Смещение луча при прохождении плоскопараллельной пластинки. Ход лучей в плоском зеркале, плоскопараллельной пластинке и призме

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.

органов без хирургического вмешательства (эндоскопы), а также на производстве для освещения недоступных участков.

5. На законах преломления основан принцип действия разнообразных оптических устройств, служащих для задания световым лучам нужного направления. Для примера рассмотрим ход лучей в плоскопараллельной пластинке и в призме.

1). Плоскопараллельная пластинка – изготовленная из прозрачного вещества пластинка с двумя параллельными плоскими гранями.Пусть пластинка изготовлена из вещества, оптически более плотного, чем окружающая среда. Предположим, что в воздухе (n1 =1) находится стеклянная

пластинка (n 2 >1), толщина которойd (рис.6).

Пусть луч падает на верхнюю грань этой пластинки. В точке А он преломится и пойдет в стекле по направлениюАВ . В точкеВ луч снова преломится и выйдет из стекла в воздух. Докажем, что луч из пластинки выходит под тем же углом, под каким падает на нее. Для точкиА закон преломления имеет вид: sinα/sinγ=n 2 /n 1, и так какn 1 =1, тоn 2 = sinα/sinγ. Для

точки В закон преломления следующий: sinγ/sinα1 =n 1 /n 2 =1/n 2 . Сравнение

формул дает равенство sinα=sinα1 , а значит, и α=α1 .Следовательно, луч

выйдет из плоскопараллельной пластинки под таким же углом, под каким на неё упал. Однако луч, вышедший из пластинки, смещен относительно падающего луча на расстояние ℓ, которое зависит от толщины пластинки,

показателя преломления и угла падения луча на пластинку.

Вывод : плоскопараллельная пластинка не меняет направление падающих на нее лучей, а лишь смешает их, если рассматривать преломленные лучи.

2). Треугольная призма – это выполненная из прозрачного вещества призма, сечение которой представляет собой треугольник.Пусть призма изготовлена из материала оптически более плотного, чем окружающая среда

(например, она из стекла, а вокруг – воздух). Тогда луч, упавший на её грань,

преломившись, отклоняется к основанию призмы, поскольку он переходит в оптически более плотную среду и, значит, его угол падения φ1 больше угла

преломления φ2 . Ход лучей в призме показан на рис.7.

Угол ρ при вершине призмы, лежащий между гранями на которых преломляется луч, называется преломляющим углом призмы ; а сторона,

лежащая против этого угла, - основанием призмы. Угол δ между направлениями продолжения луча, падающего на призму (АВ ) и луча (CD )

вышедшего из нее, называется углом отклонения луча призмой – он показывает, как сильно призма изменяет направление падающих на нее лучей. Если известны угол р и показатель преломления призмыn , то по заданному углу падения φ1 можно найти угол преломления на второй грани

φ4 . В самом деле, угол φ2 определяется из закона преломления sinφ1 /sinφ2 =n

(призма из материала с показателем преломления n помещена в воздух). В

BCN стороныВN иCN образованы прямыми, перпендикулярными к граням призмы, так что уголCNE равен углу р. Поэтому φ2 +φ3 =р , откуда φ3 =р -φ2

становится известным. Угол φ4 определяется законом преломления:

sinφ3 /sinφ4 =1/n .

Практически часто бывает нужно решать такую задачу: зная геометрию призмы (угол р ) и определяя углы φ1 и φ4 , найти показатель

преломления призмы n . Применяя законы геометрии, получаем: угол МСВ=φ4 -φ3 , угол МВС=φ1 -φ2; угол δ - внешний к BМC и, следовательно,

равен сумме углов МВС и МСВ: δ=(φ1 -φ2 )+(φ4 -φ3 )=φ1 +φ4 -р , где учтено

равенство φ3 +φ2 =р . Поэтому,

δ = φ1 + φ4 -р .

Следовательно, угол отклонения луча призмой тем больше, чем больше угол падения луча и чем меньше преломляющий угол призмы.Сравнительно сложными рассуждениями можно показать, что при симметричном ходе луча

сквозь призму (луч света в призме параллелен ее основанию) δ принимает наименьшее значение.

Предположим, что преломляющий угол (тонкая призма) и угол падения луча на призму малы. Запишем законы преломления на гранях призмы:

sinφ1 /sinφ2 =n , sinφ3 /sinφ4 =1/n . Учитывая, что для малых углов sinφ≈ tgφ≈ φ,

получим: φ1 =n φ2 , φ4 =n φ3 . подставив φ1 и φ3 , в формулу (8) для δ получим:

δ =(n – 1)р .

