Содержание тяжелых металлов в почве. Тяжелые металлы в почвах

Не секрет, что каждому хочется иметь дачу в экологически чистом районе, где нет городской загазованности. Окружающая среда содержит в себе тяжелые металлы (мышьяк, свинец, медь, ртуть, кадмий, марганец и другие), которые исходят даже от выхлопных газов автомобилей. При этом надо понимать, что земля – это природный очиститель атмосферы и грунтовых вод, она накапливает в себе не только тяжелые металлы, но и вредные пестициды с углеводородами. Растения в свою очередь принимают все то, что дает им почва. Металл, оседая в почве, наносит вред не только самой почве, но и растениям, а как следствие и человеку.

Вблизи магистральной дороги много копоти, которая проникает в поверхностные слои почвы и оседает на листьях растений. На таком участке нельзя выращивать корнеплоды, фрукты, ягоды и другие плодородные культуры. Минимальное расстояние от дороги – 50 м.

Почва, наполненная тяжелыми металлами – плохая почва, тяжелые металлы токсичны. На ней вы никогда не увидите муравьев, жужелиц и дождевых червей, но будет большое скопление сосущих насекомых. Растения часто болеют грибковыми болезнями, сохнут и неустойчивы к вредителям.

Самыми опасными являются подвижные соединения тяжелых металлов, которые легко получаются в кислой почве. Доказано, что растения, выращенные на кислой или легкой песчаной почве, содержат в себе больше металлов, чем на нейтральной или известковой почве. Мало того, песчаная почва с кислой реакцией особенно опасна, она легко накапливает и так же легко промывается, попадая в грунтовые воды. Садовый участок, где львиная доля – это глина, тоже легко подвержен накоплению тяжелых металлов, при этом самоочищение происходит долго и медленно. Самой безопасной и устойчивой почвой является чернозем, обогащенный известью и гумусом.

Что делать, если в почве тяжелые металлы? Путей решения проблемы есть несколько.

1. Неудачный участок можно продать.

2. Известкование – хороший способ уменьшить концентрацию тяжелых металлов в почве. Есть разные . Самый простой: горсть земли бросьте в емкость с уксусом, если появится пена, то почва щелочная. Или копните немного землю, если в ней найдете белую прослойку, то кислотность присутствует. Вопрос насколько много. После известкования регулярно проверяйте на кислотность, возможно нужно будет повторить процедуру. Известкуют доломитовой мукой, доменным шлаком, торфяной золой, известняком.

Если тяжелых металлов в земле уже накоплено очень много, то будет полезно верхний слой грунта (20-30 см) снять и заменить черноземом.

3. Постоянная подкормка органическими удобрениями (навоз, компост). Чем больше гумуса в почве, тем меньше в ней тяжелых металлов, снижается токсичность. Бедная, неплодородная земля не способна защитить растения. Не перенасыщать минеральными удобрениями, особенно азотным. Минеральные удобрения быстро разлагают органику.

4. Поверхностное рыхление. После рыхления обязательно провести , торфом или компостом. При рыхлении полезно добавить вермикулит, который станет барьером между растениями и токсическими веществами в почве.

5. Промывка земли только при хорошем дренаже. Иначе с водой тяжелые металлы разнесутся по всему участку. Заливают чистой водой так, чтобы промылся слой грунта 30-50 см для овощных культур и до 120 см для плодовых кустарников и деревьев. Промывку проводят весной, когда после зимы влаги в почве достаточно.

6. Верхний слой почвы убрать, сделать хороший дренаж из керамзита или гальки, а сверху засыпать чернозем.

7. Растения выращивать в контейнерах или теплице, где землю легко можно заменить. Соблюдать , не выращивать растение на одном месте длительное время.

8. Если садовый участок у дороги, то в почве с большой вероятностью есть свинец, который выходит с выхлопными газами автомобилей. Проводите вытяжку свинца посадкой гороха между растениями, урожай не собирайте. Осенью горох выкопайте и сожгите вместе с плодами. Улучшат почву растения с мощной глубокой корневой системой, которые перенесут из глубокого слоя в верхний фосфор, калий и кальций.

9. Выращенные на тяжелой почве овощи и фрукты всегда подвергать термической обработке или как минимум мыть под проточной водой, убирая, таким образом, атмосферную пыль.

10. В загрязненных районах или участке при дороге ставят забор сплошной, сетка-рабица не станет барьером от дорожной пыли. За забором обязательно посадить и лиственные (). Как вариант отличной защитой станут многоярусные посадки, которые сыграют роль защитников от атмосферной пыли и копоти.

Наличие тяжелых металлов в почве – не приговор, главное это своевременно выявить и обезвредить.

Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах - твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза. .

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Класс опасности

ОДК по группам почв

Извлекаемые ацетатно-аммонийным буфером (рН=4,8)

Песчаные, супесчаные

Суглинистые, глинистые

рН ксl < 5,5

рН ксl > 5,5

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается . Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной - интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д. .

Никель(Ni) - элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу .

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.) .

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л. .

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие - благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось . Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе .

Химический состав почв различных территорий неоднороден и распространение содержащихся в почвах химических элементов по территории неравномерное. Так, например, находясь преимущественно в рассеянном состоянии, тяжелые металлы способны образовывать локальные связи, где их концентрации во многие сотни и тысячи раз превышают кларковые уровни.

Ряд химических элементов необходим для нормального функционирования организма. Их недостаток, избыток или дисбаланс может вызывать болезни, называемые микроэлементозами 1 , или биогеохимическими эндемиями, которые могут быть как природными так и техногенными. В их распротранении важная роль принадлежит воде, а также пищевым продуктам, в которые химические элементы попадают из почвы по пищевым цепочкам.

