от двух предыдущих.

Пример 2.

В этой последовательности каждый последующий член больше предыдущего на 2. Такая последовательность называется арифметической прогрессией.

Числа 1, 3, 5, 7 …- первые несколько членов этой последовательности.

Приведем еще один пример рекуррентного задания последовательности.

Пример 3.

Последовательность задается следующим образом:

Каждый последующий член этой последовательности получается умножением предыдущего члена на одно и то же число q. Такая последовательность имеет специальное название - геометрическая прогрессия. Арифметическая и геометрическая прогрессии будут объектами нашего изучения на следующих уроках.

Найдем несколько членов указанной последовательности при b=2 и q=3.

Числа 2; 6; 18; 54; 162 … - первые несколько членов этой последовательности.

Интересно, что эту последовательность можно задать и аналитическим способом, т. е. можно подобрать формулу. В данном случае формула будет таковой .

Действительно: если n=1, то ; если n=2, то ; если n=3, то и т. д.

Таким образом, мы констатируем: одна и та же последовательность может быть задана и аналитически и рекуррентно.

7. Итог урока

Итак, мы рассмотрели, что такое числовая последовательность и способы её задания.

На следующем уроке мы познакомимся со свойствами числовых последовательностей.

1. Макарычев Ю. Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.

2. Макарычев Ю. Н., Миндюк Н. Г., Нешков, К. И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.

3. Макарычев Ю. Н., Миндюк Н. Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.

4. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.

5. Мордкович А. Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

6. Мордкович А. Г. , Мишутина Т. Н., Тульчинская Е. Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

7. Глейзер Г. И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.

1. Раздел College. ru по математике.

2. Портал Естественных Наук.

3. Exponenta. ru Образовательный математический сайт.

1. № 331, 335, 338 (Макарычев Ю. Н. и др. Алгебра 9 класс).

2. № 12.4 (Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов).

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < y n < y n +1 < ….

2. Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; y n = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа - числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

а n =2 n +1/2 n

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, а n =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4 n +1 , а n =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства : точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки : неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x )∣y =√1−cos2(x ) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x )={f 1(x ),x D 1 fn (x ),x Dn nk =1Dk =D (f ) . Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀x ∈Дсопоставляется единственное y , такое, что F (x ,y )=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x ,y )∈f задается с помощью пары функций x =ϕ(t ),y =ψ(t ) где t M .