Подчеркнем, что эта формула для δ верна лишь для тонкой призмы и при очень малых углах падения лучей.

Принципы получения оптических изображений

Геометрические принципы получения оптических изображений основываются только на законах отражения и преломления света, полностью отвлекаясь от его физической природы. При этом оптическую длину светового луча следует считать положительной, когда он проходит в направлении распространения света, и отрицательной в противоположном случае.

Если пучок световых лучей, исходящий из какой-либо точкиS , в

результате отражения и/или преломления сходится в точке S ΄, тоS ΄

считается оптическим изображениемили просто изображением точки S.

Изображение называется действительным, если световые лучи действительно пересекаются в точкеS ΄. Если же в точкеS ΄ пересекаются продолжения лучей, проведенные в направлении, обратном распространению

света, то изображение называется мнимым. При помощи оптических приспособлений мнимые изображения могут быть преобразованы в действительные. Например, в нашем глазу мнимое изображение преобразуется в действительное, получающееся на сетчатке глаза. Для примера рассмотрим получение оптических изображений с помощью 1)

плоского зеркала; 2) сферического зеркала и 3) линз.

1. Плоским зеркаломназывают гладкую плоскую поверхность, зеркально отражающую лучи. Построение изображения в плоском зеркале можно показать с помощью следующего примера. Построим, как виден в зеркале точечный источник света S(рис.8).

Правило построения изображения следующее. Поскольку от точечного источника можно провести разные лучи, выберем два из них - 1 и 2 и найдем точку S ΄, где эти лучи сходятся. Очевидно, что сами отраженные 1΄ и 2 ΄ лучи расходятся, сходятся лишь их продолжения (см. пунктир на рис.8).

Изображение получилось не от самих лучей, а от их продолжения, и является мнимым. Простым геометрическим построением легко показать, что

изображение расположено симметрично по отношению к поверхности зеркала.

Вывод: плоское зеркало дает мнимое изображение предмета,

расположенное за зеркалом на таком же расстоянии от него, что и сам предмет. Если два плоских зеркала расположены под углом φ друг к другу,

то возможно получить несколько изображений источника света.

2. Сферическим зеркаломназывается часть сферической поверхности,

зеркально отражающая свет. Если зеркальной является внутренняя часть поверхности, то зеркало называютвогнутым, а если наружная, товыпуклым.

На рис.9 показан ход лучей падающих параллельным пучком на вогнутое сферическое зеркало.

Вершина сферического сегмента (точка D ) называетсяполюсом зеркала. Центр сферы (точкаО ), из которой образовано зеркало, называется

оптическим центром зеркала. Прямая, проходящая через центр кривизныО зеркала и его полюсD , называется главной оптической осью зеркала.

Применяя закон отражения света, в каждой точке падения лучей на зеркал

восстанавливают перпендикуляр к поверхности зеркала (этим перпендикуляром является радиус зеркала - пунктирная линия на рис. 9) и

получают ход отраженных лучей. Лучи, падающие на поверхность вогнутого зеркала параллельно главной оптической оси, после отражения собираются в одной точке F , называемойфокусом зеркала, а расстояние от фокуса зеркала до его полюса - фокусным расстояниемf. Поскольку радиус сферы направлен по нормали к ее поверхности, то, по закону отражения света,

фокусное расстояние сферического зеркала определяют по формуле

где R -радиус сферы (ОD ).

Для построения изображения необходимо выбрать два луча и найти их пересечение. В случае вогнутого зеркала такими лучами могут быть луч,

отраженный от точки D (он идет симметрично с падающим относительно оптической оси), и луч, прошедший через фокус и отраженный зеркалом (он идет параллельно оптической оси); другая пара: луч, параллельный главной оптической оси (отражаясь, он пройдет через фокус), и луч, проходящий через оптический центр зеркала (он отразится в обратном направлении).

Для примера построим изображение предмета (стрелки АВ ), если он находится от вершины зеркалаD на расстоянии, большем радиуса зеркала

(радиус зеркала равен расстоянию OD=R ). Рассмотрим чертеж, сделанный согласно описанному правилу построения изображения (рис.10).