Опытным путем установлено, что на процентное содержание ТМ в растениях влияет процентное содержание ТМ в почве, атмосфере, воде (в случае водорослей). Также было замечено, что на почвах с одним и тем же содержанием тяжелых металлов одна и таже культура дает разный урожай, хотя и климатические условия тоже совпадали. Тогда была обнаружена зависимость урожайности от кислотности почв.

Наиболее изученными представляются загрязнения почв кадмием, ртутью, свинцом, мышьяком, медью, цинком и марганцем. Рассмотрим загрязнение почв этими металлами отдельно для каждого. 2

    Кадмий (Cd)

    Содержание кадмия в земной коре составляет примерно 0.15 мг/кг. Кадмий концентрируется в вулканических (в кол-ве от 0.001 до 1.8 мг/кг), метаморфических (в кол-ве от 0.04 до 1.0 мг/кг) и осадочных породах (в кол-ве от 0.1 до 11.0 мг/кг). Почвы, сформированные на основе таких исходных материалов, содержат 0.1‑0.3; 0.1 - 1.0 и 3.0 - 11.0 мг/кг кадмия соответственно.

    В кислых почвах кадмий присутствует в форме Cd 2+ , CdCl + , CdSO 4 , а в известковых почвах - в форме Cd 2+ , CdCl + , CdSO 4 , CdHCO 3 + .

    Поглощение кадмия растениями существенно падает при известковании кислых почв. В этом случае увеличение pH снижает растворимость кадмия в почвенной влаге, равно как и биодоступность почвенного кадмия. Так содержание кадмия в свекольных листьях на известковых почвах было меньше содержания кадмия в таких же растениях на неизвесткованных почвах. Сходный эффект быд показан для риса и пшеницы -->.

    Отрицательное влияние увеличения pH на кадмиевую доступность связано с понижением не только растворимости кадмия в фазе почвенного раствора, но и корневой активности, влияющей на абсорбцию.

    Кадмий довольно мало подвижен в почвах, и, если добавлять кадмий‑содержащий материал на ее поверхность, основное его количество остается нетронутым.

    Методы для удаления загрязнений из почвы включают либо удаление самого загрязненного слоя, либо удаление кадмия из слоя, либо покрытие загрязненного слоя. Кадмий может быть превращен в комплексные нерастворимые соединения доступными хелатообразующими агентами (например, этилендиаминтетрауксусной кислотой). .

    Из-за относительно быстрого поглощения кадмия из почвы растениями и низкого токсического действия обычно встречающихся его концентраций, кадмий может накапливаться в растениях и поступать в звенья пищевой цепи быстрее чем свинец и цинк. Поэтому наибольшую опасность для здоровья человека при внесении в почву отходов представляет кадмий.

    Процедура для минимизации количества кадмия, способного входить в пищевую цепь человека из загрязненных почв, - это выращивание на данной почве растений, не используемых в пищу или таких культур, которые абсорбируют малые количества кадмия.

    В целом культуры на кислых почвах абсорбируют больше кадмия, чем таковые на нейтральных или щелочных почвах. Поэтому известкование кислых почв - это эффективное средство снижения количества абсорбированного кадмия.

    Ртуть (Hg)

    Ртуть находится в природе в виде паров металла Hg 0 , образующихся при ее испарении из земной коры; в виде неорганических солей Hg(I) и Hg(II), и в виде органического соединения метилртути СН 3 Hg + , монометил- и диметил производных СН 3 Hg + и (CH 3) 2 Hg.

    Ртуть накапливается в верхнем горизонте (0-40 см) почвы и слабо мигрирут в более глубокие ее слои. Соединения ртути относятся к высокостабильным веществам почвы. Растения, произрастающие на загрязненной ртутью почве, усваивают значительное количество элемента и накапливают его в опасных концентрациях, либо не произрастают.

    Свинец (Pb)

    По данным опытов, проводимых в условиях песчаной культуры с внесением пороговых для почв концентраций Hg (25 мг/кг) и Pb (25 мг/кг) и превышающие пороговые в 2-20 раз, растения овса до определенного уровня загрязнения растут и развиваются нормально. По мере увеличения концентрации металлов (для Pb начиная с дозы 100 мг/кг) изменяется внешний вид растений. При экстремальных дозах металлов растения погибают через три недели с начала опытов. Содержание металлов в компонентах биомассы в порядке убывания распределено следующим образом: корни - надземная часть - зерно.

    Суммарное поступление свинца в атмосферу (а следовательно частично и на почву) от автотранспорта на территории России в 1996 году оценивалось примерно в 4.0 тыс. т, в том числе 2.16 тыс. т. вносил грузовой транспорт. Максимальная нагрузка по свинцу приходилась на Московскую и Самарскую области, за которыми следуют Калужская, Нижегородская, Владимирская области и другие субъекты Российской Федерации, расположенные в центральной части Европейской территории России и Северного Кавказа. Наибольшие абсолютные выбросы свинца отмечались в Уральском (685 т), Поволжском (651 т) и Западно-Сибирском (568 т) регионах. А наиболее неблагоприятное воздействие выбросов свинца отмечалось в Татарстане, Краснодарском и Ставропольском краях, Ростовской, Московской, Ленинградской, Нижегородской, Волгоградской, Воронежской, Саратовской и Самарской областях (газета “Зеленый мир”, специальный выпуск №28, 1997 г.).

    Мышьяк (As)

    Мышьяк находится в окружающей среде в виде разнообразных химически устойчивых форм. Его два главных состояния окисления: As (III), и As (V). В природе распространен пятивалентный мышьяк в виде разнообразных неорганических соединений, хотя и трехвалентный мышьяк легко обнаруживается в воде, особенно в анаэробных условиях.