Луч 1 распространяется от точки В до точкиD и отражается по прямой

DE так, что уголADВ равен углуADE . Луч 2 от той же точкиВ распространяется через фокус до зеркала и отражается по линииCB "||DA .

Изображение действительное (образованное отраженными лучами, а не их продолжениями, как в плоском зеркале), перевернутое и уменьшенное.

Из простых геометрических расчетов можно получить соотношение между следующими характеристиками. Если а – расстояние от предмета до зеркала, откладываемое по главной оптической оси (на рис.10 – этоAD ),b –

расстояние от зеркала до изображения (на рис.10 - это DA "), тоа/b =AB/A"B" ,

и тогда фокусное расстояние f сферического зеркала определяют по формуле

Величина оптической силы измеряется в диоптриях (дптр); 1 дптр = 1м-1 .

3. Линзой называют прозрачное тело, ограниченное сферическими поверхностями, радиус, по крайнем мере, одной из которых не должен быть бесконечным. Ход лучей в линзе зависит от радиуса кривизны линзы.

Основными характеристиками линзы являются оптический центр, фокусы,

фокальные плоскости. Пусть линза ограничена двумя сферическими поверхностями, центры кривизны которых С 1 иС 2 , а вершины сферических

поверхностей О 1 иО 2 .

На рис.11 схематично изображена двояковыпуклая линза; толщина линзы в середине больше, чем у краев. На рис.12 схематично изображена двояковогнутая линза (в середине она тоньше, чем у краев).

Для тонкой линзы считают, что О 1 О 2 <<С 1 О 2 иО 1 О 2 <<С 2 О 2 , т.е.

практически точки О 1 иО 2 . слиты в одну точкуО , которая называется

оптическим центром линзы . Прямая, проходящая через оптический центр линзы, называется оптической осью.Оптическая ось, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью (С 1 С 2 , на рис.11 и 12). Лучи, идущие через оптический центр, не

преломляются (не изменяют своего направления). Лучи, параллельные главной оптической оси двояковыпуклой линзы, после прохождения через нее пересекают главную оптическую ось в точке F (рис.13), которая называется главным фокусом линзы, а расстояние от этой точки до линзыf

есть главное фокусное расстояние. Постройте самостоятельно ход хотя бы двух лучей, падающих на линзу параллельно главной оптической оси

(стеклянная линза расположена в воздухе, учтите это при построении), чтобы доказать, что расположенная в воздухе линза является собирающей, если она двояковыпуклая, и рассеивающей, если линза двояковогнутая.

Луч света, проходя через плоскопараллельную пластинку, не изменяет своего направления. Угол отклонения луча призмой растёт при увеличении её преломляющего угла и относительного показателя преломления материала, из которого она сделана.

Плоскопараллельной называют прозрачную пластинку, грани которой параллельны. Примером плоскопараллельной пластинки может служить обычное оконное стекло. Рассмотрим ход луча А 0 А , падающего на грань Z 0 Z пластинки (рис. 20а ). В точке А луч А 0 А преломляется и переходит из среды 1 в среду 2 . Из закона преломления света следует, что

где n 1 и n 2 – абсолютные показатели преломления сред 1 и 2 . После преломления в точке А луч пройдёт через пластинку и упадёт на другую её грань X 0 X в точке B . Из параллельности X 0 X и Z 0 Z следует, что угол падения луча АВ на X 0 X равен углу его преломления на грани Z 0 Z , b. Поэтому для преломления луча АВ в точке В из закона преломления света получаем:

где g - угол преломления луча АВ . Перемножив между собой левые и правые части уравнений (119) и (120), получаем

откуда следует, что луч света, проходя через плоскопараллельную пластинку, не изменяет своего направления, а только смещается .

Для изменения направления светового луча в оптических приборах часто используют стеклянные треугольные призмы. На рис. 20б показано, как горизонтальный луч падает на левую грань такой призмы и, испытав два преломления, выходит из правой её грани. Две грани призмы, на которых луч испытывает преломление, называют преломляющими , а третью – её основанием . Двугранный угол j между преломляющими гранями называют преломляющим углом . Видно, что при каждом преломлении луч отклоняется в сторону основания. Угол между направлением входящего и выходящего из призмы луча называют углом отклонения луча d.