    Медь (Cu)

    Природные медные минералы в почвах включают сульфаты, фосфаты, оксиды и гидроксиды. Медные сульфиды могут образовываться в плохо дренируемых или затопляемых почвах, где реализуются восстановительные условия. Медные минералы обычно слишком растворимы, чтобы оставаться в свободно дренируемых сельскохозяйственных почвах. В загрязненных металлом почвах, однако, химическая среда может контролироваться неравновесными процессами, приводящими к накоплению метастабильных твердых фаз. Предполагается, что и в восстановленных, загрязненных медью почвах могут находиться ковеллин (CuS) или халькопирит (CuFeS 2).

    Следовые количества меди могут содержаться в виде отдельных сульфидных включений в силикатах и могут изоморфно замещать катионы в филлосиликатах. Несбалансированные по заряду глинистые минералы неспецифически абсорбируют медь, а вот оксиды и гидроксиды железа и марганца показывают очень высокое специфическое сродство к меди. Высокомолекулярные органические соединения способны быть твердыми абсорбентами для меди, а низкомолекулярные органические вещества склонны образовывать растворимые комплексы.

    Сложность состава почв ограничивает возможность количественного разделения медных соединений на конкретные химические формы. указывает на -->Наличие большой массы медных конгломератов находится и в органических веществах, и в оксидах Fe и Mn. Внесение медьсодержащих отходов или неорганических солей меди повышает концентрацию соединений меди в почве, способных к экстрагированию сравнительно мягкими реагентами; таким образом, медь может находиться в почве в виде лабильных химических форм. Но легко растворимый и заменяемый элемент - медь - образует малое количество форм, способных к поглощению растениями, обычно менее 5% от общего содержания меди в почве.

    Токсичность меди увеличивается с увеличением pH почвы и при низкой катионообменной емкости почвы. Обогащение медью за счет экстракции происходит только в поверхностных слоях почвы, и зерновые культуры с глубокой корневой системой не страдают от этого.

    Окружающая среда и питание растений могут повлиять на фитотоксичность меди. Так, например, медная токсичность для риса на равнинных землях отмечалась явно, когда растения поливали холодной, а не теплой водой. Дело в том, что микробиологическая активность подавляется в холодной почве и создает те востановительные условия в почве, которые бы способствовали осаждению меди из раствора.

    Фитотоксичность по меди происходит изначально от избытка в почве доступной меди и усиливается кислотностью почвы. Поскольку медь сравнительно малоподвижна в почве, почти вся попадающая в почву медь остается в верхних слоях. Внесение органических веществ в загрязненные медью почвы может снизить токсичность благодаря адсорбции растворимого металла органическим субстратом (при этом ионы Cu 2+ превращаются в менее доступные для растения комплексные соединения) либо повышением мобильности ионов Cu 2+ и вымыванием их из почвы в виде растворимых медьорганических комплексов.

    Цинк (Zn)

    Цинк может находиться в почве в виде оксосульфатов, карбонатов, фосфатов, силикатов, оксидов и гидроксидов. Эти неорганические соединения метастабильны в хорощо дренируемых сельскохозяественных угодьях. По-видимому, сфалерит ZnS является термодинамически преобладающей формой как в восстановленных, так и в окисленных почвах. Некоторая ассоциация цинка с фосфором и хлором налицо в восстановленных, загрязненных тяжелыми металлами осадках. Следовательно, сравнительно растворимые соли цинка должны встречаться в богатых металлами почвах.

    Цинк изоморфно замещается другими катионами в силикатных минералах, он может быть окклюдирован или соосажден с гидроксидами марганца и железа. Филлосиликаты, карбонаты, гидратированные оксиды металлов, а также органические соединения хорощо абсорбируют цинк, при этом используются и специфические, и неспецифические места связывания.

    Растворимочть цинка повышается в кислых почвах, а также при комплексообразовании с низкомолекулярными органическими лигандами. Восстанавливающие условия могут уменьшать растворимость у цинка из-за образования нерастворимого ZnS.

    Фитотоксичность цинка обычно проявляется при контакте корней растения с избыточным по цинку раствором в почве. Транспорт цинка через почву происходит посредством обмена и диффузии, причем последний процесс доминирует в почвах с низким содержанием цинка. Обменный транспорт более значителен в высокоцинковых почвах, в которых концентрации растворимого цинка сравнительно стабильны.

    Мобильность цинка в почвах повышается в присутствии хелатообразователей (природных или синтетических). Увеличение концентрации растворимого цинка, вызванное образованием растворимых хелатов, компенсирует понижение мобильности, обусловленное увеличением размера молекулы. Концентрации цинка в тканях растений, его общее поглощение и симптомы токсичности положительно коррелируют с концентрацией цинка в растворе, омывающем корни растения.

    Свободный ион Zn 2+ преимущественно абсорбируется корневой системой растений, поэтому образование растворимых хелатов способствует растворимости данного металла в почвах, а эта реакция компенсирует пониженную доступность цинка в хелатной форме.

    Исходная форма металлического загрязнения влияет на потенциал токсичности по цинку: доступность цинка для растения в удобряемых почвах с эквивалентным общим содержанием этого металла уменьшается в ряду ZnSO 4 >отстой>мусорный компост.

    Большинство опытов по загрязнению по почвы Zn-содержащим отстоем не показало падение урожая или явную их фитотоксичность; все же их долговременное внесение с высокой скоростью способно повредить растениям. Простое внесение цинка в виде ZnSO 4 вызывает понижение роста культур в кислых почвах, в то время как многолетнее внесение его в почти нейтральные почвы проходит незамеченным.