Чтобы определить ход преломлённого луча через призму (см. рис. 20б ), сначала с помощью закона преломления света вычисляем угол преломления луча на её первой преломляющей грани. Потом строим преломлённый луч, определяем точку и угол его падения на вторую грань призмы. Затем с помощью закона преломления света вычисляем угол преломления выходящего из призмы луча. Угол отклонения луча d призмы зависит от её преломляющего угла j, относительного показателя преломления материала n призмы и от угла падения луча на первую преломляющую грань. При этом, чем больше j и n , тем больше отклоняет луч данная призма (сравни рис.20б и в ).

Если угол падения луча a на вторую преломляющую грань призмы соответствует полному внутреннему отражению от этой грани, то такую призму называют отражательной . Для стекла с n =1,7 такое полное внутреннее отражение произойдёт при a>36°. Иногда в отражательных призмах происходит не одно, а несколько полных внутренних отражений. Треугольные отражательные призмы с отклоняющим углом p/2 используются, например, в перископах и биноклях, где необходимо несколько раз поворачивать лучи света на p/2 (рис. 20г , верх). Отражательные призмы можно также использовать, для изменения взаимного расположения лучей (рис. 20г , низ).



Рисунок 20 (а ) – Преломление света в плоскопараллельной пластинке; (б ) – ход светового луча через поперечное сечение треугольной призмы из материала с показателем преломления n =1,7 и преломляющим углом j=20°, перпендикулярное её боковым рёбрам; (в ) – то же, что и (б), но j=10°; (г ) – ход лучей через поперечное сечение отражательных призм.

Параллельные лучи, проходя через тонкую собирающую линзу, пересекаются в одной точке на фокальной плоскости. Рассеивающая линза превращает параллельные лучи в расходящийся пучок лучей, продолжения которых пересекаются в её фокальной плоскости.

Линзой называют прозрачное тело, ограниченное двумя сферическими поверхностями. Выпуклыми называют линзы, которые в середине толще, чем по краям, а те линзы, у которых середина тоньше, чем края, называют вогнутыми . На рис. 21а показана выпуклая линза, ограниченная сферическими поверхностями с радиусами R 1 и R 2 , толщиной, равной расстоянию АВ между вершинами соответствующих сферических сегментов. Линзу, толщина которой гораздо меньше радиусов поверхностей, её ограничивающих, называют тонкой . Далее мы будем рассматривать только тонкие линзы.

Главной оптической осью называют прямую, проходящую через центры сферических поверхностей, ограничивающих линзу (см. О 1 О 2 на рис. 21а ). Вершины сферических сегментов тонкой линзы находятся очень близко, и поэтому их положение обозначают одной точкой, называемой оптическим центром линзы (см. О на рис. 21а ). Главная оптическая ось проходит через оптический центр тонкой линзы. Остальные прямые, проходящие через оптический центр называют побочными оптическими осями (см. P 1 P 2 на рис. 21а ).

Рассмотрим преломление лучей в выпуклой линзе, представив её как совокупность призм (рис.21б ) и считая, что относительный показатель преломления материала линзы n >1. В этом случае каждая из призм отклоняет лучи к своему основанию, и все лучи, проходя через линзу, будут отклоняться к её главной оптической оси. Если на тонкую линзу падают лучи, параллельные главной оптической оси, то, выходя из линзы, они пересекаются в одной точке F , находящейся на главной оптической оси и называемой главным фокусом линзы . Расстояние между оптическим центром и главным фокусом линзы называют фокусным расстоянием .

Очевидно, что если лучи света, параллельные главной оптической оси, падают на линзу не слева, как изображено на рис. 21б , а справа, то все они, пройдя линзу, тоже соберутся, в точке, которая является другим главным фокусом линзы. Таким образом, линзы имеют два главных фокуса. Выпуклые линзы, изготовленные из материала с относительным показателем преломления n >1 и собирающие параллельные лучи света в одну точку, называют собирающими .

Собирающие линзы собирают в одну точку не только лучи, параллельные главной оптической оси, но и любые параллельные лучи (рис. 21в ). При этом точка пересечения лучей, параллельных какой-либо побочной оптической оси, находится на фокальной плоскости – плоскости, перпендикулярной главной оптической оси и проходящей через главный фокус линзы. Луч, идущий вдоль побочной оптической оси, проходя через тонкую линзу, не изменяет своего направления. Поэтому точка пересечения лучей, параллельных побочной оптической оси, находится в той точке, где эта побочная оптическая ось пересекает фокальную плоскость. Из рис. 21б-в следует, что, если в главном фокусе или в любой точке фокальной плоскости поместить точечный источник света, то идущие от этого источника расходящиеся лучи света, пройдя через линзу, превращаются в параллельный пучок лучей.