    Токсичность уровней в сельскохозяественных почвах цинк достигает, как правило, из-за поверхностного цинка; он обычно не проникает на глубину более 15-30 см. Глубокие корни определенных культур могут избежать контакта с избыточным цинком благодаря их расположению в незагрязненной подпочве.

    Известкование почв, загрязненных цинком, понижает концентрацию последнего в полевых культурах. Добавки NaOH или Ca(OH) 2 понижают токсичность цинка в овощных культурах, выращенных на высокоцинковых торфяных почвах, хотя в данных почвах поглощение цинка растениями весьма ограничено. Вызванную же цинком недостаточность по железу можно устранить при помощи внесения хелатов железа или FeSO 4 в почву либо прямо на листья. Физическое удаление или захоронение загрязненного цинком верхнего слоя вообще может позволить избежать токсичного воздействия металла на растения.

    Марганец

В почве марганец находится в трех состояниях окисления: +2 , +3 , +4 . По большей части этот металл ассоциирован с первичными минералами или со вторичными металлоксидами. В почве общее количество марганца колеблется на уровне 500 - 900 мг/кг.

Растворимость Mn 4+ чрезвычайно мала; трехвалентный марганец очень нестоек в почвах. Большая часть марганца в почвах присутствует в виде Mn 2+ , в то время как в хорошо аэрируемых почвах большая часть его в твердой фазе присутствует в виде оксида, в котором металл находится в степени окисления IV; в плохо же аэрируемых почвах марганец медленно восстанавливается микробной средой и переходит в почвенный раствор, становясь таким образом высокомобильным.

Растворимость Mn 2+ увеличивается значительно при низких значениях pH, но при этом поглощение марганца растениями падает.

Марганцевая токсичность часто имеет место там, где общий уровень марганца от среднего до высокого, pH почвы довольно низкий и кислородная доступность для почвы тоже низка (т.е. имеются восстановительные условия). Чтобы устранить действие перечисленных условий, pH почвы следует увеличивать с помощью известкования, потратить усилия на улучшение почвенного дренажа, уменьшить поступление воды, т.е. в целом улучшить структуру данной почвы.

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

1. Подготовлены коллективом авторов в составе: Н.В. Русаков, И.А. Крятов, Н.И. Тонкопий, Ж.Ж. Гумарова, Н.В. Пиртахия (ГУ НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН); А.П. Веселое (Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека).

2. Рекомендованы к утверждению Бюро Комиссии по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол № 2 от 16 июня 2005 г.).

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онишенко 19 января 2006 г.

4. Введены в действие постановлением Главного государственного санитарного врача Российской Федерации от 23 января 2006 г. № 1 с 1 апреля 2006 г.

5. Введены взамен гигиенических нормативов «Перечень предельно допустимых концентраций (ПДК) и ориентировочно-допустимых количеств (ОДК) химических веществ в почве» № 6229-91 и ГН 2.1.7.020-94 (дополнение 1 к № 6229-91).

6. Зарегистрированы в Министерстве юстиции Российской Федерации (регистрационный номер 7470 от 7 февраля 2006 г.).

Федеральный закон Российской Федерации
«О санитарно-эпидемиологическом благополучии населения»
№ 52-ФЗ от 30 марта 1999 г.

«Государственные санитарно-эпидемиологические правила и нормативы (далее - санитарные правила) - нормативные правовые акты, устанавливающие санитарно-эпидемиологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний» (статья 1).

«Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц» (статья 39, п. 3).

ГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОСТАНОВЛЕНИЕ

23.01.06 Москва №1

О введении в действие
гигиенических нормативов
ГН 2.1.7.2041-06

На основании Федерального закона от 30.03.1999 № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения» (Собрание законодательства Российской Федерации, 1999, № 14, ст. 1650; 2003, № 2, ст. 167; № 27, ст. 2700; 2004, № 35, ст. 3607) и Положения о государственном санитарно-эпидемиологическом нормировании, утвержденного постановлением Правительства Российской Федерации от 24.07.2000 № 554 (Собрание законодательства Российской Федерации, 2000, № 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 № 569 (Собрание законодательства Российской Федерации, 2005, № 39, ст. 3953)

ПОСТАНОВЛЯЮ:

1. Ввести в действие с 1 апреля 2006 года гигиенические нормативы ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве», утвержденные Главным государственным санитарным врачом Российской Федерации 19 января 2006 года.

Г.Г. Онищенко

УТВЕРЖДАЮ

Руководитель Федеральной службы
по надзору в сфере защиты прав
потребителей и благополучия человека,
Главный государственный санитарный
врач Российской Федерации

Г.Г. Онищенко

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ, САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

I. Общие положения и область применения

1.1. Гигиенические нормативы "Предельно допустимые концентрации (ПДК) химических веществ в почве" (далее - нормативы) разработаны в соответствии с Федеральным законом от 30.03.1999 N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения" (Собрание законодательства Российской Федерации, 1999, N 14, ст. 1650; 2003, N 2, ст. 167; N 27, ст. 2700; 2004, N 35) и Положением о государственном санитарно-эпидемиологическом нормировании, утвержденным постановлением Правительства Российской Федерации от 24.07.2000 N 554 (Собрание законодательства Российской Федерации, 2000, N 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 N 569 (Собрание законодательства Российской Федерации, 2005, N 39, ст. 3953)

1.2. Настоящие нормативы действуют на всей территории Российской Федерации и устанавливают предельные допустимые концентрации химических веществ в почве разного характера землепользования.

1.3. Нормативы распространяются на почвы населенных пунктов, сельскохозяйственных угодий, зон санитарной охраны источников водоснабжения, территории курортных зон и отдельных учреждений.

1.4. Настоящие нормативы разработаны на основе комплексных экспериментальных исследований опасности опосредованного воздействия вещества - загрязнителя почвы на здоровье человека, а также с учетом его токсичности, эпидемиологических исследований и международного опыта нормирования.

1.5. Соблюдение гигиенических нормативов является обязательным для граждан, индивидуальных предпринимателей и юридических лиц.

II. Предельно допустимые концентрации (ПДК) химических веществ в почве

Наименование вещества

Величина ПДК (мг/кг) с учетом фона (кларка)

Лимитирующий показатель вредности

Валовое содержание

Бенз/а/пирен

Общесанитарный

Воздушно-миграционный

Воздушно-миграционный

Общесанитарный

Ванадий+марганец

7440-62-2+7439-96-5

Общесанитарный

Диметилбензолы (1,2-диметилбензол; 1,3-диметилбензол; 1,4-диметилбензол)

Транслокационный

Комплексные гранулированные удобрения (КГУ)

Водно-миграционный

Комплексные жидкие удобрения (КЖУ)

Водно-миграционный

Марганец

Общесанитарный

Метаналь

Воздушно-миграционный

Метилбензол

Воздушно-миграционный

(1-метилэтенил)бензол

Воздушно-миграционный

(1-метилэтил)бензол

Воздушно-миграционный

(1-метилэтил)бензол + (1-метилэтенил)бензол

98-82-8 + 25013-15-4

С9Н12 + С9Н10

Воздушно-миграционный

Транслокационный

Нитраты (по NO3)

Водно-миграционный

Водно-миграционный

Общесанитарный

Транслокационный

Общесанитарный

Свинец + ртуть

7439-92-1 + 7439-97-6

Транслокационный

Общесанитарный

Серная кислота (по S)

Общесанитарный

Сероводород (по S)

Воздушно-миграционный

Суперфосфат (по Р2О5)

Транслокационный

Водно-миграционный

Фуран-2-карбальдегид

Общесанитарный

Хлорид калия (по К2О)

Водно-миграционный

Хром шестивалентный

Общесанитарный

Воздушно-миграционны

Этенилбензол

Воздушно-миграционны

Подвижная форма

Общесанитарный

Марганец, извлекаемый 0,1 н H2SO4:

Чернозем

Дерново-подзолистая:

Извлекаемый ацетатно-аммонийным буфером с рН 4,8:

Общесанитарный

Чернозем

Дерново-подзолистая:

Общесанитарный

Общесанитарный

Общесанитарный

Транслокационный

Хром трехвалентный5

Общесанитарный

Транслокационный

Водорастворимая форма

Транслокационный

Примечания.

1. КГУ - комплексные гранулированные удобрения состава N:P:K=64:0:15. ПДК КГУ контролируется по содержанию нитратов в почве, которое не должно превышать 76,8 мг/кг абсолютно сухой почвы.

КЖУ - комплексные жидкие удобрения состава N:P:K=10:34:0 ТУ 6-08-290-74 с добавками марганца не более 0,6% от общей массы. ПДК КЖУ контролируется по содержанию подвижных фосфатов в почве, которое не должно превышать 27,2 мг/кг абсолютно сухой почвы.

2. Нормативы мышьяка и свинца для разных типов почв представлены как ориентировочно допустимые концентрации (ОДК) в другом документе.

3. ПДК ОФУ контролируется по содержанию бенз/а/пирена в почве, которое не должно превышать ПДК бенз/а/пирена.

4. Подвижная форма кобальта извлекается из почвы ацетатно-натриевым буферным раствором с рН 3,5 и рН 4,7 для сероземов и ацетатно-аммонийным буферным раствором с рН 4,8 для остальных типов почв.

5. Подвижная форма элемента извлекается из почвы ацетатно-аммонийным буферным раствором с рН 4,8.

6. Подвижная форма фтора извлекается из почвы с рН £ 6,5 0,006 н НСl, с рН >6,5 - 0,03 н K2SO4.

Примечания к разделу II

Названия индивидуальных веществ в алфавитном порядке приведены, где это было возможно, в соответствии с правилами Международного союза теоретической и прикладной химии ИЮПАК (International Union of Pure Applied Chemistry, IUРАС) (графа 2) и обеспечены регистрационными номерами Chemical Abstracts Service (CAS) (графа 3) для облегчения идентификации веществ.

В графе 4 приведены формулы веществ.

Величины Нормативов приведены в миллиграммах вещества на килограмм почвы (мг/кг) - графа 5 - для валовых и подвижных форм их содержания в почве.

Указан лимитирующий показатель вредности (графа 6), по которому установлены нормативы: воздушно-миграционный (воздушно-мигр.), водно-миграционный (водно-мигр.), общесанитарный или транслокационный.

Для удобства пользования нормативами приведен указатель основных синонимов (прилож. 1), формул веществ (прилож. 2) и номеров CAS (прилож. 3).

1. ГОСТ 26204-84, ГОСТ 28213-84 «Почвы. Методы анализа».

2. Дмитриев М.Т., Казнина Н.И., Пинигина И.А. Санитарно-химический анализ загрязняющих веществ в окружающей среде: Справочник. М.: Химия, 1989.

3. Методика определения фурфурола в почве № 012-17/145 /МЗ УзССР от 24.03.87. Ташкент, 1987.

4. Методические указания по качественному и количественному определению канцерогенных полициклических углеводородов в продуктах сложного состава № 1423-76 от 12.05.76. М., 1976.