Параллельные лучи, пройдя через вогнутую линзу, изготовленную из материала с относительным показателем преломления n >1, рассеиваются, превращаясь в расходящийся пучок света. Поэтому такие линзы называют рассеивающими . Если продолжить лучи, рассеянные линзой, в сторону, противоположную распространению света, то окажется, что их продолжения пересекутся на главной оптической оси в одной точке, который называют мнимым главным фокусом рассеивающей линзы (рис. 21г ). Как и собирающая линза, рассеивающая линза имеет два главных фокуса и две фокальные плоскости, где пересекаются лучи, параллельные побочной оптической оси.

Рисунок 21 (а ) – Геометрические характеристики линзы; (б ) – к определению главного фокуса линзы; (в ) – к определению фокальной плоскости линзы; (г ) – преломление лучей в рассеивающей линзе.

Благодаря своим преломляющим свойствам линза создаёт действительное или мнимое изображение предмета. Формула тонкой линзы позволяет определить, какое это изображение и где оно находится относительно линзы.

Собирающие линзы обладают способностью собирать все лучи, исходящие из точки А , находящейся, например, слева от линзы в другую точку А 1 , расположенную справа от неё (см. рис.22а , где вместо собирающей линзы показан её символ). Таким образом, в точке А 1 появляется действительное изображение точки А .

Если лучи, исходящие из одной точки А , падают на рассеивающую линзу (см. рис.22б , где вместо рассеивающей линзы показан её символ), то выходя из неё они превращаются в пучок лучей, расходящихся из другой точки А 1 , расположенной по ту же сторону от линзы, что и А . Точку А 1 , в которой сходятся продолжения лучей, прошедших через рассеивающую линзу, называют мнимым изображением точки А . Из действительных и мнимых изображений точек складываются соответствующие изображения предметов (на рис.22а А 1 В 1 - действительное увеличенное перевёрнутое изображение АВ , а на рис.22б А 1 В 1 - мнимое изображение АВ ).

Чтобы построить изображение какой-либо точки А в линзе, достаточно найти ход любых двух лучей, исходящих из этой точки и падающих на линзу. Очевидно, что точка пересечения этих лучей или их продолжений будет являться искомым изображением точки А . В качестве лучей, ход которых легче всего построить, используют следующие три луча, которые иногда называют удобными (рис. 22в ):

 луч АОА 1 , проходящий через оптический центр линзы и не претерпевающий преломления,

 луч АМА 1 , выходящий из точки А параллельно главной оптической оси, а после преломления проходящий через главный фокус линзы F 2 ,

 луч АNА 1 , проходящий сначала через главный фокус F 1 , а после преломления идущий параллельно главной оптической оси.

С помощью «удобных» лучей можно построить изображение любой точки и в рассеивающей линзе (рис. 22г ).

Рассмотрим, как связаны между собой на рис. 22в расстояние d (ВО ) от предмета АВ до линзы, расстояние f (ОВ 1) от его изображения точки А 1 В 1 до линзы и фокусное расстояние F (ОF 1 =ОF 2). Из подобия треугольников АВО и А 1 В 1 О следует, что:

а из подобия треугольников OMF 2 и А 1 В 1 F 2 получаем:

Приравнивая правые части уравнений (122) и (123) и произведя простые алгебраические преобразования, получим следующую формулу:

называемую формулой тонкой линзы . В правой части (124) находится величина, обратная фокусному расстоянию, называемая оптической силой линзы D :

Чем меньше фокусное расстояние линзы, тем сильнее она преломляет лучи и тем больше её оптическая сила. Единицей оптической силы в СИ является диоптрия (дптр). 1 дптр – оптическая сила линзы с фокусным расстоянием 1 м.

Можно показать, что формула тонкой линзы справедлива не только для действительного изображения, получаемого с помощью собирающей линзы, но и в тех случаях, когда изображение мнимое, а линза рассеивающая. Применяя формулу (124) для мнимого изображения, следует расстояние (f ) его от линзы считать отрицательным числом. Для рассевающих линз формула (124) становится справедливой, если их фокусное расстояние (F ) подставлять в неё со знаком минус.