5. Методические указания по отбору проб из объектов внешней среды и подготовка их для последующего определения канцерогенных полициклических ароматических углеводородов: № 1424-76 от 12.05.76.

6. Предельно допустимые концентрации химических веществ в почве: № 1968-79 /МЗ СССР от 21.02.79. М., 1979.

7. Предельно допустимые концентрации химических веществ в почве: № 2264-80 от 30.10.80 /МЗ СССР. М., 1980.

К тяжелым металлам (ТМ) относят более 40 химических эле­ментов периодической системы Д. И. Менделеева, масса атомов ко­торых составляет свыше 50 атомных единиц массы (а.е.м.). Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др.

Сложившееся понятие «тяжелые металлы» не является строгим, так как к ТМ часто от­носят элементы-неметаллы, например As, Se, а иногда даже F, Be и другие элементы, атомная масса которых меньше 50 а.е.м.

Среди ТМ много микроэлементов, биологически важных для живых организмов. Они являются необходимыми и незаменимы­ми компонентами биокатализаторов и биорегуляторов важнейших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже ток­сичное действие на живые организмы.

Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и переработ­ка полезных ископаемых, сжигание топлива, влияние автотран­спорта, сельского хозяйства и т. д.) Сельскохозяйственные земли, помимо загрязнения через атмосферу, загрязняются ТМ еще и спе­цифически, при применении пестицидов, минеральных и органи­ческих удобрений, известковании, использовании сточных вод. В последнее время особое внимание ученые уделяют городским поч­вам. Последние испытывают значительный техногенный пресс, со­ставной частью которого является загрязнение ТМ.

В табл. 3.14 и 3.15 представлены распределение ТМ в различ­ных объектах биосферы и источники поступления ТМ в окружаю­щую среду.

Таблица 3.14

Элемент Почвы Пресные воды Морские воды Растения Животные (в мышечной ткани)
Mn 1000 0,008 0,0002 0,3-1000 0,2-2,3
Zn 90 (1-900) 0,015 0,0049 1,4-600 240
Cu 30 (2-250) 0,003 0,00025 4-25 10
Co 8 (0,05-65) 0,0002 0,00002 0,01-4,6 0,005-1
Pb 35 (2-300) 0,003 0,00003 0,2-20 0,23-3,3
Cd 0,35 (0,01-2) 0,0001 - 0,05-0,9 0,14-3,2
Hg 0,06 0,0001 0,00003 0,005-0,02 0,02-0,7
As 6 0,0005 0,0037 0,02-7 0,007-0,09
Se 0,4 (0,01-12) 0,0002 00,0002 0,001-0,5 0,42-1,9
F 200 0,1 1,3 0,02-24 0,05
B 20 (2-270) 0,15 4,44 8-200 0,33-1
Mo 1,2 (0,1-40) 0,0005 0,01 0,03-5 0,02-0,07
Cr 70 (5-1500) 0,001 0,0003 0,016-14 0,002-0,84
Ni 50 (2-750) 0,0005 0,00058 0,02-4 1-2

Таблица 3.15

Источники загрязнения окружающей среды ТМ

Окончание табл. 3.4

На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов как растворимые, так и прак­тически нерастворимые в воде (сульфиды, сульфаты, арсениты и др.). В составе выбросов предприятий по переработке руды и пред­приятий цветной металлургии - основного источника загрязнения окружающей среды ТМ - основная масса металлов (70-90 %) нахо­дится в форме оксидов.

Попадая на поверхность почв, ТМ могут либо накапливать­ся, либо рассеиваться в зависимости от характера геохимических барьеров, свойственных данной территории.

Большая часть ТМ, поступивших на поверхность почвы, закре­пляется в верхних гумусовых горизонтах. ТМ сорбируются на по­верхности почвенных частиц, связываются с органическим вещест­вом почвы, в частности в виде элементно-органических соединений, аккумулируются в гидроксидах железа, входят в состав кристалли­ческих решеток глинистых минералов, дают собственные минера­лы в результате изоморфного замещения, находятся в растворимом состоянии в почвенной влаге и газообразном состоянии в почвенном воздухе, являются составной частью почвенной биоты.

Степень подвижности ТМ зависит от геохимической обстановки и уровня техногенного воздействия. Тяжелый гранулометрический состав и высокое содержание органического вещества приводят к связыванию ТМ почвой. Рост значений рН усиливает сорбирован- ность катионообразующих металлов (медь, цинк, никель, ртуть, свинец и др.) и увеличивает подвижность анионообразующих (мо­либден, хром, ванадий и пр.). Усиление окислительных условий увеличивает миграционную способность металлов. В итоге, по спо­собности связывать большинство ТМ, почвы образуют следующий ряд: серозем > чернозем > дерново-подзолистая почва.

Продолжительность пребывания загрязняющих компонентов в почве значительно больше, чем в других частях биосферы, и загряз­нение почвы, особенно ТМ, практически вечно. Металлы, накапли­ваясь в почве, медленно удаляются при выщелачивании, потреб­лении растениями, эрозии и дефляции (Кабата-Пендиас, Пендиас, 1989). Период полуудаления (или удаления половины от начальной концентрации) ТМ сильно варьирует для различных элементов, но составляет достаточно продолжительные периоды времени: для Zn - от 70 до 510 лет; для Cd - от 13 до 110 лет; для Cu - от 310 до 1500 лет и для Pb - 2 - от 740 до 5900 лет (Садовская, 1994).

Загрязнение почв ТМ имеет сразу две отрицательные стороны. Во-первых, поступая по пищевым цепям из почвы в растения, а оттуда в организм животных и человека, ТМ вызывают у них серь­езные заболевания - росту заболеваемости населения и сокраще­нию продолжительности жизни, а также к снижению количества и качества урожаев сельскохозяйственных растений и животновод­ческой продукции.

Во-вторых, накапливаясь в почве в больших количествах, ТМ способны изменять многие ее свойства. Прежде всего, изменения затрагивают биологические свойства почвы: снижается общая чис­ленность микроорганизмов, сужается их видовой состав (разнообра­зие), изменяется структура микробоценозов, падает интенсивность основных микробиологических процессов и активность почвенных ферментов и т. д. Сильное загрязнение ТМ приводит к изменению и более консервативных признаков почвы, таких как гумусное состоя­ние, структура, pH среды и др. Результатом этого является частич­ная, а в ряде случаев и полная утрата почвенного плодородия.

В природе встречаются территории с недостаточным или избы­точным содержанием в почвах ТМ. Аномальное содержание ТМ в почвах обусловлено двумя группами причин: биогеохимически­ми особенностями экосистем и влиянием техногенных потоков ве­щества. В первом случае, районы, где концентрация химических элементов выше или ниже оптимального для живых организмов уровня, называются природными геохимическими аномалиями, или биогеохимическими провинциями. Здесь аномальное содержа­ние элементов обусловлено естественными причинами - особенно­стями почвообразующих пород, почвообразовательного процесса, присутствием рудных аномалий. Во втором случае, территории называются техногенными геохимическими аномалиями. В за­висимости от масштаба они делятся на глобальные, региональные и локальные.

Почва, в отличие от других компонентов природной среды, не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос хими­ческих элементов и соединений в атмосферу, гидросферу и живое вещество.

Различные растения, животные и человек требуют для жиз­недеятельности определенного состава почвы, воды. В местах гео­химических аномалий происходит, усугубляясь, передача отклоне­ний от нормы минерального состава по всей пищевой цепи.

В результате нарушения минерального питания наблюдаются изменения видового состава фито-, зоо- и микробоценозов, заболе­вание дикорастущих форм растений, снижение количества и каче­ства урожаев сельскохозяйственных растений и животноводческой продукции, рост заболеваемости населения и снижение продолжи­тельности жизни (табл. 3.15). Механизм токсического действия ТМ представлен в табл. 3.16.

Таблица 3.15

Физиологические нарушения в растениях при избытке и недостатке содержания в них ТМ (по Ковалевскому, андриановой, 1970; Кабата-пендиас,

пендиас, 1989)

Элемент Физиологические нарушения
при недостатке при избытке
Cu Хлороз, вилт, меланизм, белые скрученные макушки, ослабление образования метелок, нарушение одревеснения, суховершинность деревьев Темно-зеленые листья, как при Fe- индуцированном хлорозе; толстые, короткие или похожие на колючую проволоку корни,

угнетение образования побегов

Zn Междужилковый хлороз (в основном у однодольных), остановка роста, розетчатость листьев деревьев, фиолетово-красные точки на листьях Хлороз и некроз концов листьев, междужилковый хлороз молодых листьев, задержка роста растения в целом,

поврежденные корни, похожие на колючую проволоку

Cd - Бурые края листьев, хлороз, красноватые жилки и черешки, скрученные листья и бурые недоразвитые корни
Hg - Некоторое торможение ростков и корней, хлороз листьев и бурые точки на них
Pb - Снижение интенсивности фотосинтеза, темно­зеленые листья, скручивание старых листьев, чахлая листва, бурые короткие корни

Таблица 3.16

Механизм действия токсичности ТМ (по Торшину с соавт., 1990)

Элемент Действие
Cu, Zn, Cd, Hg, Pb Влияние на проницаемость мембран, реакция с SH - группами цистеина и метионина
Pb Изменение трехмерной структуры белков
Cu, Zn, Hg, Ni Образование комплексов с фосфолипидами
Ni Образование комплексов с альбуминами
Ингибирование ферментов:
Hg2+ щелочной фосфатазы, глюко-6-фосфотазы, лактатдегидрогеназы
Cd2+ аденозинтрифосфотазы, алкогольдегидрогеназы, амилазы, карбоангидразы, карбоксипептидазы (пентидазы), глутаматоксалоацетаттранаминазы
Pb2+ ацетилхолинэстеразы, щелочной фосфатазы, АТФазы
Ni2+ карбоангидразы, цитохромоксидазы, бензопиренгидроксилазы

Токсическое воздействие ТМ на биологические системы в пер­вую очередь обусловлено тем, что они легко связываются с сульф- гидрильными группами белков (в том числе и ферментов), подав­ляя их синтез и, тем самым нарушая обмен веществ в организме.

Живые организмы выработали разнообразные механизмы ус­тойчивости к ТМ: от восстановления ионов ТМ в менее токсичные соединения до активации систем ионного транспорта, осуществ­ляющих эффективное и специфическое удаление токсических ио­нов из клетки во внешнюю среду.

Наиболее существенное последствие воздействия ТМ на живые организмы, проявляющееся на биогеоценотическом и биосферном уровнях организации живого вещества, заключается в блокирова­нии процессов окисления органического вещества. Это приводит к снижению скорости его минерализации и накоплению в экосисте­мах. В то же время увеличение концентрации органического веще­ства вызывает связывание им ТМ, что временно снимает нагрузку с экосистемы. Снижение скорости разложения органического ве­щества за счет снижения численности организмов, их биомассы и интенсивности жизнедеятельности считают пассивной реакцией экосистем на загрязнение ТМ. Активное противостояние организ­мов антропогенным нагрузкам проявляется лишь в ходе прижиз­ненной аккумуляции металлов в телах и скелетах. Ответственными за этот процесс являются наиболее устойчивые виды.