Рисунок 22 (а ) – Ход лучей, исходящих из точки А и падающих на собирающую линзу с оптическим центром О и главными фокусами в точках F 1 и F 2 ; (б ) – то же для рассеивающей линзы; (в ) и (г ) – к построению изображения предмета АВ в собирающей и рассеивающей линзах соответственно.

Дисперсия света

Дисперсия света или зависимость показателя преломления от длины волны помогает с помощью призмы получить спектр падающего на неё света. Белый свет возникает в результате сложения световых лучей различных цветов, взятых в определённых соотношениях.

И. Ньютон в 1666 году обнаружил, что узкий солнечный луч при прохождении через стеклянную призму разлагается на отдельные цветные лучи, в результате чего на экране, помещенном позади призмы, получается цветная радужная полоска с постепенным переходом цветов от красного до фиолетового цвета. Выделив в этой полосе семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый, Ньютон назвал её спектром (от латинского spectrum – видимое). Последовательность цветов в спектре помогает запомнить фраза «Каждый охотник желает знать, где сидит фазан», в которой первые буквы слов совпадают с первыми буквами названий цветов.

Чтобы найти причину появления спектра, Ньютон поставил опыт, в котором солнечный луч сначала проходил через красное стекло, а потом через призму. В этом случае на экране за призмой появлялось только красное пятно, расположенное в том же месте, где в спектре была красная полоса. Аналогичные результаты Ньютон получил, пропуская солнечный свет через стёкла различного цвета, что привело его к следующим двум важным выводам, которые в современной интерпретации можно сформулировать как: (1) белый солнечный свет состоит из лучей различных цветов, и только определённое соотношение между ними создаёт у нас впечатление белого цвета, и (2) стекло для лучей, отличающихся по цвету, имеет разные показатели преломления. Зависимость показателя преломления от цвета лучей была названа Ньютоном дисперсией света . Слово «дисперсия» в переводе с латыни означает разложение или рассеяние.

Во времена Ньютона ещё не было известно, что свет – это электромагнитные волны, а различные цвета световых лучей соответствуют электромагнитным волнам разной длины волны. В настоящее время установлено, что диапазон волн с длиной волны от 630 до 760 нм воспринимается нами как красный, от 590 до 620 нм – как оранжевый, от 565 до 590 нм – как жёлтый; от 500 до 565 нм – как зелёный, от 485 до 500 нм – как голубой, от 440 до 485 нм – как синий и от 380 до 440 нм – как фиолетовый. Следует отметить, что границы между перечисленными диапазонами довольно условны, так как оттенки соседних цветов трудно различимы.

Считая свет электромагнитными волнами с длиной волны, лежащей в диапазоне между 380 и 760 нм, можно дать современную интерпретацию дисперсии, открытой Ньютоном. Дисперсия – это зависимость показателя преломления света от его длины волны.

§ 20. преломление света в плоскопараллельной пластинке и призме

Луч света, проходя через плоскопараллельную пластинку, не изменяет своего направления. Угол отклонения луча призмой растёт при увеличении её преломляющего угла и относительного показателя преломления материала, из которого она сделана.

Плоскопараллельной называют прозрачную пластинку, грани которой параллельны. Примером плоскопараллельной пластинки может служить обычное оконное стекло. Рассмотрим ход луча А 0 А , падающего на грань Z 0 Z пластинки (рис. 20а ). В точке А луч А 0 А преломляется и переходит из среды 1 в среду 2 . Из закона преломления света следует, что

где n 1 и n 2 – абсолютные показатели преломления сред 1 и 2 . После преломления в точке А луч пройдёт через пластинку и упадёт на другую её грань X 0 X в точке B . Из параллельности X 0 X и Z 0 Z следует, что угол падения луча АВ на X 0 X равен углу его преломления на грани Z 0 Z , b . Поэтому для преломления луча АВ в точке В из закона преломления света получаем:

где g - угол преломления луча АВ . Перемножив между собой левые и правые части уравнений (20.1) и (20.2), получаем

откуда следует, что луч света, проходя через плоскопараллельную пластинку, не изменяет своего направления, а только смещается .

Для изменения направления светового луча в оптических приборах часто используют стеклянные треугольные призмы. На рис. 20б показано, как горизонтальный луч падает на левую грань такой призмы и, испытав два преломления, выходит из правой её грани. Две грани призмы, на которых луч испытывает преломление, называют преломляющими , а третью – её основанием . Двугранный угол j между преломляющими гранями называют преломляющим углом . Видно, что при каждом преломлении луч отклоняется в сторону основания. Угол между направлением входящего и выходящего из призмы луча называют углом отклонения луча d .