Устойчивость живых организмов, прежде всего растений, к по­вышенным концентрациям ТМ и их способность накапливать вы­сокие концентрации металлов могут представлять большую опас­ность для здоровья людей, поскольку допускают проникновение загрязняющих веществ в пищевые цепи. В зависимости от геохи­мических условий производства пища человека как растительного, так и животного происхождения может удовлетворять потребности человека в минеральных элементах, быть дефицитной или содер­жать превышающее их количество, становясь более токсичной, вы­зывая заболевания и даже смерть (табл. 3.17).

Таблица 3.17

Действие ТМ на организм человека (Ковальский, 1974; Краткая медицинская энциклопедия, 1989; Торшин с соавт., 1990; Воздействие на организм.., 1997; Справочник по токсикологии.., 1999)

Элемент Физиологические отклонения
при недостатке при избытке
Mn Заболевания костной системы Лихорадка, пневмония, поражение центральной нервной системы (марганцевый паркинсонизм), эндемическая подагра, нарушение кровообращения, желудочно-кишечных функций, бесплодие
Cu Слабость, анемия, белокровие, забо­левания костной системы, нарушение координации движений Профессиональные заболевания, гепатит, бо­лезнь Вильсона. Поражает почки, печень, мозг, глаза
Zn Ухудшение аппетита, деформация костей, карликовый рост, долгое за­живание ран и ожогов, слабое зрение, близорукость Уменьшение канцероустойчивости, анемия, угне­тение окислительных процессов, дерматиты
Pb - Свинцовая энцефало-нейропатия, нарушение обме­на веществ, ингибирование ферментативных реак­ций, авитаминоз, малокровие, рассеянный склероз. Входит в состав костной системы вместо кальция
Cd - Гастро-интестинальные расстройства, нарушения органов дыхания, анемии, повышение кровяного давления, поражение почек, болезнь итаи-итаи, протеинурия, остеопороз, мутагенное и канцеро­генное действие
Hg - Поражения центральной нервной системы и пе­риферических нервов, инфантилизм, нарушение репродуктивных функций, стоматит, болезнь

Минамата, преждевременное старение

Co Эндемический зоб -
Ni - Дерматиты, нарушение кроветворения, канцеро- генность, эмбриотоксикоз, подострая миело-опти- конейропатия
Cr - Дерматиты, канцерогенность
V - Заболевания сердечно-сосудистой системы

Разные ТМ представляют опасность для здоровья человека в раз­личной степени. Наиболее опасными являются Hg, Cd, Pb (табл. 3.18).

Таблица 3.18

Классы загрязняющих веществ по степени их опасности (гоСТ 17.4.1.02-83)

Очень сложен вопрос нормирования содержания ТМ в почве. В основе его решения должно лежать признание полифункционально­сти почвы. В процессе нормирования почва может рассматриваться с различных позиций: как естественное природное тело; как среда обитания и субстрат для растений, животных и микроорганизмов; как объект и средство сельскохозяйственного и промышленного производства; как природный резервуар, содержащий патогенные микроорганизмы. Нормирование содержания ТМ в почве необхо­димо проводить на основе почвенно-экологических принципов, ко­торые отрицают возможность нахождения единых значений для всех почв.

По вопросу санации почв, загрязненных ТМ, существует два основных подхода. Первый направлен на очищение почвы от ТМ. Очищение может производиться путем промывок, путем извле­чения ТМ из почвы с помощью растений, путем удаления верх­него загрязненного слоя почвы и т. п. Второй подход основан на закреплении ТМ в почве, переводе их в нерастворимые в воде и недоступные живым организмам формы. Для этого предлагается внесение в почву органического вещества, фосфорных минераль­ных удобрений, ионообменных смол, природных цеолитов, бурого угля, известкование почвы и т. д. Однако любой способ закре­пления ТМ в почве имеет свой срок действия. Рано или поздно часть ТМ снова начнет поступать в почвенный раствор, а оттуда в живые организмы.

Таким образом, к тяжелым металлам относят более 40 хи­мических элементов, масса атомов которых составляет свыше 50 а. е.м. Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др. Среди ТМ много микроэлементов, являющихся необходимыми и незаменимы­ми компонентами биокатализаторов и биорегуляторов важней­ших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже токсическое действие на живые организмы.

Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и перера­ботка полезных ископаемых, сжигание топлива, влияние авто­транспорта, сельского хозяйства и т. д.).

На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов, как растворимые, так и практически нерастворимые в воде.

Экологические последствия загрязнения почв ТМ зависят от па­раметров загрязнения, геохимической обстановки и устойчивости почв. К параметрам загрязнения относятся природа металла, т. е. его химические и токсические свойства, содержание металла в поч­ве, форма химического соединения, срок от момента загрязнения и т. д. Устойчивость почв к загрязнению зависит от гранулометри­ческого состава, содержания органического вещества, кислотно-ще­лочных и окислительно-восстановительных условий, активности микробиологических и биохимических процессов и т. д.

Устойчивость живых организмов, прежде всего растений, к повышенным концентрациям ТМ и их способность накапливать высокие концентрации металлов могут представлять большую опасность для здоровья людей, поскольку допускают проникнове­ние загрязняющих веществ в пищевые цепи.

При нормировании содержания ТМ в почве должна учиты­ваться полифункциональность почвы. Почва может рассматри­ваться как естественное природное тело, как среда обитания и субстрат для растений, животных и микроорганизмов, как объект и средство сельскохозяйственного и промышленного про­изводства, как природный резервуар, содержащий патогенные микроорганизмы, как часть наземного биогеоценоза и биосферы в целом.