Чтобы определить ход преломлённого луча через призму (см. рис. 20б ), сначала с помощью закона преломления света вычисляем угол преломления луча на её первой преломляющей грани. Потом строим преломлённый луч, определяем точку и угол его падения на вторую грань призмы. Затем с помощью закона преломления света вычисляем угол преломления выходящего из призмы луча. Угол отклонения луча d призмы зависит от её преломляющего угла j ,относительного показателя преломления материала n призмы и от угла падения луча на первую преломляющую грань. При этом, чем больше j и n , тем больше отклоняет луч данная призма (сравни рис.20б и в ).

Если угол падения луча a на вторую преломляющую грань призмы соответствует полному внутреннему отражению от этой грани, то такую призму называют отражательной . Для стекла с n =1,7 такое полное внутреннее отражение произойдёт при a >36° . Иногда в отражательных призмах происходит не одно, а несколько полных внутренних отражений. Треугольные отражательные призмы с отклоняющим углом p /2 используются, например, в перископах и биноклях, где необходимо несколько раз поворачивать лучи света на p /2 (рис. 20г , верх). Отражательные призмы можно также использовать, для изменения взаимного расположения лучей (рис. 20г , низ).

Вопросы для повторения:

· Почему плоскопараллельная пластинка не изменяет направление луча?

· Что такое преломляющие грани, основание и преломляющий угол призмы?

· Как зависит угол отклонения луча от характеристик призмы?

· Как работают отражательные призмы и для чего их используют?


Рис. 20. (а ) – преломление света в плоскопараллельной пластинке; (б ) – ход светового луча через поперечное сечение треугольной призмы из материала с показателем преломления n =1,7 и преломляющим углом j =20° , перпендикулярное её боковым рёбрам; (в ) – то же, что и (б), но j =10° ; (г ) – ход лучей через поперечное сечение отражательных призм.

Цифровой ресурс может использоваться для обучения в рамках программы основной и средней школы (базового уровня).

Данная модель иллюстрирует тему «Закон преломления света». Рассматривается прохождение луча света сквозь плоскопараллельную пластину. Пользователь может изменять условия эксперимента (угол падения луча, толщину и показатель преломления вещества, из которого изготовлена пластина).

Краткая теория

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления: n = n 2 / n 1 .

При прохождении света через плоскопараллельную пластину свет дважды на своем пути претерпевает преломление, в результате чего луч падающий на пластину и луч, выходящий из нее, оказываются параллельными. Смещение х можно рассчитать по формуле:

Работа с моделью

Пользователь может изменять условия эксперимента (угол падения луча, толщину и показатель преломления пластины). В информационном окне выводятся значения угла преломления, смещения выходящего луча (x ).

Данная модель может быть применена на уроках изучения нового материала, повторения, решения задач в 9 и 11 классах по теме «Закон преломления света». На примере этой модели можно рассмотреть с учащимися ход луча при прохождении плоскопараллельной пластины, ввести понятие смещения луча, рассмотреть зависимость угла преломления от абсолютного показателя преломления среды.

Пример планирования урока с использованием модели

Тема «Закон преломления света. Решение задач»

Цель урока: повторить закон преломления света, понятия абсолютного и относительного показателя преломления света, отработать решение задач по этой теме.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка домашнего задания по теме «Закон преломления света» 15 Индивидуальный опрос
3 Решение задач по теме «Закон преломления света» 25 Решение задач с использованием компьютерной модели «Преломления света в плоскопараллельной пластине вещества»
4 Объяснение домашнего задания 3

Таблица 1.

Примеры вопросов и заданий

1.

По данным модели определите угол преломления и смещение светового луча при прохождении через стеклянную пластину. Проверьте свои результаты на компьютерной модели.

2.

Свет переходит из вакуума в стекло, при этом угол падения равен α, угол преломления β. Чему равна скорость света в стекле, если скорость света в вакууме равна c ?

3.

Показатели преломления воды, стекла и алмаза относительно воздуха равны 1,33, 1,5, 2,42 соответственно. В каком из этих веществ предельный угол полного отражения имеет минимальное значение?

4.

Водолаз рассматривает снизу вверх из воды лампу, подвешенную на высоте 1 м над поверхностью воды. Под водой кажущаяся высота лампы: